Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033
Citation: Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033

Article Open Access

Edge enhanced depth perception with binocular meta-lens

More Information
  • The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry. Developing portable and accurate imaging and depth sensing systems is crucial for advancing next-generation virtual reality devices. This work demonstrates an intelligent, lightweight, and compact edge-enhanced depth perception system that utilizes a binocular meta-lens for spatial computing. The miniaturized system comprises a binocular meta-lens, a 532 nm filter, and a CMOS sensor. For disparity computation, we propose a stereo-matching neural network with a novel H-Module. The H-Module incorporates an attention mechanism into the Siamese network. The symmetric architecture, with cross-pixel interaction and cross-view interaction, enables a more comprehensive analysis of contextual information in stereo images. Based on spatial intensity discontinuity, the edge enhancement eliminates ill-posed regions in the image where ambiguous depth predictions may occur due to a lack of texture. With the assistance of deep learning, our edge-enhanced system provides prompt responses in less than 0.15 seconds. This edge-enhanced depth perception meta-lens imaging system will significantly contribute to accurate 3D scene modeling, machine vision, autonomous driving, and robotics development.
  • 加载中
  • [1] Greenwold S. Spatial computing (Massachusetts Institute of Technology, Cambridge, 2003).

    Google Scholar

    [2] Pangilinan E, Lukas S, Mohan V. Creating Augmented and Virtual Realities: Theory and Practice for Next-Generation Spatial Computing (O'Reilly Media, Inc. , Sebastopol, 2019).

    Google Scholar

    [3] Liu XY, Chen MK, Chu CH et al. Underwater binocular meta-lens. ACS Photonics 10, 2382–2389 (2023). doi: 10.1021/acsphotonics.2c01667

    CrossRef Google Scholar

    [4] Chen MK, Chu CH, Liu XY et al. Meta-lens in the sky. IEEE Access 10, 46552–46557 (2022). doi: 10.1109/ACCESS.2022.3171351

    CrossRef Google Scholar

    [5] Jeon D, Shin K, Moon SW et al. Recent advancements of metalenses for functional imaging. Nano Convergence 10, 24 (2023). doi: 10.1186/s40580-023-00372-8

    CrossRef Google Scholar

    [6] Li T, Chen C, Xiao XJ et al. Revolutionary meta-imaging: from superlens to metalens. Photon Insights 2, R01 (2023). doi: 10.3788/PI.2023.R01

    CrossRef Google Scholar

    [7] Moon SW, Lee C, Yang Y et al. Tutorial on metalenses for advanced flat optics: design, fabrication, and critical considerations. J Appl Phys 131, 091101 (2022). doi: 10.1063/5.0078804

    CrossRef Google Scholar

    [8] Pu MB, Li X, Ma XL et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [9] Hu YQ, Li L, Wang YJ et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett 20, 994–1002 (2020). doi: 10.1021/acs.nanolett.9b04107

    CrossRef Google Scholar

    [10] Wu PC, Sokhoyan R, Shirmanesh GK et al. Near‐infrared active metasurface for dynamic polarization conversion. Adv Opt Mater 9, 2100230 (2021). doi: 10.1002/adom.202100230

    CrossRef Google Scholar

    [11] Song QH, Baroni A, Wu PC et al. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nat. Commun 12, 3631 (2021). doi: 10.1038/s41467-021-23908-0

    CrossRef Google Scholar

    [12] Song MW, Feng L, Huo PC et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat Nanotechnol 18, 71–78 (2023). doi: 10.1038/s41565-022-01256-4

    CrossRef Google Scholar

    [13] Li X, Chen QM, Zhang X et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060

    CrossRef Google Scholar

    [14] Guo YH, Pu MB, Zhang F et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photon Insights 1, R03 (2022). doi: 10.3788/PI.2022.R03

    CrossRef Google Scholar

    [15] Wang SM, Wu PC, Su VC et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [16] Zhang F, Pu MB, Li X et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [17] Fan QB, Xu WZ, Hu XM et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat Commun 13, 2130 (2022). doi: 10.1038/s41467-022-29568-y

    CrossRef Google Scholar

    [18] Chen MK, Liu XY, Sun YN et al. Artificial Intelligence in Meta-optics. Chem Rev 122, 15356–15413 (2022). doi: 10.1021/acs.chemrev.2c00012

    CrossRef Google Scholar

    [19] Krasikov S, Tranter A, Bogdanov A et al. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [20] Chen MK, Liu XY, Wu YF et al. A meta-device for intelligent depth perception. Adv Mater 35, 2107465 (2023). doi: 10.1002/adma.202107465

    CrossRef Google Scholar

    [21] Li ZS, Sun JS, Fan Y et al. Deep learning assisted variational Hilbert quantitative phase imaging. Opto-Electron Sci 2, 220023 (2023). doi: 10.29026/oes.2023.220023

    CrossRef Google Scholar

    [22] Liu C, Ma Q, Luo ZJ et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat Electron 5, 113–122 (2022). doi: 10.1038/s41928-022-00719-9

    CrossRef Google Scholar

    [23] Gao XX, Ma Q, Gu Z et al. Programmable surface plasmonic neural networks for microwave detection and processing. Nat Electron 6, 319–328 (2023). doi: 10.1038/s41928-023-00951-x

    CrossRef Google Scholar

    [24] Li LL, Ruan HX, Liu C et al. Machine-learning reprogrammable metasurface imager. Nat Commun 10, 1082 (2019). doi: 10.1038/s41467-019-09103-2

    CrossRef Google Scholar

    [25] Li LL, Zhao HT, Liu C et al. Intelligent metasurfaces: control, communication and computing. eLight 2, 7 (2022). doi: 10.1186/s43593-022-00013-3

    CrossRef Google Scholar

    [26] Blake R, Wilson H. Binocular vision. Vision Res 51, 754–770 (2011). doi: 10.1016/j.visres.2010.10.009

    CrossRef Google Scholar

    [27] Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 807–814 (IEEE, 2005); http://doi.org/10.1109/CVPR.2005.56.

    Google Scholar

    [28] Zhou HQ, Wang YT, Li X et al. A deep learning approach for trustworthy high-fidelity computational holographic orbital angular momentum communication. Appl Phys Lett 119, 044104 (2021). doi: 10.1063/5.0051132

    CrossRef Google Scholar

    [29] He C, Zhao D, Fan F et al. Pluggable multitask diffractive neural networks based on cascaded metasurfaces. Opto-Electron Adv 7, 230005 (2024).

    Google Scholar

    [30] Liao MH, Zheng SS, Pan SX et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron Adv 4, 200016 (2021). doi: 10.29026/oea.2021.200016

    CrossRef Google Scholar

    [31] Hao JY, Lin X, Lin YK et al. Lensless complex amplitude demodulation based on deep learning in holographic data storage. Opto-Electron Adv 6, 220157 (2023). doi: 10.29026/oea.2023.220157

    CrossRef Google Scholar

    [32] Ma TG, Tobah M, Wang HZ et al. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [33] Lin CH, Huang SH, Lin TH et al. Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory. Nat Commun 14, 6979 (2023). doi: 10.1038/s41467-023-42381-5

    CrossRef Google Scholar

    [34] Chang JR, Chen YS. Pyramid stereo matching network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 5410–5418 (IEEE, 2018);http://doi.org/10.1109/CVPR.2018.00567.

    Google Scholar

    [35] Zhou Y, Zheng HY, Kravchenko II et al. Flat optics for image differentiation. Nat Photonics 14, 316–323 (2020). doi: 10.1038/s41566-020-0591-3

    CrossRef Google Scholar

    [36] Guo C, Xiao M, Minkov M et al. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018). doi: 10.1364/OPTICA.5.000251

    CrossRef Google Scholar

    [37] Kim Y, Lee GY, Sung J et al. Spiral metalens for phase contrast imaging. Adv Funct Mater 32, 2106050 (2022). doi: 10.1002/adfm.202106050

    CrossRef Google Scholar

    [38] Chen MK, Yan Y, Liu XY et al. Edge detection with meta-lens: from one dimension to three dimensions. Nanophotonics 10, 3709–3715 (2021). doi: 10.1515/nanoph-2021-0239

    CrossRef Google Scholar

    [39] Badloe T, Kim Y, Kim J et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano 17, 14678–14685 (2023). doi: 10.1021/acsnano.3c02471

    CrossRef Google Scholar

    [40] Huo PC, Zhang C, Zhu WQ et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett 20, 2791–2798 (2020). doi: 10.1021/acs.nanolett.0c00471

    CrossRef Google Scholar

    [41] Zhou JX, Qian HL, Chen CF et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc Natl Acad Sci USA 116, 11137–11140 (2019). doi: 10.1073/pnas.1820636116

    CrossRef Google Scholar

    [42] Zhou JX, Liu SK, Qian HL et al. Metasurface enabled quantum edge detection. Sci Adv 6, eabc4385 (2020). doi: 10.1126/sciadv.abc4385

    CrossRef Google Scholar

    [43] Hamid MS, Manap NA, Hamzah RA et al. Stereo matching algorithm based on deep learning: A survey. J King Saud Univ - Comput Inf Sci 34, 1663–1673 (2022).

    Google Scholar

    [44] Xu HF, Zhang J, Cai JF et al. Unifying flow, stereo and depth estimation. IEEE Trans Pattern Anal Mach Intell 45, 13941–13958 (2023). doi: 10.1109/TPAMI.2023.3298645

    CrossRef Google Scholar

    [45] Taigman Y, Yang M, Ranzato MA et al. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition 1701–1708 (IEEE, 2014);http://doi.org/10.1109/CVPR.2014.220.

    Google Scholar

    [46] He KM, Zhang XY, Ren SQ et al. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016);http://doi.org/10.1109/CVPR.2016.90.

    Google Scholar

    [47] Li WY, Liu XY, Yuan YX. SIGMA: Semantic-complete graph matching for domain adaptive object detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition 5281–5290 (IEEE, 2022);http://doi.org/10.1109/CVPR52688.2022.00522.

    Google Scholar

    [48] Li WY, Liu XY, Yuan YX. SIGMA++: Improved semantic-complete graph matching for domain adaptive object detection. IEEE Trans Pattern Anal Mach Intell 45, 9022–9040 (2023).

    Google Scholar

    [49] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems 6000–6010 (Curran Associates Inc. , 2017).

    Google Scholar

    [50] Kendall A, Martirosyan H, Dasgupta S et al. End-to-end learning of geometry and context for deep stereo regression. In Proceedings of the 2017 IEEE International Conference on Computer Vision 66–75 (IEEE, 2017);http://doi.org/10.1109/ICCV.2017.17.

    Google Scholar

    [51] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition 3354–3361 (IEEE, 2012);http://doi.org/10.1109/CVPR.2012.6248074.

    Google Scholar

    [52] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8, 679–698 (1986).

    Google Scholar

    [53] Zhao MX, Chen MK, Zhuang ZP et al. Phase characterisation of metalenses. Light Sci Appl 10, 52 (2021). doi: 10.1038/s41377-021-00492-y

    CrossRef Google Scholar

  • Supplementary information for Edge enhanced depth perception with binocular meta-lens
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(2658) PDF downloads(1194) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint