Citation: | Nan T, Zhao H, Guo JY et al. Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces. Opto-Electron Sci 3, 230052 (2024). doi: 10.29026/oes.2024.230052 |
[1] | Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 15, 253–262 (2021). doi: 10.1038/s41566-021-00780-4 |
[2] | He C, Shen YJ, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 11, 205 (2022). doi: 10.1038/s41377-022-00897-3 |
[3] | Allen L, Beijersbergen MW, Spreeuw RJC et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185 |
[4] | Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 58, 1499–1501 (1987). doi: 10.1103/PhysRevLett.58.1499 |
[5] | Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express 7, 77–87 (2000). doi: 10.1364/OE.7.000077 |
[6] | Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt Lett 32, 979–981 (2007). doi: 10.1364/OL.32.000979 |
[7] | Chong A, Wan CH, Chen J et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics 14, 350–354 (2020). doi: 10.1038/s41566-020-0587-z |
[8] | Lu RW, Tanimoto M, Koyama M et al. 50 Hz volumetric functional imaging with continuously adjustable depth of focus. Biomed Opt Express 9, 1964–1976 (2018). doi: 10.1364/BOE.9.001964 |
[9] | Wang J, Yang JY, Fazal IM et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6, 488–496 (2012). doi: 10.1038/nphoton.2012.138 |
[10] | Zhan QW, Leger JR. Microellipsometer with radial symmetry. Appl Opt 41, 4630–4637 (2002). doi: 10.1364/AO.41.004630 |
[11] | Bozinovic N, Yue Y, Ren YX et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861 |
[12] | Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[13] | Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81 |
[14] | He H, Friese MEJ, Heckenberg NR et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75, 826–829 (1995). doi: 10.1103/PhysRevLett.75.826 |
[15] | Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z |
[16] | Leach J, Jack B, Romero J et al. Quantum correlations in optical angle – orbital angular momentum variables. Science 329, 662–665 (2010). doi: 10.1126/science.1190523 |
[17] | Zhang YW, Agnew M, Roger T et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun 8, 632 (2017). doi: 10.1038/s41467-017-00706-1 |
[18] | Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica 5, 86–92 (2018). doi: 10.1364/OPTICA.5.000086 |
[19] | Yoshida M, Kozawa Y, Sato S. Subtraction imaging by the combination of higher-order vector beams for enhanced spatial resolution. Opt Lett 44, 883–886 (2019). doi: 10.1364/OL.44.000883 |
[20] | Wang XL, Ding JP, Ni WJ et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt Lett 32, 3549–3551 (2007). doi: 10.1364/OL.32.003549 |
[21] | Moreno I, Davis JA, Sánchez-López MM et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Opt Lett 40, 5451–5454 (2015). doi: 10.1364/OL.40.005451 |
[22] | Fu SY, Zhang SK, Gao CQ. Bessel beams with spatial oscillating polarization. Sci Rep 6, 30765 (2016). doi: 10.1038/srep30765 |
[23] | Guo JY, Wang XK, He JW et al. Generation of radial polarized Lorentz beam with single layer metasurface. Adv Opt Mater 6, 1700925 (2018). doi: 10.1002/adom.201700925 |
[24] | Buono WT, Forbes A. Nonlinear optics with structured light. Opto-Electron Adv 5, 210174 (2022). doi: 10.29026/oea.2022.210174 |
[25] | Zhao H, Wang XK, Quan BG et al. High-efficiency phase and polarization modulation metasurfaces. Adv Photonics Res 3, 2100199 (2022). doi: 10.1002/adpr.202100199 |
[26] | Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[27] | He JW, Wang S, Xie ZW et al. Abruptly autofocusing terahertz waves with meta-hologram. Opt Lett 41, 2787–2790 (2016). doi: 10.1364/OL.41.002787 |
[28] | Zhang YX, Pu MB, Jin JJ et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[29] | Wen J, Chen L, Yu BB et al. All-dielectric synthetic-phase metasurfaces generating practical airy beams. ACS Nano 15, 1030–1038 (2021). doi: 10.1021/acsnano.0c07770 |
[30] | Wen J, Chen L, Chen X et al. Use of dielectric metasurfaces to generate deep-subwavelength nondiffractive Bessel-like beams with arbitrary trajectories and ultralarge deflection. Laser Photon Rev 15, 2000487 (2021). doi: 10.1002/lpor.202000487 |
[31] | Zhao H, Wang XK, Liu ST et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron Adv 6, 220012 (2023). doi: 10.29026/oea.2023.220012 |
[32] | Wang DY, Liu FF, Liu T et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl 10, 67 (2021). doi: 10.1038/s41377-021-00504-x |
[33] | Li TY, Li XY, Yan SH et al. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface. Phys Rev Appl 15, 014059 (2021). doi: 10.1103/PhysRevApplied.15.014059 |
[34] | Dorrah AH, Rubin NA, Zaidi A et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat Photonics 15, 287–296 (2021). doi: 10.1038/s41566-020-00750-2 |
[35] | Li J, Liu J, Yue Z et al. Polarization variable terahertz metasurface along the propagation path. Fundam Res, (2023). https://doi.org/10.1016/j.fmre.2023.03.017 |
[36] | Zang XF, Ding HZ, Intaravanne Y et al. A multi-foci metalens with polarization-rotated focal points. Laser Photon Rev 13, 1900182 (2019). doi: 10.1002/lpor.201900182 |
[37] | Li J, Li JT, Yue Z et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces. Laser Photon Rev 16, 2200325 (2022). doi: 10.1002/lpor.202200325 |
[38] | Zhang F, Pu MB, Guo YH et al. Synthetic vector optical fields with spatial and temporal tunability. Sci China Phys Mech Astron 65, 254211 (2022). doi: 10.1007/s11433-021-1851-0 |
[39] | Zheng CL, Li J, Liu JY et al. Creating longitudinally varying vector vortex beams with an all‐dielectric metasurface. Laser Photon Rev 16, 2200236 (2022). doi: 10.1002/lpor.202200236 |
[40] | Wang RX, Intaravanne Y, Li ST et al. Metalens for generating a customized vectorial focal curve. Nano Lett 21, 2081–2087 (2021). doi: 10.1021/acs.nanolett.0c04775 |
[41] | Chremmos ID, Chen ZG, Christodoulides DN et al. Bessel-like optical beams with arbitrary trajectories. Optics Lett 37, 5003–5005 (2012). doi: 10.1364/OL.37.005003 |
[42] | Zhao JY, Zhang P, Deng DM et al. Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories. Optics Lett 38, 498–500 (2013). doi: 10.1364/OL.38.000498 |
[43] | Deng ZL, Deng JH, Zhuang X et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047 |
[44] | Wang XK, Cui Y, Sun WF et al. Terahertz polarization real-time imaging based on balanced electro-optic detection. J Opt Soc Am A 27, 2387–2393 (2010). doi: 10.1364/JOSAA.27.002387 |
Supplementary information for Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces |
Schematic diagram for generation of a structured light beam with polarization variation along arbitrary spatial trajectories using tri-layer metasurface.
Schematic diagram of design concept for structured light beams. (a) The phase distribution at the input plane. (b) Spatial transmission trajectory of cylindrical helical path. (c) Polarization distributions on the input plane. (d) The polarization states corresponding to different propagation distances z on the Poincaré sphere for linear longitudinal polarization variations. (e) Polarization distributions on the input plane. (f) The polarization states corresponding to different propagation distances z on the Poincaré sphere for nonlinear longitudinal polarization variations.
Schematic and characteristics of the designed unit cell. (a) Concept of the designed tri-layer metasurface and the metallic structure of each layer. (b, c) Microscope images of fabricated sample 1 and sample 2, respectively. The scale bar is 200 μm. (d) Amplitude and phase modulation of the 128 selected antennas at 0.75 THz.
Schematic of experimental setup. L, lens; PM, parabolic mirror; TP, THz polarizer; TQWP, THz quarter wave plate; BS, beam splitter; HWP, half-wave-plate; P, polarizer, QWP; quarter wave plate; WP, Wollaston prism; CCD: charge-coupled device.
Experimental results for a structured light beam with linear longitudinal polarization variations along a helical transmission trajectory. (a, b) Cross-sectional intensity profiles of the electric field at a propagation distance of z=15 mm for the simulation and experiment, respectively. (c) Cross-sectional intensity profiles (red and blue solid lines) extracted from (a) and (b) at the locations of white dashed lines. (d) The electric field component intensity and electric field intensity at different distances. (e, f) Amplitudes and phase difference of electric field components Ex and Ey at different propagation distances. (g) Theoretical, simulated and experimental transmission trajectories.
Experimental results of a structured light beam with nonlinear longitudinal polarization variations along a helical transmission trajectory. (a) Intensity distributions for Ex, Ey, and total electric field at different distances. (b) Simulated and experimental amplitudes and (c) phase difference of electric field components Ex and Ey at different propagation distances. (d) Theoretical, simulated and experimental transmission trajectories.