Wu GX, Zhu RZ, Lu YQ et al. Optical scanning endoscope via a single multimode optical fiber. Opto-Electron Sci 3, 230041 (2024). doi: 10.29026/oes.2024.230041
Citation: Wu GX, Zhu RZ, Lu YQ et al. Optical scanning endoscope via a single multimode optical fiber. Opto-Electron Sci 3, 230041 (2024). doi: 10.29026/oes.2024.230041

Review Open Access

Optical scanning endoscope via a single multimode optical fiber

More Information
  • Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body, enabling non-invasive, rapid diagnosis and treatment. Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility, compact structure, excellent resolution, and resistance to electromagnetic interference. Over the past decade, endoscopes based on a single multimode optical fiber (MMF) have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities. In comparison with other imaging principles of MMF endoscopes, the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast, broad applicability to complex imaging scenarios, and good compatibility with various well-established scanning imaging modalities. In this review, various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced. The advancements in imaging performance enhancements, integrations of various imaging modalities with MMF scanning endoscopes, and applications are summarized. Challenges specific to this endoscopic imaging technology are analyzed, and potential remedies and avenues for future developments are discussed.
  • 加载中
  • [1] Litynski GS. Endoscopic surgery: the history, the pioneers. World J Surg 23, 745–753 (1999). doi: 10.1007/s002689900576

    CrossRef Google Scholar

    [2] Vasquez-Lopez SA, Turcotte R, Koren V et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light Sci Appl 7, 110 (2018). doi: 10.1038/s41377-018-0111-0

    CrossRef Google Scholar

    [3] Gaab MR. Instrumentation: endoscopes and equipment. World Neurosurg 79, S14.e11–S14.e21 (2013). doi: 10.1016/j.wneu.2012.02.032

    CrossRef Google Scholar

    [4] Liu HH, Hu DJJ, Sun QZ et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.29026/oes.2023.220025

    CrossRef Google Scholar

    [5] Jiang BQ, Hou YG, Wu JX et al. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron Sci 2, 230012 (2023). doi: 10.29026/oes.2023.230012

    CrossRef Google Scholar

    [6] Hopkins HH, Kapany NS. A flexible fibrescope, using static scanning. Nature 173, 39–41 (1954).

    Google Scholar

    [7] Hopkins HH, Kapany NS. Transparent fibres for the transmission of optical images. Opt Acta Int J Opt 1, 164–170 (1955). doi: 10.1080/713818685

    CrossRef Google Scholar

    [8] Kao KC, Hockham GA. Dielectric-fibre surface waveguides for optical frequencies. Proc Inst Electr Eng 113, 1151–1158 (1966). doi: 10.1049/piee.1966.0189

    CrossRef Google Scholar

    [9] Sun JW, Wu JC, Wu S et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light Sci Appl 11, 204 (2022). doi: 10.1038/s41377-022-00898-2

    CrossRef Google Scholar

    [10] Orth A, Ploschner M, Wilson E et al. Optical fiber bundles: ultra-slim light field imaging probes. Sci Adv 5, eaav1555 (2019). doi: 10.1126/sciadv.aav1555

    CrossRef Google Scholar

    [11] Pan YT, Xie HK, Fedder GK. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt Lett 26, 1966–1968 (2001). doi: 10.1364/OL.26.001966

    CrossRef Google Scholar

    [12] Smithwick QYJ, Seibel EJ, Reinhall PG et al. Control aspects of the single-fiber scanning endoscope. Proc SPIE 4253, 176–188 (2001). doi: 10.1117/12.427920

    CrossRef Google Scholar

    [13] Liu XM, Cobb MJ, Chen YC et al. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt Lett 29, 1763–1765 (2004). doi: 10.1364/OL.29.001763

    CrossRef Google Scholar

    [14] Kaur M, Lane PM, Menon C. Scanning and actuation techniques for cantilever-based fiber optic endoscopic scanners—a review. Sensors 21, 251 (2021). doi: 10.3390/s21010251

    CrossRef Google Scholar

    [15] Kang JQ, Zhu R, Sun YX et al. Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electron Adv 5 5, 200050 (2022). doi: 10.29026/oea.2022.200050

    CrossRef Google Scholar

    [16] Hirschowitz BI, Curtiss LE, Peters CW et al. Demonstration of a new gastroscope, the “fiberscope”. Gastroenterology 35, 50–53 (1958). doi: 10.1016/S0016-5085(19)35579-9

    CrossRef Google Scholar

    [17] Yan XQ, Li M, Chen ZQ et al. Schlemm’s canal and trabecular meshwork in eyes with primary open angle glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS One 11, e0145824 (2016). doi: 10.1371/journal.pone.0145824

    CrossRef Google Scholar

    [18] Kaur M, Lane PM, Menon C. Design of scanning fiber micro-cantilever based catheter for ultra-small endoscopes. In Proceedings of 2023 IEEE World AI IoT Congress 717–723 (IEEE, 2023);http://doi.org/10.1109/AIIoT58121.2023.10174425.

    Google Scholar

    [19] Chen XP, Reichenbach KL, Xu C. Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Opt Express 16, 21598–21607 (2008). doi: 10.1364/OE.16.021598

    CrossRef Google Scholar

    [20] Parker HE, Perperidis A, Stone JM et al. Core crosstalk in ordered imaging fiber bundles. Opt Lett 45, 6490–6493 (2020). doi: 10.1364/OL.405764

    CrossRef Google Scholar

    [21] Kyrish M, Kester R, Richards-Kortum R et al. Improving spatial resolution of a fiber bundle optical biopsy system. Proc SPIE 7558, 755807 (2010). doi: 10.1117/12.842744

    CrossRef Google Scholar

    [22] Papadopoulos IN, Farahi S, Moser C et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt Express 20, 10583–10590 (2012). doi: 10.1364/OE.20.010583

    CrossRef Google Scholar

    [23] Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt Express 19, 18871–18884 (2011). doi: 10.1364/OE.19.018871

    CrossRef Google Scholar

    [24] Caravaca-Aguirre AM, Niv E, Conkey DB et al. Real-time resilient focusing through a bending multimode fiber. Opt Express 21, 12881–12887 (2013). doi: 10.1364/OE.21.012881

    CrossRef Google Scholar

    [25] Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat Commun 3, 1027 (2012). doi: 10.1038/ncomms2024

    CrossRef Google Scholar

    [26] Di Leonardo R, Bianchi S. Hologram transmission through multi-mode optical fibers. Opt Express 19, 247–254 (2011). doi: 10.1364/OE.19.000247

    CrossRef Google Scholar

    [27] Zhao TR, Ourselin S, Vercauteren T et al. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt Express 28, 20978–20991 (2020). doi: 10.1364/OE.396734

    CrossRef Google Scholar

    [28] Abraham E, Zhou JX, Liu ZW. Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field. Opto-Electron Adv 6, 220163 (2023). doi: 10.29026/oea.2023.220163

    CrossRef Google Scholar

    [29] Choi Y, Yoon C, Kim M et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys Rev Lett 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901

    CrossRef Google Scholar

    [30] Liu YF, Yu PP, Wu YJ et al. Single-shot wide-field imaging in reflection by using a single multimode fiber. Appl Phys Lett 122, 063701 (2023). doi: 10.1063/5.0132123

    CrossRef Google Scholar

    [31] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078

    CrossRef Google Scholar

    [32] Abrashitova K, Amitonova LV. High-speed label-free multimode-fiber-based compressive imaging beyond the diffraction limit. Opt Express 30, 10456–10469 (2022). doi: 10.1364/OE.444796

    CrossRef Google Scholar

    [33] Li SH, Saunders C, Lum DJ et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci Appl 10, 88 (2021). doi: 10.1038/s41377-021-00514-9

    CrossRef Google Scholar

    [34] Amitonova LV, de Boer JF. Compressive imaging through a multimode fiber. Opt Lett 43, 5427–5430 (2018). doi: 10.1364/OL.43.005427

    CrossRef Google Scholar

    [35] Zhu RZ, Feng HG, Xu F. Deep learning-based multimode fiber imaging in multispectral and multipolarimetric channels. Opt Lasers Eng 161, 107386 (2023). doi: 10.1016/j.optlaseng.2022.107386

    CrossRef Google Scholar

    [36] Zhu RZ, Luo JX, Zhou XX et al. Anti-perturbation multimode fiber imaging based on the active measurement of the fiber configuration. ACS Photonics 10, 3476–3483 (2023). doi: 10.1021/acsphotonics.3c00390

    CrossRef Google Scholar

    [37] Xu RC, Zhang LH, Chen ZY et al. High accuracy transmission and recognition of complex images through multimode fibers using deep learning. Laser Photonics Rev 17, 2200339 (2023). doi: 10.1002/lpor.202200339

    CrossRef Google Scholar

    [38] Wang LL, Yang YS, Liu ZT et al. High‐speed all‐fiber micro‐imaging with large depth of field. Laser Photonics Rev 16, 2100724 (2022). doi: 10.1002/lpor.202100724

    CrossRef Google Scholar

    [39] Saleh BEA, Teich MC. Fundamentals of Photonics (Wiley, New York, 1991).

    Google Scholar

    [40] Xiong W, Hsu CW, Bromberg Y et al. Complete polarization control in multimode fibers with polarization and mode coupling. Light Sci Appl 7, 54 (2018). doi: 10.1038/s41377-018-0047-4

    CrossRef Google Scholar

    [41] Popoff SM, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601

    CrossRef Google Scholar

    [42] Turtaev S, Leite IT, Altwegg-Boussac T et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci Appl 7, 92 (2018). doi: 10.1038/s41377-018-0094-x

    CrossRef Google Scholar

    [43] Goorden SA, Bertolotti J, Mosk AP. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt Express 22, 17999–18009 (2014). doi: 10.1364/OE.22.017999

    CrossRef Google Scholar

    [44] Dubois A, Vabre L, Boccara AC et al. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt 41, 805–812 (2002). doi: 10.1364/AO.41.000805

    CrossRef Google Scholar

    [45] Bianchi S, Di Leonardo R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012). doi: 10.1039/C1LC20719A

    CrossRef Google Scholar

    [46] Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt Express 20, 1733–1740 (2012). doi: 10.1364/OE.20.001733

    CrossRef Google Scholar

    [47] Ivanina A, Lochocki B, Amitonova LV. Measuring the transmission matrix of a multimode fiber: on-axis vs off-axis holography. Proc SPIE 12574, 125740T (2023).

    Google Scholar

    [48] Jákl P, Šiler M, Ježek J et al. Endoscopic imaging using a multimode optical fibre calibrated with multiple internal references. Photonics 9, 37 (2022). doi: 10.3390/photonics9010037

    CrossRef Google Scholar

    [49] Jákl P, Šiler M, Ježek J et al. Multimode fiber transmission matrix obtained with internal references. Proc SPIE 10886, 1088610 (2019).

    Google Scholar

    [50] Collard L, Piscopo L, Pisano F et al. Optimizing the internal phase reference to shape the output of a multimode optical fiber. PLoS One 18, e0290300 (2023). doi: 10.1371/journal.pone.0290300

    CrossRef Google Scholar

    [51] Amitonova LV, Mosk AP, Pinkse PWH. Rotational memory effect of a multimode fiber. Opt Express 23, 20569–20575 (2015). doi: 10.1364/OE.23.020569

    CrossRef Google Scholar

    [52] Li SH, Horsley SAR, Tyc T et al. Memory effect assisted imaging through multimode optical fibres. Nat Commun 12, 3751 (2021). doi: 10.1038/s41467-021-23729-1

    CrossRef Google Scholar

    [53] Drémeau A, Liutkus A, Martina D et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt Express 23, 11898–11911 (2015). doi: 10.1364/OE.23.011898

    CrossRef Google Scholar

    [54] N’Gom M, Norris TB, Michielssen E et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt Lett 43, 419–422 (2018). doi: 10.1364/OL.43.000419

    CrossRef Google Scholar

    [55] Deng L, Yan JD, Elson DS et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system. Opt Express 26, 18436–18447 (2018). doi: 10.1364/OE.26.018436

    CrossRef Google Scholar

    [56] Caramazza P, Moran O, Murray-Smith R et al. Transmission of natural scene images through a multimode fibre. Nat Commun 10, 2029 (2019). doi: 10.1038/s41467-019-10057-8

    CrossRef Google Scholar

    [57] Huang GQ, Wu DX, Luo JW et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt Express 28, 9487–9500 (2020). doi: 10.1364/OE.389133

    CrossRef Google Scholar

    [58] Tao XD, Bodington D, Reinig M et al. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing. Opt Express 23, 14168–14187 (2015). doi: 10.1364/OE.23.014168

    CrossRef Google Scholar

    [59] Zhao TR, Deng L, Wang W et al. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber. Opt Express 26, 20368–20378 (2018). doi: 10.1364/OE.26.020368

    CrossRef Google Scholar

    [60] Zhao TR, Ourselin S, Vercauteren T et al. Focusing light through multimode fibres using a digital micromirror device: a comparison study of non-holographic approaches. Opt Express 29, 14269–14281 (2021). doi: 10.1364/OE.420718

    CrossRef Google Scholar

    [61] Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat Photonics 9, 529–535 (2015). doi: 10.1038/nphoton.2015.112

    CrossRef Google Scholar

    [62] Fischer B, Sternklar S. Image transmission and interferometry with multimode fibers using self‐pumped phase conjugation. Appl Phys Lett 46, 113–114 (1985). doi: 10.1063/1.95703

    CrossRef Google Scholar

    [63] McMichael I, Yeh P, Beckwith P. Correction of polarization and modal scrambling in multimode fibers by phase conjugation. Opt Lett 12, 507–509 (1987). doi: 10.1364/OL.12.000507

    CrossRef Google Scholar

    [64] Son JY, Bobrinev VI, Jeon HW et al. Direct image transmission through a multimode optical fiber. Appl Opt 35, 273–277 (1996). doi: 10.1364/AO.35.000273

    CrossRef Google Scholar

    [65] Dunning GJ, Lind RC. Demonstration of image transmission through fibers by optical phase conjugation. Opt Lett 7, 558–560 (1982). doi: 10.1364/OL.7.000558

    CrossRef Google Scholar

    [66] Ogasawara T, Ohno M, Karaki K et al. Image transmission with a pair of graded-index optical fibers and a BaTiO3 phase-conjugate mirror. J Opt Soc Am B 13, 2193–2197 (1996). doi: 10.1364/JOSAB.13.002193

    CrossRef Google Scholar

    [67] Papadopoulos IN, Farahi S, Moser C et al. Focused light delivery and all optical scanning from a multimode optical fiber using digital phase conjugation. Proc SPIE 8576, 857603 (2013). doi: 10.1117/12.2001605

    CrossRef Google Scholar

    [68] Zhang JW, Ma CJ, Dai SQ et al. Transmission and total internal reflection integrated digital holographic microscopy. Opt Lett 41, 3844–3847 (2016). doi: 10.1364/OL.41.003844

    CrossRef Google Scholar

    [69] Ma CJ, Di JL, Li Y et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation. Appl Phys Express 11, 062501 (2018). doi: 10.7567/APEX.11.062501

    CrossRef Google Scholar

    [70] Papadopoulos IN, Farahi S, Moser C et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed Opt Express 4, 260–270 (2013). doi: 10.1364/BOE.4.000260

    CrossRef Google Scholar

    [71] Mididoddi CK, Lennon RA, Li SH et al. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration. Opt Express 28, 34692–34705 (2020). doi: 10.1364/OE.409226

    CrossRef Google Scholar

    [72] Jang M, Ruan HW, Zhou HJ et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation. Opt Express 22, 14054–14071 (2014). doi: 10.1364/OE.22.014054

    CrossRef Google Scholar

    [73] Mahalati RN, Askarov D, Wilde JP et al. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt Express 20, 14321–14337 (2012). doi: 10.1364/OE.20.014321

    CrossRef Google Scholar

    [74] Zhao HC, Ma HT, Zhou P et al. Multimode fiber laser beam cleanup based on stochastic parallel gradient descent algorithm. Opt Commun 284, 613–615 (2011). doi: 10.1016/j.optcom.2010.09.039

    CrossRef Google Scholar

    [75] Yu H, Yao ZY, Sui XB et al. Focusing through disturbed multimode optical fiber based on self-adaptive genetic algorithm. Optik 261, 169129 (2022). doi: 10.1016/j.ijleo.2022.169129

    CrossRef Google Scholar

    [76] Cheng SF, Zhong TT, Woo CM et al. Long-distance pattern projection through an unfixed multimode fiber with natural evolution strategy-based wavefront shaping. Opt Express 30, 32565–32576 (2022). doi: 10.1364/OE.462275

    CrossRef Google Scholar

    [77] Li BQ, Zhang B, Feng Q et al. Shaping the wavefront of incident light with a strong robustness particle swarm optimization algorithm. Chin Phys Lett 35, 124201 (2018). doi: 10.1088/0256-307X/35/12/124201

    CrossRef Google Scholar

    [78] Conkey DB, Brown AN, Caravaca-Aguirre AM et al. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt Express 20, 4840–4849 (2012). doi: 10.1364/OE.20.004840

    CrossRef Google Scholar

    [79] Yang ZG, Fang LJ, Zhang XC et al. Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm. Opt Lasers Eng 144, 106646 (2021). doi: 10.1016/j.optlaseng.2021.106646

    CrossRef Google Scholar

    [80] Fayyaz Z, Mohammadian N, Reza Rahimi Tabar M et al. A comparative study of optimization algorithms for wavefront shaping. J Innov Opt Health Sci 12, 1942002 (2019). doi: 10.1142/S1793545819420021

    CrossRef Google Scholar

    [81] Yin Z, Liu GD, Chen FD et al. Fast-forming focused spots through a multimode fiber based on an adaptive parallel coordinate algorithm. Chin Opt Lett 13, 071404 (2015). doi: 10.3788/COL201513.071404

    CrossRef Google Scholar

    [82] Chen H, Geng Y, Xu CF et al. Efficient light focusing through an MMF based on two-step phase shifting and parallel phase compensating. Appl Opt 58, 7552–7557 (2019). doi: 10.1364/AO.58.007552

    CrossRef Google Scholar

    [83] Zhang ZK, Kong DP, Geng Y et al. Lensless multimode fiber imaging based on wavefront shaping. Appl Phys Express 14, 092002 (2021). doi: 10.35848/1882-0786/ac19d4

    CrossRef Google Scholar

    [84] Gomes AD, Turtaev S, Du Y et al. Near perfect focusing through multimode fibres. Opt Express 30, 10645–10663 (2022). doi: 10.1364/OE.452145

    CrossRef Google Scholar

    [85] Choi Y, Yoon C, Kim M et al. Disorder-mediated enhancement of fiber numerical aperture. Opt Lett 38, 2253–2255 (2013). doi: 10.1364/OL.38.002253

    CrossRef Google Scholar

    [86] Papadopoulos IN, Farahi S, Moser C et al. Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media. Opt Lett 38, 2776–2778 (2013). doi: 10.1364/OL.38.002776

    CrossRef Google Scholar

    [87] Jang H, Yoon C, Chung E et al. Holistic random encoding for imaging through multimode fibers. Opt Express 23, 6705–6721 (2015). doi: 10.1364/OE.23.006705

    CrossRef Google Scholar

    [88] Bianchi S, Rajamanickam VP, Ferrara L et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt Lett 38, 4935–4938 (2013). doi: 10.1364/OL.38.004935

    CrossRef Google Scholar

    [89] Amitonova LV, Descloux A, Petschulat J et al. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging. Opt Lett 41, 497–500 (2016). doi: 10.1364/OL.41.000497

    CrossRef Google Scholar

    [90] Leite IT, Turtaev S, Jiang X et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat Photonics 12, 33–39 (2018). doi: 10.1038/s41566-017-0053-8

    CrossRef Google Scholar

    [91] Stellinga D, Phillips DB, Mekhail SP et al. Time-of-flight 3D imaging through multimode optical fibers. Science 374, 1395–1399 (2021). doi: 10.1126/science.abl3771

    CrossRef Google Scholar

    [92] Leite IT, Turtaev S, Boonzajer Flaes DE et al. Observing distant objects with a multimode fiber-based holographic endoscope. APL Photonics 6, 036112 (2021). doi: 10.1063/5.0038367

    CrossRef Google Scholar

    [93] Lyu ZP, Osnabrugge G, Pinkse PWH et al. Focus quality in raster-scan imaging via a multimode fiber. Appl Opt 61, 4363–4369 (2022). doi: 10.1364/AO.458146

    CrossRef Google Scholar

    [94] Descloux A, Amitonova LV, Pinkse PWH. Aberrations of the point spread function of a multimode fiber due to partial mode excitation. Opt Express 24, 18501–18512 (2016). doi: 10.1364/OE.24.018501

    CrossRef Google Scholar

    [95] Velsink MC, Lyu ZY, Pinkse PWH et al. Comparison of round-and square-core fibers for sensing, imaging, and spectroscopy. Opt Express 29, 6523–6531 (2021). doi: 10.1364/OE.417021

    CrossRef Google Scholar

    [96] Turcotte R, Sutu E, Schmidt CC et al. Deconvolution for multimode fiber imaging: modeling of spatially variant PSF. Biomed Opt Express 11, 4759–4771 (2020). doi: 10.1364/BOE.399983

    CrossRef Google Scholar

    [97] Turcotte R, Schmidt CC, Emptage NJ et al. Focusing light in biological tissue through a multimode optical fiber: refractive index matching. Opt Lett 44, 2386–2389 (2019). doi: 10.1364/OL.44.002386

    CrossRef Google Scholar

    [98] Laporte GPJ, Stasio N, Moser C et al. Enhanced resolution in a multimode fiber imaging system. Opt Express 23, 27484–27493 (2015). doi: 10.1364/OE.23.027484

    CrossRef Google Scholar

    [99] Loterie D, Farahi S, Papadopoulos I et al. Digital confocal microscopy through a multimode fiber. Opt Express 23, 23845–23858 (2015). doi: 10.1364/OE.23.023845

    CrossRef Google Scholar

    [100] Webb RH. Confocal optical microscopy. Rep Prog Phys 59, 427–471 (1996). doi: 10.1088/0034-4885/59/3/003

    CrossRef Google Scholar

    [101] Tučková T, Šiler M, Flaes DEB et al. Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes. Opt Express 29, 38206–38220 (2021).

    Google Scholar

    [102] Turtaev S, Leite IT, Mitchell KJ et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt Express 25, 29874–29884 (2017). doi: 10.1364/OE.25.029874

    CrossRef Google Scholar

    [103] Zhang XH, Wen Z, Ma YG et al. High contrast multimode fiber imaging based on wavelength modulation. Appl Opt 59, 6677–6681 (2020). doi: 10.1364/AO.398490

    CrossRef Google Scholar

    [104] Plöschner M, Straka B, Dholakia K et al. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Opt Express 22, 2933–2947 (2014). doi: 10.1364/OE.22.002933

    CrossRef Google Scholar

    [105] Plöschner M, Čižmár T. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography. Opt Lett 40, 197–200 (2015). doi: 10.1364/OL.40.000197

    CrossRef Google Scholar

    [106] Lee WH. Binary computer-generated holograms. Appl Opt 18, 3661–3669 (1979). doi: 10.1364/AO.18.003661

    CrossRef Google Scholar

    [107] Stellinga D, Phillip DB, Mekhail S et al. 3D imaging through a single optical fiber. Proc SPIE 12016, 120160M (2022).

    Google Scholar

    [108] Turtaev S, Leite IT, Mitchell KJ et al. Exploiting digital micromirror device for holographic micro-endoscopy. Proc SPIE 10932, 1093203 (2019).

    Google Scholar

    [109] Turtaev S, Leite IT, Cizmar T. Liquid-crystal and MEMS modulators for beam-shaping through multimode fibre. In Proceedings of 2018 IEEE Photonics Society Summer Topical Meeting Series 207–208 (IEEE, 2018);http://doi.org/10.1109/PHOSST.2018.8456776.

    Google Scholar

    [110] Caravaca-Aguirre AM, Piestun R. Single multimode fiber endoscope. Opt Express 25, 1656–1665 (2017). doi: 10.1364/OE.25.001656

    CrossRef Google Scholar

    [111] Amitonova LV, de Boer JF. Endo-microscopy beyond the Abbe and Nyquist limits. Light Sci Appl 9, 81 (2020). doi: 10.1038/s41377-020-0308-x

    CrossRef Google Scholar

    [112] Zhu RZ, Feng HG, Xiong YF et al. All-fiber reflective single-pixel imaging with long working distance. Opt Laser Technol 158, 108909 (2023). doi: 10.1016/j.optlastec.2022.108909

    CrossRef Google Scholar

    [113] Wu YC, Rivenson Y, Wang HD et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat Methods 16, 1323–1331 (2019). doi: 10.1038/s41592-019-0622-5

    CrossRef Google Scholar

    [114] Wen Z, Dong ZY, Deng QL et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nat Photonics 17, 679–687 (2023). doi: 10.1038/s41566-023-01240-x

    CrossRef Google Scholar

    [115] Olshansky R. Mode coupling effects in graded-index optical fibers. Appl Opt 14, 935–945 (1975). doi: 10.1364/AO.14.000935

    CrossRef Google Scholar

    [116] Flaes DEB, Stopka J, Turtaev S et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys Rev Lett 120, 233901 (2018). doi: 10.1103/PhysRevLett.120.233901

    CrossRef Google Scholar

    [117] Loterie D, Psaltis D, Moser C. Bend translation in multimode fiber imaging. Opt Express 25, 6263–6273 (2017). doi: 10.1364/OE.25.006263

    CrossRef Google Scholar

    [118] Farahi S, Ziegler D, Papadopoulos IN et al. Dynamic bending compensation while focusing through a multimode fiber. Opt Express 21, 22504–22514 (2013). doi: 10.1364/OE.21.022504

    CrossRef Google Scholar

    [119] Gu RY, Mahalati RN, Kahn JM. Design of flexible multi-mode fiber endoscope. Opt Express 23, 26905–26918 (2015). doi: 10.1364/OE.23.026905

    CrossRef Google Scholar

    [120] Gordon GSD, Gataric M, Ramos AGCP et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access. Phys Rev X 9, 041050 (2019).

    Google Scholar

    [121] Chen HS, Fontaine NK, Ryf R et al. Remote spatio-temporal focusing over multimode fiber enabled by single-ended channel estimation. IEEE J Sel Top Quantum Electron 26, 7701809 (2020).

    Google Scholar

    [122] Wen Z, Wang LQ, Zhang XH et al. Fast volumetric fluorescence imaging with multimode fibers. Opt Lett 45, 4931–4934 (2020). doi: 10.1364/OL.398177

    CrossRef Google Scholar

    [123] Schmidt CC, Turcotte R, Booth MJ et al. Repeated imaging through a multimode optical fiber using adaptive optics. Biomed Opt Express 13, 662–675 (2022). doi: 10.1364/BOE.448277

    CrossRef Google Scholar

    [124] Rudolf B, Du Y, Turtaev S et al. Thermal stability of wavefront shaping using a DMD as a spatial light modulator. Opt Express 29, 41808–41818 (2021). doi: 10.1364/OE.442284

    CrossRef Google Scholar

    [125] Zhou Y, Hong MH. Realization of noncontact confocal optical microsphere imaging microscope. Microsc Res Tech 84, 2381–2387 (2021). doi: 10.1002/jemt.23793

    CrossRef Google Scholar

    [126] Yang XL, Hong MH. Enhancement of axial resolution and image contrast of a confocal microscope by a microsphere working in noncontact mode. Appl Opt 60, 5271–5277 (2021). doi: 10.1364/AO.425028

    CrossRef Google Scholar

    [127] Loterie D, Goorden SA, Psaltis D et al. Confocal microscopy through a multimode fiber using optical correlation. Opt Lett 40, 5754–5757 (2015). doi: 10.1364/OL.40.005754

    CrossRef Google Scholar

    [128] Singh S, Labouesse S, Piestun R. Multiview virtual confocal microscopy through a multimode fiber. In Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging 584–587 (IEEE, 2021);http://doi.org/10.1109/ISBI48211.2021.9433950.

    Google Scholar

    [129] Singh S, Labouesse S, Piestun R. Multiview scattering scanning imaging confocal microscopy through a multimode fiber. IEEE Trans Comput Imaging 9, 159–171 (2023). doi: 10.1109/TCI.2023.3246224

    CrossRef Google Scholar

    [130] Loterie D, Psaltis D, Moser C. Confocal microscopy via multimode fibers: fluorescence bandwidth. Proc SPIE 9717, 97171C (2016).

    Google Scholar

    [131] So PTC, Dong CY, Masters BR et al. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2, 399–429 (2000). doi: 10.1146/annurev.bioeng.2.1.399

    CrossRef Google Scholar

    [132] Cao H, Čižmár T, Turtaev S et al. Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond. Adv Opt Photonics 15, 524–612 (2023). doi: 10.1364/AOP.484298

    CrossRef Google Scholar

    [133] Xiong W, Ambichl P, Bromberg Y et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys Rev Lett 117, 053901 (2016). doi: 10.1103/PhysRevLett.117.053901

    CrossRef Google Scholar

    [134] Xiong W, Hsu CW, Cao H. Long-range spatio-temporal correlations in multimode fibers for pulse delivery. Nat Commun 10, 2973 (2019). doi: 10.1038/s41467-019-10916-4

    CrossRef Google Scholar

    [135] Morales-Delgado EE, Farahi S, Papadopoulos IN et al. Delivery of focused short pulses through a multimode fiber. Opt Express 23, 9109–9120 (2015). doi: 10.1364/OE.23.009109

    CrossRef Google Scholar

    [136] Morales-Delgado EE, Psaltis D, Moser C. Two-photon imaging through a multimode fiber. Opt Express 23, 32158–32170 (2015). doi: 10.1364/OE.23.032158

    CrossRef Google Scholar

    [137] Pikálek T, Trägårdh J, Simpson S et al. Wavelength dependent characterization of a multimode fibre endoscope. Opt Express 27, 28239–28253 (2019). doi: 10.1364/OE.27.028239

    CrossRef Google Scholar

    [138] Trägårdh J, Pikálek T, Simpson S et al. Towards focusing broad band light through a multimode fiber endoscope. Proc SPIE 10886, 108860J (2019).

    Google Scholar

    [139] Turcotte R, Schmidt CC, Booth MJ et al. Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber. Opt Lett 45, 6599–6602 (2020). doi: 10.1364/OL.409464

    CrossRef Google Scholar

    [140] Sivankutty S, Andresen ER, Cossart R et al. Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber. Opt Express 24, 825–841 (2016). doi: 10.1364/OE.24.000825

    CrossRef Google Scholar

    [141] Velsink MC, Amitonova LV, Pinkse PWH. Spatiotemporal focusing through a multimode fiber via time-domain wavefront shaping. Opt Express 29, 272–290 (2021). doi: 10.1364/OE.412714

    CrossRef Google Scholar

    [142] Gusachenko I, Chen MZ, Dholakia K. Raman imaging through a single multimode fibre. Opt Express 25, 13782–13798 (2017). doi: 10.1364/OE.25.013782

    CrossRef Google Scholar

    [143] Gusachenko I, Nylk J, Tello JA et al. Multimode fibre based imaging for optically cleared samples. Biomed Opt Express 8, 5179–5190 (2017). doi: 10.1364/BOE.8.005179

    CrossRef Google Scholar

    [144] Deng SN, Loterie D, Konstantinou G et al. Raman imaging through multimode sapphire fiber. Opt Express 27, 1090–1098 (2019). doi: 10.1364/OE.27.001090

    CrossRef Google Scholar

    [145] Zhang C, Aldana-Mendoza JA. Coherent Raman scattering microscopy for chemical imaging of biological systems. J Phys Photonics 3, 032002 (2021). doi: 10.1088/2515-7647/abfd09

    CrossRef Google Scholar

    [146] Trägårdh J, Pikálek T, Šerý M et al. Label-free CARS microscopy through a multimode fiber endoscope. Opt Express 27, 30055–30066 (2019). doi: 10.1364/OE.27.030055

    CrossRef Google Scholar

    [147] Pikálek T, Stibůrek M, Simpson S et al. Suppression of the non-linear background in a multimode fibre CARS endoscope. Biomed Opt Express 13, 862–874 (2022). doi: 10.1364/BOE.450375

    CrossRef Google Scholar

    [148] Cifuentes A, Pikálek T, Ondráčková P et al. Polarization-resolved second-harmonic generation imaging through a multimode fiber. Optica 8, 1065–1074 (2021). doi: 10.1364/OPTICA.430295

    CrossRef Google Scholar

    [149] Yang LY, Li YP, Fang F et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

    [150] Mezil S, Caravaca-Aguirre AM, Zhang EZ et al. Single-shot hybrid photoacoustic-fluorescent microendoscopy through a multimode fiber with wavefront shaping. Biomed Opt Express 11, 5717–5727 (2020). doi: 10.1364/BOE.400686

    CrossRef Google Scholar

    [151] Zhao TR, Ma MT, Ourselin S et al. Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy. Photoacoustics 25, 100323 (2022). doi: 10.1016/j.pacs.2021.100323

    CrossRef Google Scholar

    [152] Zhao TR, Pham TT, Baker C et al. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery. Biomed Opt Express 13, 4414–4428 (2022). doi: 10.1364/BOE.463057

    CrossRef Google Scholar

    [153] Zhao TR, Zhang MJ, Ourselin S et al. Wavefront shaping-assisted forward-viewing photoacoustic endomicroscopy based on a transparent ultrasound sensor. Appl Sci 12, 12619 (2022). doi: 10.3390/app122412619

    CrossRef Google Scholar

    [154] Zhao TR, Shi MJ, Ourselin S et al. Deep learning boosts the imaging speed of photoacoustic endomicroscopy. Proc SPIE 12379, 123790J (2023).

    Google Scholar

    [155] Ohayon S, Caravaca-Aguirre A, Piestun R et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed Opt Express 9, 1492–1509 (2018). doi: 10.1364/BOE.9.001492

    CrossRef Google Scholar

    [156] Kakkava E, Romito M, Conkey DB et al. Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber. Biomed Opt Express 10, 423–433 (2019). doi: 10.1364/BOE.10.000423

    CrossRef Google Scholar

    [157] Stibůrek M, Ondráčková P, Tučková T et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nat Commun 14, 1897 (2023). doi: 10.1038/s41467-023-36889-z

    CrossRef Google Scholar

    [158] Karbasi S, Frazier RJ, Koch KW et al. Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat Commun 5, 3362 (2014). doi: 10.1038/ncomms4362

    CrossRef Google Scholar

    [159] Rivenson Y, Göröcs Z, Günaydin H et al. Deep learning microscopy. Optica 4, 1437–1443 (2017). doi: 10.1364/OPTICA.4.001437

    CrossRef Google Scholar

    [160] Qiao C, Li D, Liu Y et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol 41, 367–377 (2023). doi: 10.1038/s41587-022-01471-3

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(5415) PDF downloads(642) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint