Obata K, Kawabata S, Hanada Y et al. High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses. Opto-Electron Sci 3, 230053 (2024). doi: 10.29026/oes.2024.230053
Citation: Obata K, Kawabata S, Hanada Y et al. High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses. Opto-Electron Sci 3, 230053 (2024). doi: 10.29026/oes.2024.230053

Article Open Access

High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses

More Information
  • GHz burst-mode femtosecond (fs) laser, which emits a series of pulse trains with extremely short intervals of several hundred picoseconds, provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser (single-pulse mode). In this paper, we take advantage of the moderate pulse interval of 205 ps (4.88 GHz) in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation (LIPAA). Specifically, the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate, which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates. As a result, not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation, single-pulse mode fs-LIPAA, and nanosecond-LIPAA.
  • 加载中
  • [1] Zhang YC, Jiang QL, Long MQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005(2022). doi: 10.29026/oes.2022.220005

    CrossRef Google Scholar

    [2] Chen LW, Hong MH. Laser surface structuring of semiconductors and functionalization. In Sugioka K. Handbook of Laser Micro- and Nano-Engineering (Cham: Springer, 2021).

    Google Scholar

    [3] Zhang DS, Li XZ, Fu Y et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron Adv 5, 210066(2022). doi: 10.29026/oea.2022.210066

    CrossRef Google Scholar

    [4] Fraggelakis F, Tsibidis GD, Stratakis E. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv 5, 210052(2022). doi: 10.29026/oea.2022.210052

    CrossRef Google Scholar

    [5] Zhang YC, Jiang QL, Cao KQ et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon Res 9, 839–847(2021). doi: 10.1364/PRJ.418937

    CrossRef Google Scholar

    [6] Jiang QL, Zhang YC, Xu YF et al. Extremely high-quality periodic structures on ITO film efficiently fabricated by femtosecond pulse train output from a frequency-doubled Fabry-Perot cavity. Nanomaterials 13, 1510(2023). doi: 10.3390/nano13091510

    CrossRef Google Scholar

    [7] He F, Yu JJ, Tan YX et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias. Sci Rep 7, 40785(2017). doi: 10.1038/srep40785

    CrossRef Google Scholar

    [8] Zhang JW, Obata K, Ozasa K et al. Rapid manufacturing of glass-based digital nucleic acid amplification chips by ultrafast Bessel pulses. Small Sci 4, 2300166(2024). doi: 10.1002/smsc.202300166

    CrossRef Google Scholar

    [9] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88(2016). doi: 10.1038/nature18619

    CrossRef Google Scholar

    [10] Mishchik K, Bonamis G, Qiao J et al. High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source. Opt Lett 44, 2193–2196(2019). doi: 10.1364/OL.44.002193

    CrossRef Google Scholar

    [11] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses. Opt Express 28, 27702–27714(2020). doi: 10.1364/OE.400624

    CrossRef Google Scholar

    [12] Metzner D, Lickschat P, Weißmantel S. High-quality surface treatment using GHz burst mode with tunable ultrashort pulses. Appl Surf Sci 531, 147270(2020). doi: 10.1016/j.apsusc.2020.147270

    CrossRef Google Scholar

    [13] Hodgson N, Allegre H, Starodoumov A et al. Femtosecond laser ablation in burst mode as a function of pulse fluence and intra-burst repetition rate. J Laser Micro Nanoeng 15, 236–244(2020).

    Google Scholar

    [14] Metzner D, Lickschat P, Weißmantel S. Optimization of the ablation process using ultrashort pulsed laser radiation in different burst modes. J Laser Appl 33, 012057(2021). doi: 10.2351/7.0000352

    CrossRef Google Scholar

    [15] Žemaitis A, Gaidys M, Gečys P et al. Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates. Opt Express 29, 7641–7653(2021). doi: 10.1364/OE.417883

    CrossRef Google Scholar

    [16] Matsumoto H, Lin ZB, Schrauben JN et al. Ultrafast laser ablation of silicon with ~GHz bursts. J Laser Appl 33, 032010(2021). doi: 10.2351/7.0000372

    CrossRef Google Scholar

    [17] Förster DJ, Jäggi B, Michalowski A et al. Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses. Materials 14, 3331(2021). doi: 10.3390/ma14123331

    CrossRef Google Scholar

    [18] Obata K, Caballero-Lucas F, Sugioka K. Material processing at GHz burst mode by femtosecond laser ablation. J Laser Micro Nanoeng 16, 19–23(2021).

    Google Scholar

    [19] Sugioka K. Will GHz burst mode create a new path to femtosecond laser processing. Int J Extrem Manuf 3, 043001(2021). doi: 10.1088/2631-7990/ac2479

    CrossRef Google Scholar

    [20] Caballero-Lucas F, Obata K, Sugioka K. Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts (BiBurst). Int J Extrem Manuf 4, 015103(2022). doi: 10.1088/2631-7990/ac466e

    CrossRef Google Scholar

    [21] Obata K, Caballero-Lucas F, Kawabata S et al. GHz bursts in MHz burst (BiBurst) enabling high-speed femtosecond laser ablation of Silicon due to prevention of air ionization. Int J Extrem Manuf 5, 025002(2023). doi: 10.1088/2631-7990/acc0e5

    CrossRef Google Scholar

    [22] Kawabata S, Bai S, Obata K et al. Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses. Int J Extrem Manuf 5, 015004(2023). doi: 10.1088/2631-7990/acb133

    CrossRef Google Scholar

    [23] Kawabata S, Bai S, Obata K et al. Formation of two-dimensional laser-induced periodic surface structures on titanium by GHz burst mode femtosecond laser pulses. Front Nanotechnol 5, 1267284(2023). doi: 10.3389/fnano.2023.1267284

    CrossRef Google Scholar

    [24] Zhang J, Sugioka K, Midorikawa K. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt Lett 23, 1486–1488(1998). doi: 10.1364/OL.23.001486

    CrossRef Google Scholar

    [25] Zhang J, Sugioka K, Midorikawa K. High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl Phys A 69, S879–S882(1999). doi: 10.1007/s003390051551

    CrossRef Google Scholar

    [26] Hanada Y, Sugioka K, Obata K et al. Transient electron excitation in laser-induced plasma-assisted ablation of transparent materials. J Appl Phys 99, 043301(2006). doi: 10.1063/1.2171769

    CrossRef Google Scholar

    [27] Hanada Y, Sugioka K, Miyamoto I et al. Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study. Appl Surf Sci 248, 276–280(2005). doi: 10.1016/j.apsusc.2005.03.050

    CrossRef Google Scholar

    [28] Hanada Y, Sugioka K, Gomi Y et al. Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials. Appl Phys A 79, 1001–1003(2004). doi: 10.1007/s00339-004-2614-1

    CrossRef Google Scholar

    [29] Buschow KH, Cahn RW, Flemings MC et al. Properties, growth and applications. Encyclopedia of Materials: Science and Technology (Amsterdam: Elsevier, 2001).

    Google Scholar

    [30] Li Y, Liu HG, Hong MH. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation. Opt Express 28, 6242–6250(2020). doi: 10.1364/OE.381268

    CrossRef Google Scholar

    [31] Liu JM. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7, 196–198(1982). doi: 10.1364/OL.7.000196

    CrossRef Google Scholar

    [32] Žemaitis A, Gaidys M, Brikas M et al. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Sci Rep 8, 17376(2018). doi: 10.1038/s41598-018-35604-z

    CrossRef Google Scholar

    [33] Förster DJ, Faas S, Gröninger S et al. Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses. Appl Surf Sci 440, 926–931(2018). doi: 10.1016/j.apsusc.2018.01.297

    CrossRef Google Scholar

    [34] Heath DF, Sacher PA. Effects of a simulated high-energy space environment on the ultraviolet transmittance of optical materials between 1050 Å and 3000 Å. Appl Opt 5, 937–943(1966). doi: 10.1364/AO.5.000937

    CrossRef Google Scholar

    [35] Skliutas E, Samsonas D, Čiburys A et al. X-photon laser direct write 3D nanolithography. Virtual Phys Prototyp 18, e2228324(2023). doi: 10.1080/17452759.2023.2228324

    CrossRef Google Scholar

    [36] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3, e149(2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [37] Rekštytė S, Jonavičius T, Gailevičius D et al. Nanoscale precision of 3D polymerization via polarization control. Adv Opt Mater 4, 1209–1214(2016). doi: 10.1002/adom.201600155

    CrossRef Google Scholar

    [38] Hong MH, Sugioka K, Lu YF et al. Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci 186, 556–561(2002). doi: 10.1016/S0169-4332(01)00638-9

    CrossRef Google Scholar

    [39] Hong MH, Sugioka K, Wu DJ et al. Laser-induced-plasma-assisted ablation for glass microfabrication. Proc SPIE 4595, 138–146(2001). doi: 10.1117/12.446603

    CrossRef Google Scholar

  • Supplementary information for High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint