Wu YC, Yang QP, Shen BT et al. Multifunctional mixed analog/digital signal processor based on integrated photonics. Opto-Electron Sci 3, 240012 (2024). doi: 10.29026/oes.2024.240012
Citation: Wu YC, Yang QP, Shen BT et al. Multifunctional mixed analog/digital signal processor based on integrated photonics. Opto-Electron Sci 3, 240012 (2024). doi: 10.29026/oes.2024.240012

Article Open Access

Multifunctional mixed analog/digital signal processor based on integrated photonics

More Information
  • Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation. Compared to its electronic counterpart, it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility, particularly through integrated photonics. However, by far the on-chip solutions for optical signal processing are often tailored to specific tasks, which lacks versatility across diverse applications. Here, we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator (SOI) platform with a compact and efficient manner. Comprehensive and in-depth analyses for the architecture are conducted at levels of device, system, and application. Accompanied by appropriate configuring schemes, the photonic circuitry supports loading and processing both analog and digital signals simultaneously. Three distinct tasks are facilitated with one single chip across several mainstream fields, spanning optical computing, microwave photonics, and optical communications. Notably, it has demonstrated competitive performance in functions like image processing, spectrum filtering, and electro-optical bandwidth equalization. Boasting high universality and a compact form factor, the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
  • 加载中
  • [1] Miller DAB. Attojoule optoelectronics for low-energy information processing and communications. J Light Technol 35, 346–396 (2017). doi: 10.1109/JLT.2017.2647779

    CrossRef Google Scholar

    [2] Liu WL, Li M, Guzzon RS et al. A fully reconfigurable photonic integrated signal processor. Nat Photonics 10, 190–195 (2016). doi: 10.1038/nphoton.2015.281

    CrossRef Google Scholar

    [3] Yao JP, Capmany J. Microwave photonics. Sci China Inf Sci 65, 221401 (2022). doi: 10.1007/s11432-021-3524-0

    CrossRef Google Scholar

    [4] Rickman A. The commercialization of silicon photonics. Nat Photonics 8, 579–582 (2014). doi: 10.1038/nphoton.2014.175

    CrossRef Google Scholar

    [5] Chen X, Milosevic MM, Stanković S et al. The emergence of silicon photonics as a flexible technology platform. Proc IEEE 106, 2101–2116 (2018). doi: 10.1109/JPROC.2018.2854372

    CrossRef Google Scholar

    [6] Marpaung D, Yao JP, Capmany J. Integrated microwave photonics. Nat Photonics 13, 80–90 (2019).

    Google Scholar

    [7] Peng HT, Nahmias MA, De Lima TF et al. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron 24, 6101715 (2018).

    Google Scholar

    [8] Tao ZH, Tao YS, Jin M et al. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photonics Res 11, 682–694 (2023). doi: 10.1364/PRJ.476466

    CrossRef Google Scholar

    [9] Tao YS, Shu HW, Wang XJ et al. Hybrid-integrated high-performance microwave photonic filter with switchable response. Photonics Res 9, 1569–1580 (2021). doi: 10.1364/PRJ.427393

    CrossRef Google Scholar

    [10] Yan H, Xie YW, Zhang L et al. Wideband‐tunable on‐chip microwave photonic filter with ultrahigh‐Q U‐bend‐Mach–Zehnder‐interferometer‐coupled microring resonators. Laser Photonics Rev 17, 2300347 (2023). doi: 10.1002/lpor.202300347

    CrossRef Google Scholar

    [11] Liu Y, Choudhary A, Marpaung D et al. Integrated microwave photonic filters. Adv Opt Photonics 12, 485–555 (2020). doi: 10.1364/AOP.378686

    CrossRef Google Scholar

    [12] Zou XH, Lu B, Pan W et al. Photonics for microwave measurements. Laser Photonics Rev 10, 711–734 (2016). doi: 10.1002/lpor.201600019

    CrossRef Google Scholar

    [13] Zhu BB, Zhang WF, Pan SL et al. High-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated Fano resonator. J Light Technol 37, 2527–2533 (2019). doi: 10.1109/JLT.2018.2885224

    CrossRef Google Scholar

    [14] Tao YS, Yang FH, Tao ZH et al. Fully on‐chip microwave photonic instantaneous frequency measurement system. Laser Photonics Rev 16, 2200158 (2022). doi: 10.1002/lpor.202200158

    CrossRef Google Scholar

    [15] Fu TZ, Zang YB, Huang YY et al. Photonic machine learning with on-chip diffractive optics. Nat Commun 14, 70 (2023). doi: 10.1038/s41467-022-35772-7

    CrossRef Google Scholar

    [16] Liao K, Chen Y, Yu ZC et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv 4, 200060 (2021). doi: 10.29026/oea.2021.200060

    CrossRef Google Scholar

    [17] Donati G, Argyris A, Mancinelli M et al. Time delay reservoir computing with a silicon microring resonator and a fiber-based optical feedback loop. Opt Express 32, 13419–13437 (2024). doi: 10.1364/OE.514617

    CrossRef Google Scholar

    [18] Sackesyn S, Ma CH, Dambre J et al. Experimental realization of integrated photonic reservoir computing for nonlinear fiber distortion compensation. Opt Express 29, 30991–30997 (2021).

