Chen S, Wu XH, Fu CJ. Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport. Opto-Electron Sci 3, 240002 (2024). doi: 10.29026/oes.2024.240002
Citation: Chen S, Wu XH, Fu CJ. Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport. Opto-Electron Sci 3, 240002 (2024). doi: 10.29026/oes.2024.240002

Article Open Access

Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport

More Information
  • Phonon polaritons (PhPs) exhibit directional in-plane propagation and ultralow losses in van der Waals (vdW) crystals, offering new possibilities for controlling the flow of light at the nanoscale. However, these PhPs, including their directional propagation, are inherently determined by the anisotropic crystal structure of the host materials. Although in-plane anisotropic PhPs can be manipulated by twisting engineering, such as twisting individual vdW slabs, dynamically adjusting their propagation presents a significant challenge. The limited application of the twisted bilayer structure in bare films further restricts its usage. In this study, we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment. Excitingly, we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity. Besides, we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer (NFRHT) between heterostructures integrated with different substrates that have negative permittivity. Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient, the excitation and reorientation of the fundamental mode facilitate increased photon tunneling, thereby enhancing heat transfer between heterostructures. Conversely, the annihilation of the fundamental mode hinders heat transfer. Furthermore, we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width. Finally, the effect of negative permittivity substrates on NFRHT along the [001] crystalline direction of α-MoO3 is considered. The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band (RB 1) of α-MoO3 and is widened, resulting in more significant enhancement of heat flux from RB 1. We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
  • 加载中
  • [1] Low T, Chaves A, Caldwell JD et al. Polaritons in layered two-dimensional materials. Nat Mater 16, 182–194 (2017). doi: 10.1038/nmat4792

    CrossRef Google Scholar

    [2] Li M, Hu GW, Chen X et al. Sci Adv 8, eadd6660 (2022).

    Google Scholar

    [3] Passler NC, Ni X, Hu GW et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022). doi: 10.1038/s41586-021-04328-y

    CrossRef Google Scholar

    [4] Hu GW, Ma WL, Hu DB et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat Nanotechnol 18, 64–70 (2023). doi: 10.1038/s41565-022-01264-4

    CrossRef Google Scholar

    [5] Ma WL, Hu GW, Hu DB et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021). doi: 10.1038/s41586-021-03755-1

    CrossRef Google Scholar

    [6] Shahzadi M, Zheng CY, Ahmad S et al. Exciton-polariton based WS2 polarization modulator controlled by optical Stark beam. Opto-Electron Adv 5, 200066 (2022). doi: 10.29026/oea.2022.200066

    CrossRef Google Scholar

    [7] Dai S, Fei Z, Ma Q et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). doi: 10.1126/science.1246833

    CrossRef Google Scholar

    [8] Basov DN, Fogler MM, García de Abajo FJ. Polaritons in van der Waals materials. Science 354, aag1992 (2016). doi: 10.1126/science.aag1992

    CrossRef Google Scholar

    [9] Ma WL, Alonso-González P, Li SJ et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). doi: 10.1038/s41586-018-0618-9

    CrossRef Google Scholar

    [10] Caldwell JD, Aharonovich I, Cassabois G et al. Photonics with hexagonal boron nitride. Nat Rev Mater 4, 552–567 (2019). doi: 10.1038/s41578-019-0124-1

    CrossRef Google Scholar

    [11] Taboada-Gutiérrez J, Álvarez-Pérez G, Duan JH et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat Mater 19, 964–968 (2020). doi: 10.1038/s41563-020-0665-0

    CrossRef Google Scholar

    [12] Wu YJ, Duan JH, Ma WL et al. Manipulating polaritons at the extreme scale in van der Waals materials. Nat Rev Phys 4, 578–594 (2022). doi: 10.1038/s42254-022-00472-0

    CrossRef Google Scholar

    [13] Poddubny A, Iorsh I, Belov P et al. Hyperbolic metamaterials. Nat Photon 7, 948–957 (2013). doi: 10.1038/nphoton.2013.243

    CrossRef Google Scholar

    [14] Zhang Q, Hu GW, Ma WL et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021). doi: 10.1038/s41586-021-03581-5

    CrossRef Google Scholar

    [15] Li PN, Lewin M, Kretinin AV et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 6, 7507 (2015). doi: 10.1038/ncomms8507

    CrossRef Google Scholar

    [16] Dai S, Ma Q, Andersen T et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun 6, 6963 (2015). doi: 10.1038/ncomms7963

    CrossRef Google Scholar

    [17] Li Y, Li W, Han TC et al. Transforming heat transfer with thermal metamaterials and devices. Nat Rev Mater 6, 488–507 (2021). doi: 10.1038/s41578-021-00283-2

    CrossRef Google Scholar

    [18] Gomez-Diaz JS, Alù A. Flatland optics with hyperbolic metasurfaces. ACS Photonics 3, 2211–2224 (2016). doi: 10.1021/acsphotonics.6b00645

    CrossRef Google Scholar

    [19] Correas-Serrano D, Alù A, Gomez-Diaz JS. Plasmon canalization and tunneling over anisotropic metasurfaces. Phys Rev B 96, 075436 (2017). doi: 10.1103/PhysRevB.96.075436

    CrossRef Google Scholar

    [20] Li PN, Hu GW, Dolado I et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat Commun 11, 3663 (2020). doi: 10.1038/s41467-020-17425-9

    CrossRef Google Scholar

    [21] Zhang Q, Zhen Z, Yang YF et al. Negative refraction inspired polariton lens in van der Waals lateral heterojunctions. Appl Phys Lett 114, 221101 (2019). doi: 10.1063/1.5098346

    CrossRef Google Scholar

    [22] Lin X, Yang Y, Rivera N et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc Natl Acad Sci USA 114, 6717–6721 (2017). doi: 10.1073/pnas.1701830114

    CrossRef Google Scholar

    [23] Kumar A, Low T, Fung KH et al. Tunable light–matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett 15, 3172–3180 (2015). doi: 10.1021/acs.nanolett.5b01191

    CrossRef Google Scholar

    [24] Bapat A, Dixit S, Gupta Y et al. Gate tunable light–matter interaction in natural biaxial hyperbolic van der Waals heterostructures. Nanophotonics 11, 2329–2340 (2022). doi: 10.1515/nanoph-2022-0034

    CrossRef Google Scholar

    [25] Dai S, Ma Q, Liu MK et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 10, 682–686 (2015). doi: 10.1038/nnano.2015.131

    CrossRef Google Scholar

    [26] Brar VW, Jang MS, Sherrott M et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett 14, 3876–3880 (2014). doi: 10.1021/nl501096s

    CrossRef Google Scholar

    [27] Zeng YL, Ou QD, Liu L et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett 22, 4260–4268 (2022). doi: 10.1021/acs.nanolett.2c00399

    CrossRef Google Scholar

    [28] Hu GW, Krasnok A, Mazor Y et al. Moiré hyperbolic metasurfaces. Nano Lett 20, 3217–3224 (2020). doi: 10.1021/acs.nanolett.9b05319

    CrossRef Google Scholar

    [29] Hu GW, Ou QD, Si GY et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020). doi: 10.1038/s41586-020-2359-9

    CrossRef Google Scholar

    [30] Chen MY, Lin X, Dinh TH et al. Configurable phonon polaritons in twisted α-MoO3. Nat Mater 19, 1307–1311 (2020). doi: 10.1038/s41563-020-0732-6

    CrossRef Google Scholar

    [31] Zhang Q, Ou QD, Hu GW et al. Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces. Nano Lett 21, 3112–3119 (2021). doi: 10.1021/acs.nanolett.1c00281

    CrossRef Google Scholar

    [32] Zheng ZB, Sun FS, Huang WC et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett 20, 5301–5308 (2020). doi: 10.1021/acs.nanolett.0c01627

    CrossRef Google Scholar

    [33] Wang C, Xie YG, Ma JW et al. Twist-angle and thickness-ratio tuning of plasmon polaritons in twisted bilayer van der Waals films. Nano Lett 23, 6907–6913 (2023). doi: 10.1021/acs.nanolett.3c01472

    CrossRef Google Scholar

    [34] Álvarez-Pérez G, González-Morán A, Capote-Robayna N et al. Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated graphene. ACS Photon 9, 383–390 (2022).

    Google Scholar

    [35] Hu H, Chen N, Teng HC et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat Nanotechnol 17, 940–946 (2022). doi: 10.1038/s41565-022-01185-2

    CrossRef Google Scholar

    [36] Hu H, Chen N, Teng HC et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023). doi: 10.1126/science.adf1251

    CrossRef Google Scholar

    [37] Yu SJ, Yao HL, Hu GW et al. Hyperbolic Polaritonic Rulers Based on van der Waals α-MoO3 Waveguides and Resonators. ACS Nano 17, 23057–23064 (2023).

    Google Scholar

    [38] Fali A, White ST, Folland TG et al. Refractive index-based control of hyperbolic phonon-polariton propagation. Nano Lett 19, 7725–7734 (2019). doi: 10.1021/acs.nanolett.9b02651

    CrossRef Google Scholar

    [39] Wehmeier L, Yu SJ, Chen XZ et al. Tunable Phonon Polariton Hybridization in a van der Waals Hetero‐Bicrystal. Adv Mater , 2401349 (2024).

    Google Scholar

    [40] Duan J, Álvarez-Pérez G, Voronin KV et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Sci Adv 7, eabf2690 (2021). doi: 10.1126/sciadv.abf2690

    CrossRef Google Scholar

    [41] Hong PL, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron Adv 5, 200097 (2022). doi: 10.29026/oea.2022.200097

    CrossRef Google Scholar

    [42] Yan SQ, Zuo Y, Xiao SS et al. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159

    CrossRef Google Scholar

    [43] Zhang WL, Çakıroğlu O, Al-Enizi A et al. Solvent-free fabrication of broadband WS2 photodetectors on paper. Opto-Electron Adv 6, 220101 (2023). doi: 10.29026/oea.2023.220101

    CrossRef Google Scholar

    [44] Lee IH, He MZ, Zhang X et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat Commun 11, 3649 (2020). doi: 10.1038/s41467-020-17424-w

    CrossRef Google Scholar

    [45] Menabde SG, Heiden JT, Cox JD et al. Image polaritons in van der Waals crystals. Nanophotonics 11, 2433–2452 (2022). doi: 10.1515/nanoph-2021-0693

    CrossRef Google Scholar

    [46] Zheng ZB, Xu NS, Oscurato SL et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci Adv 5, eaav8690 (2019). doi: 10.1126/sciadv.aav8690

    CrossRef Google Scholar

    [47] Álvarez-Pérez G, Voronin KV, Volkov VS et al. Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Phys Rev B 100, 235408 (2019). doi: 10.1103/PhysRevB.100.235408

    CrossRef Google Scholar

    [48] Högström H, Valizadeh S, Ribbing CG. Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam. Opt Mater 30, 328–333 (2007). doi: 10.1016/j.optmat.2006.11.064

    CrossRef Google Scholar

    [49] Gubbin CR, Martini F, Politi A et al. Strong and coherent coupling between localized and propagating phonon polaritons. Phys Rev Lett 116, 246402 (2016). doi: 10.1103/PhysRevLett.116.246402

    CrossRef Google Scholar

    [50] Sehmi HS, Langbein W, Muljarov EA. Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper. Phys Rev B 95, 115444 (2017). doi: 10.1103/PhysRevB.95.115444

    CrossRef Google Scholar

    [51] Ambrosio A, Tamagnone M, Chaudhary K et al. Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light Sci Appl 7, 27 (2018). doi: 10.1038/s41377-018-0039-4

    CrossRef Google Scholar

    [52] Caldwell JD, Kretinin AV, Chen YG et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 5, 5221 (2014). doi: 10.1038/ncomms6221

    CrossRef Google Scholar

    [53] Dai SY, Tymchenko M, Yang YF et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride. Adv Mater 30, 1706358 (2018). doi: 10.1002/adma.201706358

    CrossRef Google Scholar

    [54] Narimanov EE. Dyakonov waves in biaxial anisotropic crystals. Phys Rev A 98 013818 (2018).

    Google Scholar

    [55] Zhang ZM. Nano/Microscale Heat Transfer (Springer, Cham, 2020).

    Google Scholar

    [56] Polder D, Van Hove M. Theory of radiative heat transfer between closely spaced bodies. Phys Rev B 4, 3303 (1971). doi: 10.1103/PhysRevB.4.3303

    CrossRef Google Scholar

    [57] St-Gelais R, Guha B, Zhu LX et al. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett 14, 6971–6975 (2014). doi: 10.1021/nl503236k

    CrossRef Google Scholar

    [58] Kim K, Song B, Fernández-Hurtado V et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015). doi: 10.1038/nature16070

    CrossRef Google Scholar

    [59] Messina R, Antezza M, Ben-Abdallah P. Three-body amplification of photon heat tunneling. Phys Rev Lett 109, 244302 (2012). doi: 10.1103/PhysRevLett.109.244302

    CrossRef Google Scholar

    [60] Fernández-Hurtado V, García-Vidal FJ, Fan SH et al. Enhancing near-field radiative heat transfer with Si-based metasurfaces. Phys Rev Lett 118, 203901 (2017). doi: 10.1103/PhysRevLett.118.203901

    CrossRef Google Scholar

    [61] Rytov SM. Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, Bedford, 1953).

    Google Scholar

    [62] De Wilde Y, Formanek F, Carminati R et al. Thermal radiation scanning tunnelling microscopy. Nature 444, 740–743 (2006). doi: 10.1038/nature05265

    CrossRef Google Scholar

    [63] Challener WA, Peng CB, Itagi AV et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3, 220–224 (2009). doi: 10.1038/nphoton.2009.26

    CrossRef Google Scholar

    [64] Elzouka M, Ndao S. Near-field NanoThermoMechanical memory. Appl Phys Lett 105, 243510 (2014). doi: 10.1063/1.4904828

    CrossRef Google Scholar

    [65] Zhao B, Zhang ZM. Enhanced photon tunneling by surface plasmon–phonon polaritons in Graphene/hBN heterostructures. J Heat Transfer 139 022701 (2017).

    Google Scholar

    [66] Wu XH, Fu CJ, Zhang ZM. Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures. J Photon Energy 9, 032702 (2019).

    Google Scholar

    [67] Joulain K, Mulet JP, Marquier F et al. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep 57, 59–112 (2005). doi: 10.1016/j.surfrep.2004.12.002

    CrossRef Google Scholar

    [68] Fu CJ, Zhang ZM. Nanoscale radiation heat transfer for silicon at different doping levels. Int J Heat Mass Tran 49, 1703–1718 (2006). doi: 10.1016/j.ijheatmasstransfer.2005.09.037

    CrossRef Google Scholar

    [69] Mittapally R, Lim JW, Meyhofer E et al. Quantifying the effect of nanofilms on near-field radiative heat transfer. ACS Photon 10, 2474–2480 (2023). doi: 10.1021/acsphotonics.3c00638

    CrossRef Google Scholar

    [70] Su CS, Fu CJ. Near-field radiative heat transfer between two α-quartz plates having hyperbolic and double-negative-permittivity bands. Int J Heat Mass Tran 196, 123235 (2022). doi: 10.1016/j.ijheatmasstransfer.2022.123235

    CrossRef Google Scholar

    [71] Liu XL, Zhang RZ, Zhang ZM. Near-field radiative heat transfer with doped-silicon nanostructured metamaterials. Int J Heat Mass Tran 73, 389–398 (2014). doi: 10.1016/j.ijheatmasstransfer.2014.02.021

    CrossRef Google Scholar

    [72] Basu S, Zhang ZM. Ultrasmall penetration depth in nanoscale thermal radiation. Appl Phys Lett 95 133104 (2009).

    Google Scholar

  • Supplementary information for Active tuning of anisotropic phonon polaritons in natural van der Waals heterostructures by negative permittivity substrates and its application
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(1)

Article Metrics

Article views(3401) PDF downloads(362) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint