Citation: | Fu JC, Jiang MT, Wang Z et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron Sci 3, 230035 (2024). doi: 10.29026/oes.2024.230035 |
[1] | Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7, 22–44 (2013). doi: 10.1002/lpor.201100046 |
[2] | Smith HI. A review of submicron lithography. Superlattices Microstruct 2, 129–142 (1986). doi: 10.1016/0749-6036(86)90077-7 |
[3] | Ito T, Okazaki S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000). doi: 10.1038/35023233 |
[4] | Kneer B, Migura S, Kaiser W et al. EUV lithography optics for sub-9nm resolution. Proc SPIE 9422, 94221G (2015). doi: 10.1117/12.2175488 |
[5] | Zahlten C, Gräupner P, van Schoot J et al. High-NA EUV lithography: pushing the limits. Proc SPIE 11177, 111770B (2019). |
[6] | Yu NF, Genevet P, Kats MA et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[7] | Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186 |
[8] | Huang K, Qin F, Liu H et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv Mater 30, 1704556 (2018). doi: 10.1002/adma.201704556 |
[9] | Ha YL, Luo Y, Pu MB et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133 |
[10] | Arbabi A, Arbabi E, Horie Y et al. Planar metasurface retroreflector. Nat Photonics 11, 415–420 (2017). doi: 10.1038/nphoton.2017.96 |
[11] | Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev 11, 1600295 (2017). doi: 10.1002/lpor.201600295 |
[12] | Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732 |
[13] | Pan MY, Fu YF, Zheng MJ et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl 11, 195 (2022). doi: 10.1038/s41377-022-00885-7 |
[14] | Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026 |
[15] | Li JT, Wang GC, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062 |
[16] | Ndao A, Hsu L, Ha J et al. l. Octave bandwidth photonic fishnet-achromatic-metalens. Nat Commun 11, 3205 (2020). doi: 10.1038/s41467-020-17015-9 |
[17] | Fan YB, Yao J, Tsai DP. Advance of large-area achromatic flat lenses. Light Sci Appl 12, 51 (2023). doi: 10.1038/s41377-023-01093-7 |
[18] | Wang YJ, Chen QM, Yang WH et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 12, 5560 (2021). doi: 10.1038/s41467-021-25797-9 |
[19] | Paniagua-Domínguez R, Yu YF, Khaidarov E et al. A metalens with a near-unity numerical aperture. Nano Lett 18, 2124–2132 (2018). doi: 10.1021/acs.nanolett.8b00368 |
[20] | Huang K, Ye HP, Teng JH et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev 8, 152–157 (2014). doi: 10.1002/lpor.201300123 |
[21] | Chen G, Wen ZQ, Qiu CW. Superoscillation: from physics to optical applications. Light Sci Appl 8, 56 (2019). doi: 10.1038/s41377-019-0163-9 |
[22] | Zheludev NI, Yuan GH. Optical superoscillation technologies beyond the diffraction limit. Nat Rev Phys 4, 16–32 (2022). |
[23] | Qin F, Huang K, Wu JF et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv Mater 29, 1602721 (2017). doi: 10.1002/adma.201602721 |
[24] | Qin F, Liu BQ, Zhu LW et al. π-phase modulated monolayer supercritical lens. Nat Commun 12, 32 (2021). doi: 10.1038/s41467-020-20278-x |
[25] | Wang Z, Yuan GH, Yang M et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides. Nano Lett 20, 7964–7972 (2020). doi: 10.1021/acs.nanolett.0c02712 |
[26] | Dai XM, Dong FL, Zhang K et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing. ACS Photonics 8, 2294–2303 (2021). doi: 10.1021/acsphotonics.1c00411 |
[27] | Lu XJ, Guo YH, Pu MB et al. Broadband achromatic metasurfaces for sub-diffraction focusing in the visible. Opt Express 29, 5947–5958 (2021). doi: 10.1364/OE.417036 |
[28] | Tang DL, Wang CT, Zhao ZY et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182 |
[29] | Rogers ETF, Lindberg J, Roy T et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater 11, 432–435 (2012). doi: 10.1038/nmat3280 |
[30] | Gbur G. Using superoscillations for superresolved imaging and subwavelength focusing. Nanophotonics 8, 205–225 (2019). doi: 10.1515/nanoph-2018-0112 |
[31] | Li Z, Zhang T, Wang Y et al. Achromatic broadband super‐resolution imaging by super‐oscillatory metasurface. Laser Photonics Rev 12, 1800064 (2018). doi: 10.1002/lpor.201800064 |
[32] | Zhang RZ, Guo YH, Li XY et al. Angular superoscillatory metalens empowers single‐shot measurement of OAM Modes with finer intervals. Adv Opt Mater 12, 2300009 (2024). doi: 10.1002/adom.202300009 |
[33] | Yuan GH, Rogers ETF, Roy T et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci Rep 4, 6333 (2014). doi: 10.1038/srep06333 |
[34] | Ossiander M, Meretska ML, Hampel HK et al. Extreme ultraviolet metalens by vacuum guiding. Science 380, 59–63 (2023). doi: 10.1126/science.adg6881 |
[35] | Salmassi F, Naulleau PP, Gullikson EM et al. Extreme ultraviolet binary phase gratings: fabrication and application to diffractive optics. J Vac Sci Technol A 24, 1136–1140 (2006). doi: 10.1116/1.2212435 |
[36] | Zhao D, Lin ZL, Zhu WQ et al. Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics 10, 2283–2308 (2021). doi: 10.1515/nanoph-2021-0083 |
[37] | Huang K, Deng J, Leong HS et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti‐counterfeiting. Laser Photonics Rev 13, 1800289 (2019). doi: 10.1002/lpor.201800289 |
[38] | Zhang C, Divitt S, Fan QB et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci Appl 9, 55 (2020). doi: 10.1038/s41377-020-0287-y |
[39] | Hu ZL, Long LY, Wan RQ et al. Ultrawide bandgap AlN metasurfaces for ultraviolet focusing and routing. Opt Lett 45, 3466–3469 (2020). doi: 10.1364/OL.395909 |
[40] | Hentschel M, Koshelev K, Sterl F et al. Dielectric Mie voids: confining light in air. Light Sci Appl 12, 3 (2023). doi: 10.1038/s41377-022-01015-z |
[41] | Beliaev LY, Shkondin E, Lavrinenko AV et al. Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengths. J Vac Sci Technol A 39, 043408 (2021). doi: 10.1116/6.0000884 |
[42] | Boidin R, Halenkovič T, Nazabal V et al. Pulsed laser deposited alumina thin films. Ceram Int 42, 1177–1182 (2016). doi: 10.1016/j.ceramint.2015.09.048 |
[43] | Kim J, Wang Y, Zhang X. Calculation of vectorial diffraction in optical systems. J Opt Soc Am A 35, 526–535 (2018). doi: 10.1364/JOSAA.35.000526 |
[44] | Liu XW, Sun CZ, Xiong B et al. Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma. Vacuum 116, 158–162 (2015). doi: 10.1016/j.vacuum.2015.03.030 |
[45] | Pinto RMR, Gund V, Calaza C et al. Piezoelectric aluminum nitride thin-films: a review of wet and dry etching techniques. Microelectron Eng 257, 111753 (2022). doi: 10.1016/j.mee.2022.111753 |
[46] | He J, Zhao D, Liu H et al. An entropy-controlled objective chip for reflective confocal microscopy with subdiffraction-limit resolution. Nat Commun 14, 5838 (2023). doi: 10.1038/s41467-023-41605-y |
[47] | Wang S, Zhou Z, Li B et al. Progresses on new generation laser direct writing technique. Mater Today Nano 16, 100142 (2021). doi: 10.1016/j.mtnano.2021.100142 |
Supplementary information for Supercritical metalens at h-line for high-resolution direct laser writing |
![]() |
Metalens-based DLW lithography. Schematic diagrams of (a) the DLW lithography setup, (b) the metalens and its constructing unit cells. (c) The metalens in top view and cross-section view. (d) The amplitude and phase profile in transmission mode of the AlN unit cell with varying pillar diameters. PH, pinhole; AT, attenuator; M1, M2, M3, mirrors; LP, linear polarizer; CL, conventional lens; ML, metalens; PR, photoresist.
Design and fabrication of SCLs and FZL. Optical images of (a) SCL05 (the ratio of the intensities of the first side lobe and the central peak is 5%), (b) SCL10 (the ratio of the intensities of the first side lobe and the central peak is 10%). (c) Scanning electron microscopy (SEM) images of the FZL after all experiments and coated with a thin layer of gold. (d) Schematic diagram of an enlarged region in (a). (e) The efficiency of SCL05 with other possible selections of units “0” and “1”. In this more general case, the unit “0” is assumed to have a transmission coefficient of t0 = 1, and the unit “1” can have any physically reasonable transmission coefficient with transmission amplitude ≤1 and phase between 0 and 2π. The horizontal and vertical axes are the real and imaginary parts of the transmission coefficient of the permitted unit “1”, respectively. (f) The changes of FWHM and efficiency of SCL05 when the unit “1” evolves from point P (t = 1) to point Q (t = −1) through the binary phase (BP) path in (e). The black dashed line indicates the unit “1” adopted in the final designs.
Focusing characteristics of the FZL and SCLs. (a–c) Intensities at x-z plane calculated by the vectorial diffraction formula. (d–f) Intensities measured. (g–i) Normalized intensities along x crossing the maximums (dashed black lines for analytic and solid blue lines for measured results) of which positions indicated by the blue dashed lines in (a-f). The calculated values of FWHMs are explicitly labelled. (a, d, g) correspond to FZL, (b, e, h) correspond to SCL05 and (c, f, i) correspond to SCL10.
Grating patterns generated by the FZL- and SCL-based DLW. (a–c) SEM images of the grating patterns, from left to right, with pitches of 680, 650, 620, 590 and 560 nm and a length of 4 μm written by the FZL (a), SCL05 (b) and SCL10 (c). (d–f) Measured height information by AFM (atomic force microscopy) along the positions indicated by the red dashed lines in (a–c).