    Google Scholar

    [19] Staffoli E, Mancinelli M, Bettotti P et al. Equalization of a 10 Gbps IMDD signal by a small silicon photonics time delayed neural network. Photonics Res 11, 878–886 (2023).

    Google Scholar

    [20] Dong P, Xie CJ, Buhl LL et al. Silicon in-phase/quadrature modulator with on-chip optical equalizer. J Light Technol 33, 1191–1196 (2015). doi: 10.1109/JLT.2015.2396039

    CrossRef Google Scholar

    [21] Pérez D, Gasulla I, Capmany J. Field-programmable photonic arrays. Opt Express 26, 27265–27278 (2018). doi: 10.1364/OE.26.027265

    CrossRef Google Scholar

    [22] Pérez D, Gasulla I, Das Mahapatra P et al. Principles, fundamentals, and applications of programmable integrated photonics. Adv Opt Photonics 12, 709–786 (2020). doi: 10.1364/AOP.387155

    CrossRef Google Scholar

    [23] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits. Nature 586, 207–216 (2020). doi: 10.1038/s41586-020-2764-0

    CrossRef Google Scholar

    [24] Pérez D, Gasulla I, Capmany J et al. Reconfigurable lattice mesh designs for programmable photonic processors. Opt Express 24, 12093–12106 (2016). doi: 10.1364/OE.24.012093

    CrossRef Google Scholar

    [25] Pérez D, Gasulla I, Crudgington L et al. Multipurpose silicon photonics signal processor core. Nat Commun 8, 636 (2017). doi: 10.1038/s41467-017-00714-1

    CrossRef Google Scholar

    [26] Zhuang LM, Roeloffzen CGH, Hoekman M et al. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015). doi: 10.1364/OPTICA.2.000854

    CrossRef Google Scholar

    [27] Pérez-López D, López A, DasMahapatra P et al. Multipurpose self-configuration of programmable photonic circuits. Nat Commun 11, 6359 (2020). doi: 10.1038/s41467-020-19608-w

    CrossRef Google Scholar

    [28] López DP. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J Sel Top Quantum Electron 26, 8301312 (2020).

    Google Scholar

    [29] López A, Pérez D, DasMahapatra P et al. Auto-routing algorithm for field-programmable photonic gate arrays. Opt Express 28, 737–752 (2020).

    Google Scholar

    [30] Zand I, Bogaerts W. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photonics Res 8, 211–218 (2020). doi: 10.1364/PRJ.376227

    CrossRef Google Scholar

    [31] Pérez D, Capmany J. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica 6, 19–27 (2019). doi: 10.1364/OPTICA.6.000019

    CrossRef Google Scholar

    [32] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. J Light Technol 24, 201–229 (2006). doi: 10.1109/JLT.2005.860478

    CrossRef Google Scholar

    [33] Shu HW, Chang L, Tao YS et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022). doi: 10.1038/s41586-022-04579-3

    CrossRef Google Scholar

    [34] Hu JQ, He JJ, Liu JQ et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat Commun 11, 4377 (2020). doi: 10.1038/s41467-020-18215-z

    CrossRef Google Scholar

    [35] Huang YY, Zhang WJ, Yang F et al. Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay. Opt Express 27, 20456–20467 (2019). doi: 10.1364/OE.27.020456

    CrossRef Google Scholar

    [36] Bai BW, Yang QP, Shu HW et al. Microcomb-based integrated photonic processing unit. Nat Commun 14, 66 (2023). doi: 10.1038/s41467-022-35506-9

    CrossRef Google Scholar

    [37] Xu XY, Tan MX, Corcoran B et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Google Scholar

    [38] Agrawal GP. Fiber‐Optic Communication Systems (John Wiley & Sons Inc. , 2021).

    Google Scholar

    [39] Rizzo A, Dave U, Novick A et al. Fabrication-robust silicon photonic devices in standard sub-micron silicon-on-insulator processes. Opt Lett 48, 215–218 (2023). doi: 10.1364/OL.476873

    CrossRef Google Scholar

    [40] Tang ZZ, Pan SL, Yao JP. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt Express 20, 6555–6560 (2012). doi: 10.1364/OE.20.006555

    CrossRef Google Scholar

    [41] Xie YW, Hong SH, Yan H et al. Low-loss chip-scale programmable silicon photonic processor. Opto-Electron Adv 6, 220030 (2023). doi: 10.29026/oea.2023.220030

    CrossRef Google Scholar

    [42] Bogaerts W, De Heyn P, Van Vaerenbergh T et al. Silicon microring resonators. Laser Photonics Rev 6, 47–73 (2012). doi: 10.1002/lpor.201100017

    CrossRef Google Scholar

    [43] Chen L, Sherwood-Droz N, Lipson M. Compact bandwidth-tunable microring resonators. Opt Lett 32, 3361–3363 (2007). doi: 10.1364/OL.32.003361

    CrossRef Google Scholar

    [44] Cartledge JC, Guiomar FP, Kschischang FR et al. Digital signal processing for fiber nonlinearities [Invited]. Opt Express 25, 1916–1936 (2017). doi: 10.1364/OE.25.001916

    CrossRef Google Scholar

    [45] Bahadori M, Rumley S, Polster R et al. Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing. In Proceedings of Design, Automation & Test in Europe Conference & Exhibition 326–331 (IEEE, 2017); http://doi.org/10.23919/DATE.2017.7927010.

    Google Scholar

    [46] Freude W, Schmogrow R, Nebendahl B et al. Quality metrics for optical signals: Eye diagram, Q-factor, OSNR, EVM and BER. In Proceedings of the 2012 14th International Conference on Transparent Optical Networks 1–4 (IEEE, 2012); http://doi.org/10.1109/ICTON.2012.6254380.

    Google Scholar

    [47] Eid N, Boeck R, Jayatilleka H et al. FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers. Opt Express 24, 29009–29021 (2016). doi: 10.1364/OE.24.029009

    CrossRef Google Scholar

    [48] Mistry A, Hammood M, Shoman H et al. Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers. Opt Lett 43, 6041–6044 (2018).

    Google Scholar

    [49] Li A, Bogaerts W. Experimental demonstration of a single silicon ring resonator with an ultra-wide FSR and tuning range. Opt Lett 42, 4986–4989 (2017). doi: 10.1364/OL.42.004986

    CrossRef Google Scholar

    [50] Mohammadi A, Zheng ZB, Lin JC et al. Segmented silicon photonic modulator with a 67-ghz bandwidth for high-speed signaling. In Proceedings of Optical Fiber Communication Conference 2022 Th3C. 1 (Optica Publishing Group, 2022); http://doi.org/10.1364/OFC.2022.Th3C.1.

    Google Scholar

    [51] Zhang HG, Li MF, Zhang YG et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res 8, 1776–1782 (2020). doi: 10.1364/PRJ.396815

    CrossRef Google Scholar

    [52] Hu X, Wu DY, Liu Y et al. 408 Gbit/s PAM-8 sidewall-doped germanium–silicon photodetector. Photonics Res 11, 961–967 (2023).

    Google Scholar

    [53] Wang Z, Li XF, Li JC et al. Multi-carrier Tb/s silicon photonic coherent receiver. Sci China Inf Sci 67, 112405 (2023). doi: 10.1007/s11432-022-3742-2

    CrossRef Google Scholar

    [54] Yuan Y, Tossoun B, Huang ZH et al. Avalanche photodiodes on silicon photonics. J Semicond 43, 021301 (2022). doi: 10.1088/1674-4926/43/2/021301

    CrossRef Google Scholar

    [55] Liu DJ, He JH, Xiang YL et al. High-performance silicon photonic filters based on all-passive tenth-order adiabatic elliptical-microrings. APL Photonics 7, 051303 (2022). doi: 10.1063/5.0085332

    CrossRef Google Scholar

    [56] Sun Y, Wu JY, Li Y et al. Comparison of microcomb-based radio-frequency photonic transversal signal processors implemented with discrete components versus integrated chips. Micromachines 14, 1794 (2023). doi: 10.3390/mi14091794

    CrossRef Google Scholar

    [57] Xu XY, Wu JY, Shoeiby M et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics 2, 096104 (2017). doi: 10.1063/1.4989871

    CrossRef Google Scholar

    [58] Tan MX, Xu XY, Corcoran B et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Light Technol 37, 6097–6104 (2019). doi: 10.1109/JLT.2019.2946606

    CrossRef Google Scholar

  • Supplementary information for Multifunctional mixed analog/digital signal processor based on integrated photonics
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(752) PDF downloads(210) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint