Yang K, Liu F, Liang SY et al. Data-driven polarimetric imaging: a review. Opto-Electron Sci 3, 230042 (2024). doi: 10.29026/oes.2024.230042
Citation: Yang K, Liu F, Liang SY et al. Data-driven polarimetric imaging: a review. Opto-Electron Sci 3, 230042 (2024). doi: 10.29026/oes.2024.230042

Review Open Access

Data-driven polarimetric imaging: a review

More Information
  • This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications. The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest. Polarization information is increasingly incorporated into convolutional neural networks (CNN) as a supplemental feature of objects to improve performance in computer vision task applications. Polarimetric imaging and deep learning can extract abundant information to address various challenges. Therefore, this article briefly reviews recent developments in data-driven polarimetric imaging, including polarimetric descattering, 3D imaging, reflection removal, target detection, and biomedical imaging. Furthermore, we synthetically analyze the input, datasets, and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages. We also highlight the significance of data-driven polarimetric imaging in future research and development.
  • 加载中
  • [1] Ronchi V. Barocas V. The Nature of Light: An Historical Survey (Harvard University Press, Cambridge, 1970).

    Google Scholar

    [2] Huard S. Polarization of Light (Wiley, Chichester, 1997).

    Google Scholar

    [3] Schechner YY, Karpel N. Recovery of underwater visibility and structure by polarization analysis. IEEE J Oceanic Eng 30, 570–587 (2005). doi: 10.1109/JOE.2005.850871

    CrossRef Google Scholar

    [4] Li XB, Hu HF, Zhao L et al. Polarimetric image recovery method combining histogram stretching for underwater imaging. Sci Rep 8, 12430 (2018). doi: 10.1038/s41598-018-30566-8

    CrossRef Google Scholar

    [5] Liu TG, Guan ZJ, Li XB et al. Polarimetric underwater image recovery for color image with crosstalk compensation. Opt Laser Eng 124, 105833 (2020). doi: 10.1016/j.optlaseng.2019.105833

    CrossRef Google Scholar

    [6] Liang J, Ren LY, Qu ES et al. Method for enhancing visibility of hazy images based on polarimetric imaging. Photonics Res 2, 38–44 (2014). doi: 10.1364/PRJ.2.000038

    CrossRef Google Scholar

    [7] Liu F, Han PL, Wei Y et al. Deeply seeing through highly turbid water by active polarization imaging. Opt Lett 43, 4903–4906 (2018). doi: 10.1364/OL.43.004903

    CrossRef Google Scholar

    [8] Liu F, Wei Y, Han PL et al. Polarization-based exploration for clear underwater vision in natural illumination. Opt Express 27, 3629–3641 (2019). doi: 10.1364/OE.27.003629

    CrossRef Google Scholar

    [9] Wei Y, Han PL, Liu F et al. Enhancement of underwater vision by fully exploiting the polarization information from the Stokes vector. Opt Express 29, 22275–22287 (2021). doi: 10.1364/OE.433072

    CrossRef Google Scholar

    [10] Li X, Liu F, Han PL et al. Near-infrared monocular 3D computational polarization imaging of surfaces exhibiting nonuniform reflectance. Opt Express 29, 15616–15630 (2021).

    Google Scholar

    [11] Han PL, Cai YD, Liu F et al. Computational polarization 3D: new solution for monocular shape recovery in natural conditions. Opt Laser Eng 151, 106925 (2022). doi: 10.1016/j.optlaseng.2021.106925

    CrossRef Google Scholar

    [12] Cui ZP, Gu JW, Shi BX et al. Polarimetric multi-view stereo. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2017); http://doi.org/10.1109/CVPR.2017.47.

    Google Scholar

    [13] Kadambi A, Taamazyan V, Shi BX et al. Depth sensing using geometrically constrained polarization normals. Int J Comput Vis 125, 34–51 (2017). doi: 10.1007/s11263-017-1025-7

    CrossRef Google Scholar

    [14] Kong N, Tai YW, Shin JS. A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE Trans Pattern Anal Mach Intell 36, 209–221 (2014). doi: 10.1109/TPAMI.2013.45

    CrossRef Google Scholar

    [15] Bronstein AM, Bronstein MM, Zibulevsky M et al. Sparse ICA for blind separation of transmitted and reflected images. Int J Imag Syst Technol 15, 84–91 (2005). doi: 10.1002/ima.20042

    CrossRef Google Scholar

    [16] Forssell G. Test and analysis of the detectability of personnel mines in a realistic minefield by polarization in the infrared LW region. Proc SPIE 5415, 187–195 (2004). doi: 10.1117/12.542700

    CrossRef Google Scholar

    [17] Forssell G. Passive IR polarization measurements applied to covered surface landmines. Proc SPIE 5089, 547–557 (2003). doi: 10.1117/12.487163

    CrossRef Google Scholar

    [18] Cremer F, de Jong W, Schutte K. Infrared polarization measurements and modelling applied to surface laid anti-personnel landmines. Opt Eng 41, 1021–1032 (2002). doi: 10.1117/1.1467362

    CrossRef Google Scholar

    [19] Aron Y, Gronau Y. Polarization in the LWIR: a method to improve target aquisition. Proc SPIE 5783, 653–661 (2005). doi: 10.1117/12.605316

    CrossRef Google Scholar

    [20] Ratliff BM, Lemaster DA, Mack RT et al. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data. Proc SPIE 8160, 816002 (2011).

    Google Scholar

    [21] Voss KJ, Fry ES. Measurement of the Mueller matrix for ocean water. Appl Opt 23, 4427–4439 (1984). doi: 10.1364/AO.23.004427

    CrossRef Google Scholar

    [22] Fry ES, Voss KJ. Measurement of the Mueller matrix for phytoplankton. Limnol Oceanogr 30, 1322–1326 (1985). doi: 10.4319/lo.1985.30.6.1322

    CrossRef Google Scholar

    [23] Svensen Ø, Stamnes JJ, Kildemo M et al. Mueller matrix measurements of algae with different shape and size distributions. Appl Opt 50, 5149–5157 (2011). doi: 10.1364/AO.50.005149

    CrossRef Google Scholar

    [24] Wang WF, Lim LG, Srivastava S et al. Investigation on the potential of Mueller matrix imaging for digital staining. J. Biophotonics 9, 364–375 (2016). doi: 10.1002/jbio.201500006

    CrossRef Google Scholar

    [25] Du E, He HH, Zeng N et al. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J Biomed Opt 19, 076013 (2014). doi: 10.1117/1.JBO.19.7.076013

    CrossRef Google Scholar

    [26] Le DL, Huynh TN, Nguyen DT et al. Characterization of healthy and nonmelanoma-induced mouse utilizing the Stokes-Mueller decomposition. J Biomed Opt 23, 125003 (2018).

    Google Scholar

    [27] Pierangelo A, Manhas S, Benali A et al. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J Biomed Opt 18, 046014 (2013). doi: 10.1117/1.JBO.18.4.046014

    CrossRef Google Scholar

    [28] Shukla P, Pradhan A. Mueller decomposition images for cervical tissue: potential for discriminating normal and dysplastic states. Opt Express 17, 1600–1609 (2009). doi: 10.1364/OE.17.001600

    CrossRef Google Scholar

    [29] Pierangelo A, Nazac A, Benali A et al. Polarimetric imaging of uterine cervix: a case study. Opt Express 21, 14120–14130 (2013). doi: 10.1364/OE.21.014120

    CrossRef Google Scholar

    [30] Egan WG. Polarization in remote sensing. Proc SPIE 0891 (1988). https://doi.org/10.1117/12.944289

    Google Scholar

    [31] David G, Thomas B, Dupart Y et al. UV polarization lidar for remote sensing new particles formation in the atmosphere. Opt Express 22, A1009–A1022 (2014). doi: 10.1364/OE.22.0A1009

    CrossRef Google Scholar

    [32] Carotenuto V, de Maio A, Clemente C et al. Invariant rules for multipolarization SAR change detection. IEEE Trans Geosci Remote Sens 53, 3294–3311 (2015). doi: 10.1109/TGRS.2014.2372900

    CrossRef Google Scholar

    [33] Nagdimunov L, Kolokolova L, Mackowski D. Characterization and remote sensing of biological particles using circular polarization. J Quant Spectrosc Radiat Transfer 131, 59–65 (2013). doi: 10.1016/j.jqsrt.2013.04.018

    CrossRef Google Scholar

    [34] Wang F, Ainouz S, Lian CF et al. Multimodality semantic segmentation based on polarization and color images. Neurocomputing 253, 193–200 (2017). doi: 10.1016/j.neucom.2016.10.090

    CrossRef Google Scholar

    [35] Xiang KT, Yang KL, Wang KW. Polarization-driven semantic segmentation via efficient attention-bridged fusion. Opt Express 29, 4802–4820 (2021). doi: 10.1364/OE.416130

    CrossRef Google Scholar

    [36] Ni J, Zhang F, Ma F et al. Random region matting for the high-resolution PolSAR image semantic segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 14, 3040–3051 (2021). doi: 10.1109/JSTARS.2021.3062447

    CrossRef Google Scholar

    [37] Li ZS, Sun JS, Fan Y et al. Deep learning assisted variational Hilbert quantitative phase imaging. Opto-Electron Sci 2, 220023 (2023). doi: 10.29026/oes.2023.220023

    CrossRef Google Scholar

    [38] Wang YYD, Wang H, Gu M. High performance “non-local” generic face reconstruction model using the lightweight Speckle-Transformer (SpT) UNet. Opto-Electron Adv 6, 220049 (2023). doi: 10.29026/oea.2023.220049

    CrossRef Google Scholar

    [39] Guo YM, Zhong LB, Min L et al. Adaptive optics based on machine learning: a review. Opto-Electron Adv 5, 200082 (2022). doi: 10.29026/oea.2022.200082

    CrossRef Google Scholar

    [40] Li YX, Qian JM, Feng SJ et al. Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement. Opto-Electron Adv 5, 210021 (2022). doi: 10.29026/oea.2022.210021

    CrossRef Google Scholar

    [41] Chen YX, Zhang FY, Dang ZB et al. Chiral detection of biomolecules based on reinforcement learning. Opto-Electron Sci 2, 220019 (2023). doi: 10.29026/oes.2023.220019

    CrossRef Google Scholar

    [42] Hu HF, Lin Y, Li XB et al. IPLNet: a neural network for intensity-polarization imaging in low light. Opt Lett 45, 6162–6165 (2020). doi: 10.1364/OL.409673

    CrossRef Google Scholar

    [43] Zeng XL, Luo Y, Zhao XJ et al. An end-to-end fully-convolutional neural network for division of focal plane sensors to reconstruct S0, DoLP, and AoP. Opt Express 27, 8566–8577 (2019). doi: 10.1364/OE.27.008566

    CrossRef Google Scholar

    [44] Wu RY, Zhao YQ, Li N et al. Real-time division-of-focal-plane polarization imaging system with progressive networks. arXiv: 2110.13823 (2021). https://doi.org/10.48550/arXiv.2110.13823

    Google Scholar

    [45] Li XB, Li HY, Lin Y et al. Learning-based denoising for polarimetric images. Opt Express 28, 16309–16321 (2020). doi: 10.1364/OE.391017

    CrossRef Google Scholar

    [46] Hu HF, Zhang YB, Li XB et al. Polarimetric underwater image recovery via deep learning. Opt Laser Eng 133, 106152 (2020). doi: 10.1016/j.optlaseng.2020.106152

    CrossRef Google Scholar

    [47] Ding XY, Wang YF, Fu XP. Multi-polarization fusion generative adversarial networks for clear underwater imaging. Opt Laser Eng 152, 106971 (2022). doi: 10.1016/j.optlaseng.2022.106971

    CrossRef Google Scholar

    [48] Zhou C, Teng MG, Han YF et al. Learning to dehaze with polarization. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS, 2021).

    Google Scholar

    [49] Zhu YM, Zeng TJ, Liu KW et al. Full scene underwater imaging with polarization and an untrained network. Opt Express 29, 41865–41881 (2021). doi: 10.1364/OE.444755

    CrossRef Google Scholar

    [50] Xu XY, Wan MG, Ge JY et al. ColorPolarNet: residual dense network-based chromatic intensity-polarization imaging in low-light environment. IEEE Trans Instrum Meas 71, 5025210 (2022).

    Google Scholar

    [51] Gao SH, Cao Y, Zhang WJ et al. Learning feature fusion for target detection based on polarimetric imaging. Appl Opt 61, D15–D21 (2022). doi: 10.1364/AO.441183

    CrossRef Google Scholar

    [52] Blin R, Ainouz S, Canu S et al. Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning. In Proceedings of 2019 IEEE Intelligent Transportation Systems Conference 27–32 (IEEE, 2019); https://doi.org/10.1109/ITSC.2019.8916853.

    Google Scholar

    [53] Lei CY, Huang XH, Zhang MD et al. Polarized reflection removal with perfect alignment in the wild. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 1747–1755 (IEEE, 2020); https://doi.org/10.1109/CVPR42600.2020.00182.

    Google Scholar

    [54] Fan W, Ainouz S, Meriaudeau F et al. Polarization-based car detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing 3069–3073 (IEEE, 2018); https://doi.org/10.1109/ICIP.2018.8451397.

    Google Scholar

    [55] Xie RC, Zu HY, Xue Y et al. Target detection method for polarization imaging based on convolutional neural network. Proc SPIE 11455, 114557Z (2020).

    Google Scholar

    [56] Zhang Y, Morel O, Blanchon M et al. Exploration of deep learning-based multimodal fusion for semantic road scene segmentation. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 336–343 (SciTePress, 2019); https://doi.org/10.5220/0007360403360343.

    Google Scholar

    [57] Kalra A, Taamazyan V, Rao SK et al. Deep polarization cues for transparent object segmentation. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 8599–8608 (IEEE, 2020); https://doi.org/10.1109/CVPR42600.2020.00863.

    Google Scholar

    [58] Si L, Huang TY, Wang XJ et al. Deep learning-based polarization feature retrieval from a single stokes vector. Proc SPIE 11963, 1196307 (2022).

    Google Scholar

    [59] Sun R, Sun XB, Chen FN et al. Polarimetric imaging detection using a convolutional neural network with three-dimensional and two-dimensional convolutional layers. Appl Opt 59, 151–155 (2020). doi: 10.1364/AO.59.000151

    CrossRef Google Scholar

    [60] Li XP, Liao R, Zhou JL et al. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. Appl Opt 56, 6520–6530 (2017). doi: 10.1364/AO.56.006520

    CrossRef Google Scholar

    [61] Li XP, Liao R, Ma H et al. Polarimetric learning: a Siamese approach to learning distance metrics of algal Mueller matrix images. Appl Opt 57, 3829–3837 (2018). doi: 10.1364/AO.57.003829

    CrossRef Google Scholar

    [62] Zhao YQ, Reda M, Feng K et al. Detecting giant cell tumor of bone lesions using Mueller matrix polarization microscopic imaging and multi-parameters fusion network. IEEE Sens J 20, 7208–7215 (2020). doi: 10.1109/JSEN.2020.2978021

    CrossRef Google Scholar

    [63] Dong Y, Wan JC, Wang XJ et al. A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans Med Imaging 40, 3728–3738 (2021). doi: 10.1109/TMI.2021.3097200

    CrossRef Google Scholar

    [64] Ba YH, Gilbert A, Wang F et al. Deep shape from polarization. In Proceedings of the 16th European Conference on Computer Vision 554–571 (Springer, 2020); https://doi.org/10.1007/978-3-030-58586-0_33.

    Google Scholar

    [65] Zou SH, Zuo ZX, Qian YM et al. 3D human shape reconstruction from a polarization image. In Proceedings of the 16th European Conference on Computer Vision 351–368 (Springer, 2020); https://doi.org/10.1007/978-3-030-58568-6_21

    Google Scholar

    [66] Li DK, Lin B, Wang XY et al. High-performance polarization remote sensing with the modified U-Net based deep-learning network. IEEE Trans Geosci Remote Sens 60, 5621110 (2022).

    Google Scholar

    [67] Lei CY, Qi CY, Xie JX et al. Shape from polarization for complex scenes in the wild. In Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition 12622–12631 (IEEE, 2021); https://doi.org/10.1109/CVPR52688.2022.01230.

    Google Scholar

    [68] Zhang JC, Shao JB, Luo HB et al. Learning a convolutional demosaicing network for microgrid polarimeter imagery. Opt Lett 43, 4534–4537 (2018). doi: 10.1364/OL.43.004534

    CrossRef Google Scholar

    [69] Yang KL, Bergasa LM, Romera E et al. Predicting polarization beyond semantics for wearable robotics. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots 96–103 (IEEE, 2018); https://doi.org/10.1109/HUMANOIDS.2018.8625005.

    Google Scholar

    [70] Zhang R, Gui XY, Cheng HY et al. Underwater image recovery utilizing polarimetric imaging based on neural networks. Appl Opt 60, 8419–8425 (2021). doi: 10.1364/AO.431299

    CrossRef Google Scholar

    [71] Kondo Y, Ono T, Sun LG et al. Accurate polarimetric BRDF for real polarization scene rendering. In Proceedings of the 16th European Conference on Computer Vision 220–236 (Springer, 2020); https://doi.org/10.1007/978-3-030-58529-7_14.

    Google Scholar

    [72] Shi YJ, Guo EL, Bai LF et al. Polarization-based haze removal using self-supervised network. Front Phys 9, 789232 (2022). doi: 10.3389/fphy.2021.789232

    CrossRef Google Scholar

    [73] Wieschollek P, Gallo O, Gu JW et al. Separating reflection and transmission images in the wild. In Proceedings of the 15th European Conference on Computer Vision 90–105 (Springer, 2018); https://doi.org/10.1007/978-3-030-01261-8_6.

    Google Scholar

    [74] Lyu YW, Cui ZP, Li S et al. Reflection separation using a pair of unpolarized and polarized images. In Proceedings of the 33rd International Conference on Neural Information Processing Systems 1304 (Curran Associates Inc. , 2019); https://doi.org/10.5555/3454287.3455591.

    Google Scholar

    [75] Liu TR, de Haan K, Bai BJ et al. Deep learning-based holographic polarization microscopy. ACS Photonics 7, 3023–3034 (2020). doi: 10.1021/acsphotonics.0c01051

    CrossRef Google Scholar

    [76] Yang SL, Qu BW, Liu GS et al. Unsupervised learning polarimetric underwater image recovery under nonuniform optical fields. Appl Opt 60, 8198–8205 (2021). doi: 10.1364/AO.432994

    CrossRef Google Scholar

    [77] Liu HD, Zhang YZ, Cheng ZZ et al. Attention-based neural network for polarimetric image denoising. Opt Lett 47, 2726–2729 (2022). doi: 10.1364/OL.458514

    CrossRef Google Scholar

    [78] Yang XJ, Zhao QH, Huang TY et al. Deep learning for denoising in a Mueller matrix microscope. Opt Express 13, 3535–3551 (2022). doi: 10.1364/BOE.457219

    CrossRef Google Scholar

    [79] Wu XS, Zhang H, Hu XP et al. HDR reconstruction based on the polarization camera. IEEE Robotics Autom Lett 5, 5113–5119 (2020). doi: 10.1109/LRA.2020.3005379

    CrossRef Google Scholar

    [80] Deschaintre V, Lin YM, Ghosh A. Deep polarization imaging for 3D shape and SVBRDF acquisition. In Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition 15562–15571 (IEEE, 2021); https://doi.org/10.1109/CVPR46437.2021.01531.

    Google Scholar

    [81] Shao MQ, Xia CK, Yang ZD et al. Transparent shape from a single view polarization image. arXiv: 2204.06331 (2023)https://doi.org/10.48550/arXiv.2204.0633.

    Google Scholar

    [82] De S, Bruzzone L, Bhattacharya A et al. A novel technique based on deep learning and a synthetic target database for classification of urban areas in PolSAR data. IEEE J Sel Top Appl Earth Obs Remote Sens 11, 154–170 (2018). doi: 10.1109/JSTARS.2017.2752282

    CrossRef Google Scholar

    [83] Blanchon M, Morel O, Seulin R et al. Outdoor scenes pixel-wise semantic segmentation using polarimetry and fully convolutional network. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 328–335 (SciTePress, 2019); https://doi.org/10.5220/0007360203280335.

    Google Scholar

    [84] Akkaynak D, Treibitz T, Shlesinger T et al. What is the space of attenuation coefficients in underwater computer vision? In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition 568–577 (IEEE, 2017); http://doi.org/10.1109/CVPR.2017.68.

    Google Scholar

    [85] Wang YH, Louie DC, Cai JY et al. Deep learning enhances polarization speckle for in vivo skin cancer detection. Opt Laser Technol 140, 107006 (2021). doi: 10.1016/j.optlastec.2021.107006

    CrossRef Google Scholar

    [86] Zhou XM, Ma L, Brown W et al. Automatic detection of head and neck squamous cell carcinoma on pathologic slides using polarized hyperspectral imaging and machine learning. Proc SPIE 11603, 116030Q (2021). doi: 10.1117/12.2582330

    CrossRef Google Scholar

    [87] Yao Y, Zuo M, Dong Y et al. Polarization imaging feature characterization of different endometrium phases by machine learning. OSA Continuum 4, 1776–1791 (2021). doi: 10.1364/OSAC.414109

    CrossRef Google Scholar

    [88] Azzam RMA. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. Opt Acta Int J Opt 29, 685–689 (1982). doi: 10.1080/713820903

    CrossRef Google Scholar

    [89] Jellison GE. Four-channel polarimeter for time-resolved ellipsometry. Opt Lett 12, 766–768 (1987). doi: 10.1364/OL.12.000766

    CrossRef Google Scholar

    [90] Compain E, Drevillon B. Broadband division-of-amplitude polarimeter based on uncoated prisms. Appl Opt 37, 5938–5944 (1998). doi: 10.1364/AO.37.005938

    CrossRef Google Scholar

    [91] Ju HJ, Ren LY, Liang J et al. A Mueller matrix measurement technique based on a division-of-aperture polarimetric camera. Proc SPIE 10839, 108391F (2019).

    Google Scholar

    [92] Pezzaniti JL, Chenault DB. A division of aperture MWIR imaging polarimeter. Proc SPIE 5888, 58880V (2005). doi: 10.1117/12.623543

    CrossRef Google Scholar

    [93] Gao SK, Gruev V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters. Opt Express 19, 26161–26173 (2011). doi: 10.1364/OE.19.026161

    CrossRef Google Scholar

    [94] York T, Gruev V. Calibration method for division of focal plane polarimeters in the optical and near-infrared regime. Proc SPIE 8012, 80120H (2011).

    Google Scholar

    [95] Hsu WL, Davis J, Balakrishnan K et al. Polarization microscope using a near infrared full-Stokes imaging polarimeter. Opt Express 23, 4357–4368 (2015). doi: 10.1364/OE.23.004357

    CrossRef Google Scholar

    [96] Goldstein DH. Polarized Light 3rd ed (CRC Press, Boca Raton, 2017).

    Google Scholar

    [97] Li XB, Liu TG, Huang BJ et al. Optimal distribution of integration time for intensity measurements in stokes polarimetry. Opt Express 23, 27690–27699 (2015). doi: 10.1364/OE.23.027690

    CrossRef Google Scholar

    [98] Mueller H. On the theory of scattering of light. Proc Roy Soc A Math Phys Eng Sci 166, 425–449 (1938).

    Google Scholar

    [99] Liu F, Zhang SC, Han PL et al. Depolarization index from Mueller matrix descatters imaging in turbid water. Chin Opt Lett 20, 022601 (2022). doi: 10.3788/COL202220.022601

    CrossRef Google Scholar

    [100] Ortega-Quijano N, Haj-Ibrahim B, García-Caurel E et al. Experimental validation of Mueller matrix differential decomposition. Opt Express 20, 1151–1163 (2012). doi: 10.1364/OE.20.001151

    CrossRef Google Scholar

    [101] Lu SY, Chipman RA. Interpretation of Mueller matrices based on polar decomposition. J Opt Soc Am A 13, 1106–1113 (1996). doi: 10.1364/JOSAA.13.001106

    CrossRef Google Scholar

    [102] He HH, Zeng N, Du E et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photonics Lasers Med 2, 129–137 (2013).

    Google Scholar

    [103] Arteaga O, Garcia-Caurel E, Ossikovski R. Anisotropy coefficients of a Mueller matrix. J Opt Soc Am A 28, 548–553 (2011). doi: 10.1364/JOSAA.28.000548

    CrossRef Google Scholar

    [104] Ortega-Quijano N, Arce-Diego JL. Mueller matrix differential decomposition. Opt Lett 36, 1942–1944 (2011). doi: 10.1364/OL.36.001942

    CrossRef Google Scholar

    [105] Ossikovski R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J Opt Soc Am A 26, 1109–1118 (2009). doi: 10.1364/JOSAA.26.001109

    CrossRef Google Scholar

    [106] Cloude SR. Group theory and polarisation algebra. Optik 75, 26–36 (1985).

    Google Scholar

    [107] Carnicer A, Javidi B. Polarimetric 3D integral imaging in photon-starved conditions. Opt Express 23, 6408–6417 (2015). doi: 10.1364/OE.23.006408

    CrossRef Google Scholar

    [108] Chen C, Chen QF, Xu J et al. Learning to see in the dark. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 3291–3300 (IEEE, 2018); https://doi.org/10.1109/CVPR.2018.00347.

    Google Scholar

    [109] Tibbs AB, Daly IM, Roberts NW et al. Denoising imaging polarimetry by adapted BM3D method. J Opt Soc Am A 35, 690–701 (2018). doi: 10.1364/JOSAA.35.000690

    CrossRef Google Scholar

    [110] Gao SK, Gruev V. Gradient-based interpolation method for division-of-focal-plane polarimeters. Opt Express 21, 1137–1151 (2013). doi: 10.1364/OE.21.001137

    CrossRef Google Scholar

    [111] Zhang JC, Luo HB, Hui B et al. Image interpolation for division of focal plane polarimeters with intensity correlation. Opt Express 24, 20799–20807 (2016). doi: 10.1364/OE.24.020799

    CrossRef Google Scholar

    [112] Zhang JC, Luo HB, Liang RG et al. Sparse representation-based demosaicing method for microgrid polarimeter imagery. Opt Lett 43, 3265–3268 (2018). doi: 10.1364/OL.43.003265

    CrossRef Google Scholar

    [113] Ratliff BM, LaCasse CF, Tyo JC. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery. Opt Express 17, 9112–9125 (2009). doi: 10.1364/OE.17.009112

    CrossRef Google Scholar

    [114] Wen SJ, Zheng YQ, Lu F et al. Convolutional demosaicing network for joint chromatic and polarimetric imagery. Opt Lett 44, 5646–5649 (2019). doi: 10.1364/OL.44.005646

    CrossRef Google Scholar

    [115] Sargent GC, Ratliff BM, Asari VK. Conditional generative adversarial network demosaicing strategy for division of focal plane polarimeters. Opt Express 28, 38419–38443 (2020). doi: 10.1364/OE.412687

    CrossRef Google Scholar

    [116] Sun YY, Zhang JC, Liang RG. Color polarization demosaicking by a convolutional neural network. Opt Lett 46, 4338–4341 (2021). doi: 10.1364/OL.431919

    CrossRef Google Scholar

    [117] Pistellato M, Bergamasco F, Fatima T et al. Deep demosaicing for polarimetric filter array cameras. IEEE Trans Image Process 31, 2017–2026 (2022). doi: 10.1109/TIP.2022.3150296

    CrossRef Google Scholar

    [118] Zhang JC, Chen JL, Yu HW et al. Polarization image demosaicking via nonlocal sparse tensor factorization. IEEE Trans Geosci Remote Sens 60, 5607210 (2021).

    Google Scholar

    [119] Hagen N, Otani Y. Stokes polarimeter performance: general noise model and analysis. Appl Opt 57, 4283–4296 (2018). doi: 10.1364/AO.57.004283

    CrossRef Google Scholar

    [120] Li XB, Hu HF, Liu TG et al. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry. Opt Express 24, 7191–7200 (2016). doi: 10.1364/OE.24.007191

    CrossRef Google Scholar

    [121] Lewis JJ, O’Callaghan RJ, Nikolov SG et al. Pixel- and region-based image fusion with complex wavelets. Inf Fusion 8, 119–130 (2007). doi: 10.1016/j.inffus.2005.09.006

    CrossRef Google Scholar

    [122] Nencini F, Garzelli A, Baronti S et al. Remote sensing image fusion using the curvelet transform. Inf Fusion 8, 143–156 (2007). doi: 10.1016/j.inffus.2006.02.001

    CrossRef Google Scholar

    [123] Li ST, Kang XD, Hu JW. Image fusion with guided filtering. IEEE Trans Image Process 22, 2864–2875 (2013). doi: 10.1109/TIP.2013.2244222

    CrossRef Google Scholar

    [124] Liu Y, Liu SP, Wang ZF. A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24, 147–164 (2015). doi: 10.1016/j.inffus.2014.09.004

    CrossRef Google Scholar

    [125] Li ST, Kang XD, Fang LY et al. Pixel-level image fusion: a survey of the state of the art. Inf Fusion 33, 100–112 (2017). doi: 10.1016/j.inffus.2016.05.004

    CrossRef Google Scholar

    [126] Zhang JC, Shao JB, Chen JL et al. PFNet: an unsupervised deep network for polarization image fusion. Opt Lett 45, 1507–1510 (2020). doi: 10.1364/OL.384189

    CrossRef Google Scholar

    [127] Zhang JC, Shao JB, Chen JL et al. Polarization image fusion with self-learned fusion strategy. Pattern Recognit 118, 108045 (2021). doi: 10.1016/j.patcog.2021.108045

    CrossRef Google Scholar

    [128] Lin TY, Dollár P, Girshick R et al. Feature pyramid networks for object detection. In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition 936–944 (IEEE, 2017); http://doi.org/10.1109/CVPR.2017.106.

    Google Scholar

    [129] Song YB, Ma C, Gong LJ et al. CREST: convolutional residual learning for visual tracking. In Proceedings of 2017 IEEE International Conference on Computer Vision 2574–2583 (IEEE, 2017); https://doi.org/10.1109/iccv.2017.279.

    Google Scholar

    [130] Xu Y, Wen J, Fei LK, Zhang Z. Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4, 165–188 (2015).

    Google Scholar

    [131] Guo Y, Liu RW, Lu YX et al. Haze visibility enhancement for promoting traffic situational awareness in vision-enabled intelligent transportation. IEEE Trans Veh Technol 72, 15421–15435 (2023). doi: 10.1109/TVT.2023.3298041

    CrossRef Google Scholar

    [132] Nguyen K, Nguyen P, Bui DC et al. Analysis of the influence of de-hazing methods on vehicle detection in aerial images. Int J Adv Comput Sci Appl 13, 846–856 (2022).

    Google Scholar

    [133] Liu JP, Wang SJ, Wang X et al. A review of remote sensing image dehazing. Sensors 21, 3926 (2021). doi: 10.3390/s21113926

    CrossRef Google Scholar

    [134] Karavarsamis S, Gkika I, Gkitsas V et al. A survey of deep learning-based image restoration methods for enhancing situational awareness at disaster sites: the cases of rain, snow and haze. Sensors 22, 4707 (2022). doi: 10.3390/s22134707

    CrossRef Google Scholar

    [135] Song YF, Nakath D, She MK et al. Optical imaging and image restoration techniques for deep ocean mapping: a comprehensive survey. PFG J Photogramm Remote Sens Geoinf Sci 90, 243–267 (2022).

    Google Scholar

    [136] Islam J, Xia YY, Sattar J. Fast underwater image enhancement for improved visual perception. IEEE Robot Autom Lett 5, 3227–3234 (2020). doi: 10.1109/LRA.2020.2974710

    CrossRef Google Scholar

    [137] Negi A, Chauhan P, Kumar K et al. Face mask detection classifier and model pruning with keras-surgeon. In Proceedings of the 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering 1–6 (IEEE, 2020); http://doi.org/10.1109/ICRAIE51050.2020.9358337.

    Google Scholar

    [138] Narasimhan SG, Nayar SK. Vision and the atmosphere. Int J Comput Vis 48, 233–254 (2002). doi: 10.1023/A:1016328200723

    CrossRef Google Scholar

    [139] Schechner YY, Narasimhan SG, Nayar SK. Polarization-based Vision through haze. Appl Opt 42, 511–525 (2003). doi: 10.1364/AO.42.000511

    CrossRef Google Scholar

    [140] Akkaynak D, Treibitz T. A revised underwater image formation model. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 6723–6732 (IEEE, 2018); http://doi.org/10.1109/CVPR.2018.00703.

    Google Scholar

    [141] Akkaynak D, Treibitz T. Sea-Thru: a method for removing water from underwater images. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 1682–1691 (IEEE, 2019); http://doi.org/10.1109/CVPR.2019.00178.

    Google Scholar

    [142] Hu HF, Zhao L, Li XB et al. Underwater image recovery under the nonuniform optical field based on polarimetric imaging. IEEE Photonics J 10, 6900309 (2018).

    Google Scholar

    [143] Wei Y, Han PL, Liu F et al. Polarization descattering imaging: a solution for nonuniform polarization characteristics of a target surface. Chin Opt Lett 19, 111101 (2021). doi: 10.3788/COL202119.111101

    CrossRef Google Scholar

    [144] Fabbri C, Islam J, Sattar J. Enhancing underwater imagery using generative adversarial networks. In Proceedings of 2018 IEEE International Conference on Robotics and Automation 7159–7165 (IEEE, 2018); http://doi.org/10.1109/ICRA.2018.8460552.

    Google Scholar

    [145] Anwar S, Li CY, Porikli F. Deep underwater image enhancement, arXiv: 1807.03528 (2018). https://doi.org/10.48550/arXiv.1807.03528

    Google Scholar

    [146] Wang N, Zhou YB, Han FL et al. UWGAN: underwater GAN for real-world underwater color restoration and dehazing. arXiv: 1912.10269 (2019). https://doi.org/10.48550/arXiv.1912.10269

    Google Scholar

    [147] He KM, Sun J, Tang XO. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33, 2341–2353 (2011). doi: 10.1109/TPAMI.2010.168

    CrossRef Google Scholar

    [148] Ren QM, Xiang YF, Wang GC et al. The underwater polarization dehazing imaging with a lightweight convolutional neural network. Optik 251, 168381 (2022). doi: 10.1016/j.ijleo.2021.168381

    CrossRef Google Scholar

    [149] Li BY, Peng XL, Wang ZY et al. AOD-Net: all-in-one dehazing network. In Proceedings of 2017 IEEE International Conference on Computer Vision 4780–4788 (IEEE, 2017); http://doi.org/10.1109/ICCV.2017.511.

    Google Scholar

    [150] Peng YT, Cao KM, Cosman PC. Generalization of the dark channel prior for single image restoration. IEEE Trans Image Process 27, 2856–2868 (2018). doi: 10.1109/TIP.2018.2813092

    CrossRef Google Scholar

    [151] Fu XP, Liang Z, Ding XY et al. Image descattering and absorption compensation in underwater polarimetric imaging. Opt Laser Eng 132, 106115 (2020). doi: 10.1016/j.optlaseng.2020.106115

    CrossRef Google Scholar

    [152] Drews PLJ, Nascimento ER, Botelho SSC et al. Underwater depth estimation and image restoration based on single images. IEEE Comput Graph Appl 36, 24–35 (2016).

    Google Scholar

    [153] Fu XY, Zhuang PX, Huang Y et al. A retinex-based enhancing approach for single underwater image. In Proceedings of 2014 IEEE International Conference on Image Processing 4572–4576 (IEEE, 2014); http://doi.org/10.1109/ICIP.2014.7025927.

    Google Scholar

    [154] Fu XY, Fan ZW, Ling M et al. Two-step approach for single underwater image enhancement. In Proceedings of 2017 International Symposium on Intelligent Signal Processing and Communication Systems 789–794 (IEEE, 2017); http://doi.org/10.1109/ISPACS.2017.8266583.

    Google Scholar

    [155] Li BY, Ren WQ, Fu DP et al. Benchmarking single-image dehazing and beyond. IEEE Trans Image Process 28, 492–505 (2019). doi: 10.1109/TIP.2018.2867951

    CrossRef Google Scholar

    [156] Sakaridis C, Dai DX, Van Gool L. Semantic foggy scene understanding with synthetic data. Int J Comput Vis 126, 973–992 (2018). doi: 10.1007/s11263-018-1072-8

    CrossRef Google Scholar

    [157] Sakaridis C, Dai DX, Van Gool L. Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In Proceedings of the 15th European Conference on Computer Vision (Springer, 2018); https://doi.org/10.1007/978-3-030-01261-8_42.

    Google Scholar

    [158] Zhang YF, Ding L, Sharma G. HazeRD: an outdoor scene dataset and benchmark for single image dehazing. In Proceedings of 2017 IEEE International Conference on Image Processing 3205–3209 (IEEE, 2017); http://doi.org/10.1109/ICIP.2017.8296874.

    Google Scholar

    [159] Zhao SY, Zhang L, Huang SY et al. Dehazing evaluation: real-world benchmark datasets, criteria, and baselines. IEEE Trans Image Process 29, 6947–6962 (2020). doi: 10.1109/TIP.2020.2995264

    CrossRef Google Scholar

    [160] Carlevaris-Bianco N, Mohan A, Eustice RM. Initial results in underwater single image dehazing. In Proceedings of OCEANS 2010 MTS/IEEE SEATTLE 1-8 (IEEE, 2010); http://doi.org/10.1109/OCEANS.2010.5664428.

    Google Scholar

    [161] Huang DM, Wang Y, Song W et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. In Proceedings of the 24th International Conference on Multimedia Modeling 453–465 (Springer, 2018); https://doi.org/10.1007/978-3-319-73603-7_37.

    Google Scholar

    [162] Huang SC, Cheng FC, Chiu YS. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22, 1032–1041 (2013). doi: 10.1109/TIP.2012.2226047

    CrossRef Google Scholar

    [163] Chao L, Wang M. Removal of water scattering. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology V2-35–V2-39 (IEEE, 2010); https://doi.org/10.1109/ICCET.2010.5485339.

    Google Scholar

    [164] Liang J, Ren LY, Ju HJ et al. Visibility enhancement of hazy images based on a universal polarimetric imaging method. J Appl Phys 116, 173107 (2014). doi: 10.1063/1.4901244

    CrossRef Google Scholar

    [165] Hitam MS, Awalludin EA, Yussof WNJHW et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In Proceedings of 2013 International Conference on Computer Applications Technology 1–5 (IEEE, 2013); http://doi.org/10.1109/ICCAT.2013.6522017.

    Google Scholar

    [166] Fan R, Wang HL, Cai PD et al. SNE-RoadSeg: incorporating surface normal information into semantic segmentation for accurate freespace detection. In Proceedings of the 16th European Conference on Computer Vision 340–356 (Springer, 2020); https://doi.org/10.1007/978-3-030-58577-8_21.

    Google Scholar

    [167] Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry ProcessING 61–70 (2006); https://dl.acm.org/doi/10.5555/1281957.1281965.

    Google Scholar

    [168] Qi XJ, Liao RJ, Liu ZZ et al. Geonet: geometric neural network for joint depth and surface normal estimation. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 283–291 (IEEE, 2018); http://doi.org/10.1109/CVPR.2018.00037.

    Google Scholar

    [169] Huang JW, Zhou YC, Funkhouser T, Guibas L. FrameNet: learning local canonical frames of 3D surfaces from a single RGB image. In Proceedings of 2019 IEEE/CVF International Conference on Computer Vision 8637–8646 (IEEE, 2019); http://doi.org/10.1109/ICCV.2019.00873.

    Google Scholar

    [170] Wang R, Geraghty D, Matzen K et al. VPLNet: deep single view normal estimation with vanishing points and lines. In Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 686–695 (IEEE, 2020); http://doi.org/10.1109/CVPR42600.2020.00077.

    Google Scholar

    [171] Bansal A, Chen XL, Russell B et al. PixelNet: towards a general pixel-level architecture. arXiv: 1609.06694 (2016). https://arxiv.org/abs/1609.06694

    Google Scholar

    [172] Li B, Shen CH, Dai YC et al. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition 1119–1127 (IEEE, 2015); http://doi.org/10.1109/CVPR.2015.7298715.

    Google Scholar

    [173] Atkinson GA. Polarisation photometric stereo. Comput Vis Image Underst 160, 158–167 (2017). doi: 10.1016/j.cviu.2017.04.014

    CrossRef Google Scholar

    [174] Fukao Y, Kawahara R, Nobuhara S et al. Polarimetric normal stereo. In Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition 682–690 (IEEE, 2021); http://doi.org/10.1109/CVPR46437.2021.00074

    Google Scholar

    [175] Zhu DZ, Smith WAP. Depth from a polarisation + RGB stereo pair. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 7578–7587 (IEEE, 2019); http://doi.org/10.1109/CVPR.2019.00777.

    Google Scholar

    [176] Ding YQ, Ji Y, Zhou MY et al. Polarimetric helmholtz stereopsis. In Proceedings of 2021 IEEE/CVF International Conference on Computer Vision 5017–5026 (IEEE, 2021); http://doi.org/10.1109/ICCV48922.2021.00499.

    Google Scholar

    [177] Atkinson GA, Hancock ER. Recovery of surface orientation from diffuse polarization. IEEE Trans Image Process 15, 1653–1664 (2006). doi: 10.1109/TIP.2006.871114

    CrossRef Google Scholar

    [178] Robles-Kelly A, Huynh CP. Imaging Spectroscopy for Scene Analysis (Springer, London, 2013).

    Google Scholar

    [179] Frankot RT, Chellappa R. A method for enforcing integrability in shape from shading algorithms. IEEE Trans Pattern Anal Mach Intell 10, 439–451 (1988). doi: 10.1109/34.3909

    CrossRef Google Scholar

    [180] Miyazaki D, Tan RT, Hara K et al. Polarization-based inverse rendering from a single view. In Proceedings of the Ninth IEEE International Conference on Computer Vision 982–987 (IEEE, 2003); https://doi.org/10.1109/ICCV.2003.1238455.

    Google Scholar

    [181] Mahmoud AH, El-Melegy MT, Farag AA. Direct method for shape recovery from polarization and shading. In Proceedings of the 2012 19th IEEE International Conference on Image Processing 1769–1772 (IEEE, 2012); https://doi.org/10.1109/ICIP.2012.6467223.

    Google Scholar

    [182] Loper M, Mahmood N, Romero J et al. SMPL: a skinned multi-person linear model. ACM Trans Graph 34, 248 (2015).

    Google Scholar

    [183] Han PL, Li X, Liu F et al. Accurate passive 3D polarization face reconstruction under complex conditions assisted with deep learning. Photonics 9, 924 (2022). doi: 10.3390/photonics9120924

    CrossRef Google Scholar

    [184] Levin A, Weiss Y. User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans Pattern Anal Mach Intell 29, 1647–1654 (2007). doi: 10.1109/TPAMI.2007.1106

    CrossRef Google Scholar

    [185] Li Y, Brown MS. Exploiting reflection change for automatic reflection removal. In Proceedings of 2013 IEEE International Conference on Computer Vision 2432–2439 (IEEE, 2013); https://doi.org/10.1109/ICCV.2013.302.

    Google Scholar

    [186] Zhou BL, Lapedriza A, Khosla A et al. Places: a 10 million image database for scene recognition. IEEE Trans Pattern Anal Mach Intell 40, 1452–1464 (2018). doi: 10.1109/TPAMI.2017.2723009

    CrossRef Google Scholar

    [187] Pang YX, Yuan MK, Fu Q et al. Progressive polarization based reflection removal via realistic training data generation. Pattern Recognit 124, 108497 (2022). doi: 10.1016/j.patcog.2021.108497

    CrossRef Google Scholar

    [188] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition 580–587 (IEEE, 2014); https://doi.org/10.1109/CVPR.2014.81.

    Google Scholar

    [189] Girshick R. Fast R-CNN. In Proceedings of 2015 IEEE International Conference on Computer Vision 1440–1448 (IEEE, 2015); https://doi.org/10.1109/ICCV.2015.169.

    Google Scholar

    [190] Ren SQ, He KM, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39, 1137–1149 (2017). doi: 10.1109/TPAMI.2016.2577031

    CrossRef Google Scholar

    [191] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition 779–788 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.91.

    Google Scholar

    [192] Liu W, Anguelov D, Erhan D et al. SSD: single shot multibox detector. In Proceedings of the 14th European Conference on Computer Vision 21–37 (Springer, 2016); https://doi.org/10.1007/978-3-319-46448-0_2.

    Google Scholar

    [193] Law H, Deng J. CornerNet: detecting objects as paired keypoints. In Proceedings of the 15th European Conference on Computer Vision 765–781 (Springer 2018); https://doi.org/10.1007/978-3-030-01264-9_45

    Google Scholar

    [194] Wolff LB. Polarization-based material classification from specular reflection. IEEE Trans Pattern Anal Mach Intell 12, 1059–1071 (1990). doi: 10.1109/34.61705

    CrossRef Google Scholar

    [195] Wolff LB. Surface orientation from polarization images. Proc SPIE 850, 110–121 (1988). doi: 10.1117/12.942866

    CrossRef Google Scholar

    [196] Tian Y, Zhang KB, Wang LY et al. Face anti-spoofing by learning polarization cues in a real-world scenario. In Proceedings of the 4th International Conference on Advances in Image Processing 129–137 (ACM, 2020); https://doi.org/10.1145/3441250.3441254.

    Google Scholar

    [197] Usmani K, Krishnan G, O'Connor T et al. Deep learning polarimetric three-dimensional integral imaging object recognition in adverse environmental conditions. Opt Express 29, 12215–12228 (2021). doi: 10.1364/OE.421287

    CrossRef Google Scholar

    [198] Shen Y, Lin WF, Wang ZF et al. Rapid detection of camouflaged artificial target based on polarization imaging and deep learning. IEEE Photonics J 13, 7800309 (2021).

    Google Scholar

    [199] Liu T, Lu M, Chen BG et al. Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics 12, e201900151 (2019). doi: 10.1002/jbio.201900151

    CrossRef Google Scholar

    [200] Shen YX, Huang RR, He HH et al. Comparative study of the influence of imaging resolution on linear retardance parameters derived from the Mueller matrix. Biomed Opt Express 12, 211–225 (2021). doi: 10.1364/BOE.410989

    CrossRef Google Scholar

    [201] Sun T, Liu T, He HH et al. Distinguishing anisotropy orientations originated from scattering and birefringence of turbid media using Mueller matrix derived parameters. Opt Lett 43, 4092–4095 (2018). doi: 10.1364/OL.43.004092

    CrossRef Google Scholar

    [202] Rehbinder J, Haddad H, Deby S et al. Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation. J Biomed Opt 21, 071113 (2016). doi: 10.1117/1.JBO.21.7.071113

    CrossRef Google Scholar

    [203] Chue-Sang J, Bai YQ, Stoff S et al. Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue. J Biomed Opt 21, 071109 (2016). doi: 10.1117/1.JBO.21.7.071109

    CrossRef Google Scholar

    [204] Novikova T, Pierangelo A, Manhas S et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl Phys Lett 102, 241103 (2013). doi: 10.1063/1.4811414

    CrossRef Google Scholar

    [205] Pierangelo A, Manhas S, Benali A et al. Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging. J Biomed Opt 17, 066009 (2012). doi: 10.1117/1.JBO.17.6.066009

    CrossRef Google Scholar

    [206] Dubreuil M, Babilotte P, Martin L et al. Mueller matrix polarimetry for improved liver fibrosis diagnosis. Opt Lett 37, 1061–1063 (2012). doi: 10.1364/OL.37.001061

    CrossRef Google Scholar

    [207] Wang WF, Lim LG, Srivastava S et al. Roles of linear and circular polarization properties and effect of wavelength choice on differentiation between ex vivo normal and cancerous gastric samples. J Biomed Opt 19, 046020 (2014). doi: 10.1117/1.JBO.19.4.046020

    CrossRef Google Scholar

    [208] Chen GH, Wang JY, Zhang AJ. Transparent object detection and location based on RGB-D camera. J Phys Conf Ser 1183, 012011 (2019). doi: 10.1088/1742-6596/1183/1/012011

    CrossRef Google Scholar

    [209] Liu YJ, Jourabloo A, Liu XM. Learning deep models for face anti-spoofing: binary or auxiliary supervision. In Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 389–398 (IEEE, 2018); https://doi.org/10.1109/CVPR.2018.00048.

    Google Scholar

    [210] Wang T, He XM, Barnes N. Glass object localization by joint inference of boundary and depth. In Proceedings of the 21st International Conference on Pattern Recognition 3783–3786 (IEEE, 2012).

    Google Scholar

    [211] Xu YC, Nagahara H, Shimada A et al. TransCut: transparent object segmentation from a light-field image. In Proceedings of 2015 IEEE International Conference on Computer Vision 3442–3450 (IEEE, 2015); https://doi.org/10.1109/ICCV.2015.393.

    Google Scholar

    [212] Zhang SF, Wang XB, Liu AJ et al. A dataset and benchmark for large-scale multi-modal face anti-spoofing. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 919–928 (IEEE, 2019); https://doi.org/10.1109/CVPR.2019.00101.

    Google Scholar

    [213] Sun MH, He HH, Zeng N et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed Opt Express 5, 4223–4234 (2014). doi: 10.1364/BOE.5.004223

    CrossRef Google Scholar

    [214] Li PC, Lv DH, He HH et al. Separating azimuthal orientation dependence in polarization measurements of anisotropic media. Opt Express 26, 3791–3800 (2018). doi: 10.1364/OE.26.003791

    CrossRef Google Scholar

    [215] Gil JJ. Invariant quantities of a Mueller matrix under rotation and retarder transformations. J Opt Soc Am A 33, 52–58 (2016). doi: 10.1364/JOSAA.33.000052

    CrossRef Google Scholar

    [216] Le QV. Building high-level features using large scale unsupervised learning. In Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 8595–8598 (IEEE, 2013); https://doi.org/10.1109/ICASSP.2013.6639343.

    Google Scholar

    [217] Dy JG, Brodley CE. Feature selection for unsupervised learning. J Mach Learn Res 5, 845–889 (2004).

    Google Scholar

    [218] Dike HU, Zhou YM, Deveerasetty KK et al. Unsupervised learning based on artificial neural network: a review. In Proceedings of 2018 IEEE International Conference on Cyborg and Bionic Systems 322–327 (IEEE, 2018); https://doi.org/10.1109/CBS.2018.8612259.

    Google Scholar

    [219] Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 22, 1345–1359 (2010). doi: 10.1109/TKDE.2009.191

    CrossRef Google Scholar

    [220] Pan SJ, Tsang IW, Kwok JT et al. Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22, 199–210 (2011). doi: 10.1109/TNN.2010.2091281

    CrossRef Google Scholar

    [221] Stevens SY, Delgado C, Krajcik JS. Developing a hypothetical multi-dimensional learning progression for the nature of matter. J Res Sci Teach 47, 687–715 (2010). doi: 10.1002/tea.20324

    CrossRef Google Scholar

    [222] Xin M, Kundu S. Multi-task learning with high-dimensional noisy images. J Am Stat Assoc (2021). doi: 10.1080/01621459.2022.2140052.

    CrossRef Google Scholar

    [223] Li T, Sahu AK, Talwalkar A et al. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag 37, 50–60 (2020).

    Google Scholar

    [224] Rubin NA, D’Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [225] Zhang YX, Pu MB, Jin JJ et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [226] Tang DL, Shao ZL, Xie X et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063

    CrossRef Google Scholar

    [227] Chen J, Wang DP, Si GY et al. Planar peristrophic multiplexing metasurfaces. Opto-Electron Adv 6, 220141 (2023). doi: 10.29026/oea.2023.220141

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(25)

Tables(6)

Article Metrics

Article views(2510) PDF downloads(264) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint