Liu YC, Ma XM, Chao K et al. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium. Opto-Electron Sci 3, 230027 (2024). doi: 10.29026/oes.2024.230027
Citation: Liu YC, Ma XM, Chao K et al. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium. Opto-Electron Sci 3, 230027 (2024). doi: 10.29026/oes.2024.230027

Article Open Access

Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium

More Information
  • Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems, aerospace equipment, biochemical productions, etc. For on-chip systems with high integration level, the precise and efficient control of the propagation of electromagnetic waves and heat fluxes simultaneously is particularly important. In this study, we propose a graphical designing method (i.e., thermal-electromagnetic surface transformation) based on thermal-electromagnetic null medium to simultaneously control the propagation of electromagnetic waves and thermal fields according to the pre-designed paths. A thermal-electromagnetic cloak, which can create a cloaking effect on both electromagnetic waves and thermal fields simultaneously, is designed by thermal-electromagnetic surface transformation and verified by both numerical simulations and experimental measurements. The thermal-electromagnetic surface transformation proposed in this study provides a new methodology for simultaneous controlling on electromagnetic and temperature fields, and may have significant applications in improving thermal-electromagnetic compatibility problem, protecting of thermal-electromagnetic sensitive components, and improving efficiency of energy usage for complex on-chip systems.
  • 加载中
  • [1] Loke D, Skelton JM, Chong TC, Elliott SR. Design of a nanoscale, CMOS-integrable, thermal-guiding structure for boolean-logic and neuromorphic computation. ACS Appl Mater Interfaces 8, 34530–34536 (2016). doi: 10.1021/acsami.6b10667

    CrossRef Google Scholar

    [2] Tan H, Zong K, Du PA. Temperature uniformity in convective leaf vein-shaped fluid microchannels for phased array antenna cooling. Int J Therm Sci 150, 106224 (2020). doi: 10.1016/j.ijthermalsci.2019.106224

    CrossRef Google Scholar

    [3] Wang JR, Min JC, Song YZ. Forced convective cooling of a high-power solid-state laser slab. Appl Therm Eng 26, 549–558 (2006). doi: 10.1016/j.applthermaleng.2005.07.010

    CrossRef Google Scholar

    [4] Zhang YL, Cleary M, Wang XW, Kempf N, Schoensee L et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers Manage 105, 946–950 (2015). doi: 10.1016/j.enconman.2015.08.051

    CrossRef Google Scholar

    [5] Jaziri N, Müller J, Müller B, Boughamoura A, Gutzeit N et al. Low-temperature co-fired ceramic-based thermoelectric generator with cylindrical grooves for harvesting waste heat from power circuits. Appl Therm Eng 184, 116367 (2021). doi: 10.1016/j.applthermaleng.2020.116367

    CrossRef Google Scholar

    [6] Park T, Na J, Kim B, Kim Y, Shin H et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano 9, 11830–11839 (2015). doi: 10.1021/acsnano.5b04042

    CrossRef Google Scholar

    [7] Rogers JWM, Plett C. Radio Frequency Integrated Circuit Design (Artech House, Norwood, 2010).

    Google Scholar

    [8] Han SJ, Garcia AV, Oida S, Jenkins KA, Haensch W. Graphene radio frequency receiver integrated circuit. Nat Commun 5, 3086 (2014). doi: 10.1038/ncomms4086

    CrossRef Google Scholar

    [9] Rebeiz GM. Millimeter-wave and terahertz integrated circuit antennas. Proc IEEE 80, 1748–1770 (1992). doi: 10.1109/5.175253

    CrossRef Google Scholar

    [10] Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat Photonics 4, 518–526 (2010). doi: 10.1038/nphoton.2010.179

    CrossRef Google Scholar

    [11] Shacham A, Bergman K, Carloni LP. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57, 1246–1260 (2008). doi: 10.1109/TC.2008.78

    CrossRef Google Scholar

    [12] Piggott AY, Lu J, Lagoudakis KG, Petykiewicz J, Babinec TM et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics 9, 374–377 (2015). doi: 10.1038/nphoton.2015.69

    CrossRef Google Scholar

    [13] Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [14] Sun F, Zheng B, Chen HS, Jiang W, Guo SW et al. Transformation optics: from classic theory and applications to its new branches. Laser Photonics Rev 11, 1700034 (2017). doi: 10.1002/lpor.201700034

    CrossRef Google Scholar

    [15] Guenneau S, Amra C, Veynante D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt Express 20, 8207–8218 (2012). doi: 10.1364/OE.20.008207

    CrossRef Google Scholar

    [16] Cai WS, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photonics 1, 224–227 (2007). doi: 10.1038/nphoton.2007.28

    CrossRef Google Scholar

    [17] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006). doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [18] Lai Y, Ng J, Chen HY, Han DZ, Xiao JJ et al. Illusion optics: the optical transformation of an object into another object. Phys Rev Lett 102, 253902 (2009). doi: 10.1103/PhysRevLett.102.253902

    CrossRef Google Scholar

    [19] Wu Q, Turpin JP, Werner DH. Integrated photonic systems based on transformation optics enabled gradient index devices. Light:Sci Appl 1, e38 (2012). doi: 10.1038/lsa.2012.38

    CrossRef Google Scholar

    [20] Li SY, Zhou YY, Dong JJ, Zhang XL, Cassan E et al. Universal multimode waveguide crossing based on transformation optics. Optica 5, 1549–1556 (2018). doi: 10.1364/OPTICA.5.001549

    CrossRef Google Scholar

    [21] Gabrielli LH, Liu D, Johnson SG, Lipson M. On-chip transformation optics for multimode waveguide bends. Nat Commun 3, 1217 (2012). doi: 10.1038/ncomms2232

    CrossRef Google Scholar

    [22] Li SY, Cai LF, Gao DS, Dong JJ, Hou J et al. Compact and broadband multimode waveguide bend by shape-optimizing with transformation optics. Photonics Res 8, 1843–1849 (2020). doi: 10.1364/PRJ.403818

    CrossRef Google Scholar

    [23] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [24] Huang C, Yang JN, Wu XY, Song JK, Pu MB et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics 5, 1718–1725 (2018). doi: 10.1021/acsphotonics.7b01114

    CrossRef Google Scholar

    [25] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [26] Qian C, Zheng B, Shen YC, Jing L, Li EP et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2

    CrossRef Google Scholar

    [27] Cui TJ, Smith DR, Liu RP. Metamaterials: Theory, Design, and Applications. (Springer, New York, 2010).

    Google Scholar

    [28] Li JY, Gao Y, Huang JP. A bifunctional cloak using transformation media. J Appl Phys 108, 074504 (2010). doi: 10.1063/1.3490226

    CrossRef Google Scholar

    [29] Ma YG, Liu YC, Raza M, Wang YD, He SL. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys Rev Lett 113, 205501 (2014). doi: 10.1103/PhysRevLett.113.205501

    CrossRef Google Scholar

    [30] Lan CW, Li B, Zhou J. Simultaneously concentrated electric and thermal fields using fan-shaped structure. Opt Express 23, 24475–24483 (2015). doi: 10.1364/OE.23.024475

    CrossRef Google Scholar

    [31] Yang TZ, Bai X, Gao DL, Wu LZ, Li BW et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv Mater 27, 7752–7758 (2015). doi: 10.1002/adma.201502513

    CrossRef Google Scholar

    [32] Zhang XW, He X, Wu LZ. A bilayer thermal-electric camouflage device suitable for a wide range of natural materials. Compos Struct 261, 113319 (2021). doi: 10.1016/j.compstruct.2020.113319

    CrossRef Google Scholar

    [33] Moccia M, Castaldi G, Savo S, Sato Y, Galdi V. Independent manipulation of heat and electrical current via bifunctional metamaterials. Phys Rev X 4, 021025 (2014).

    Google Scholar

    [34] Lan CW, Bi K, Fu XJ, Li B, Zhou J. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields. Opt Express 24, 23072–23080 (2016). doi: 10.1364/OE.24.023072

    CrossRef Google Scholar

    [35] Yang YH, Wang HP, Yu FX, Xu ZW, Chen HS. A metasurface carpet cloak for electromagnetic, acoustic and water waves. Sci Rep 6, 20219 (2016). doi: 10.1038/srep20219

    CrossRef Google Scholar

    [36] Zhou Y, Chen J, Liu L, Fan Z, Ma YG. Magnetic–acoustic biphysical invisible coats for underwater objects. NPG Asia Mater 12, 27 (2020). doi: 10.1038/s41427-020-0209-8

    CrossRef Google Scholar

    [37] Zhou Y, Chen J, Chen R, Chen WJ, Fan Z et al. Ultrathin electromagnetic–acoustic amphibious stealth coats. Adv Opt Mater 8, 2000200 (2020). doi: 10.1002/adom.202000200

    CrossRef Google Scholar

    [38] Song GY, Zhang C, Cheng Q, Jing Y, Qiu CW et al. Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Opt Express 26, 22916–22925 (2018). doi: 10.1364/OE.26.022916

    CrossRef Google Scholar

    [39] Sun F, Liu YC, He SL. Surface transformation multi-physics for controlling electromagnetic and acoustic waves simultaneously. Opt Express 28, 94–106 (2020). doi: 10.1364/OE.379817

    CrossRef Google Scholar

    [40] He Q, Xiao SY, Li X, Zhou L. Optic-null medium: realization and applications. Opt Express 21, 28948–28959 (2013). doi: 10.1364/OE.21.028948

    CrossRef Google Scholar

    [41] Yan W, Yan M, Qiu M. Generalized nihility media from transformation optics. J Opt 13, 024005 (2010).

    Google Scholar

    [42] Sadeghi MM, Li SC, Xu L, Hou B, Chen HY. Transformation optics with Fabry-Pérot resonances. Sci Rep 5, 8680 (2015). doi: 10.1038/srep08680

    CrossRef Google Scholar

    [43] Zhang YM, Luo Y, Pendry JB, Zhang BL. Transformation-invariant metamaterials. Phys Rev Lett 123, 067701 (2019). doi: 10.1103/PhysRevLett.123.067701

    CrossRef Google Scholar

    [44] Zheng B, Yang YH, Shao ZP, Yan QH, Shen NH et al. Experimental realization of an extreme-parameter omnidirectional cloak. Research 2019, 8282641 (2019).

    Google Scholar

    [45] Fakheri MH, Abdolali A, Sedeh HB. Arbitrary shaped acoustic concentrators enabled by null media. Phys Rev Appl 13, 034004 (2020). doi: 10.1103/PhysRevApplied.13.034004

    CrossRef Google Scholar

    [46] Li BR, Sun F, He SL. Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials. Appl Phys Express 10, 114001 (2017). doi: 10.7567/APEX.10.114001

    CrossRef Google Scholar

    [47] Li J, Fok L, Yin XB, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater 8, 931–934 (2009). doi: 10.1038/nmat2561

    CrossRef Google Scholar

    [48] Navau C, Prat-Camps J, Romero-Isart O, Cirac JI, Sanchez A. Long-distance transfer and routing of static magnetic fields. Phys Rev Lett 112, 253901 (2014). doi: 10.1103/PhysRevLett.112.253901

    CrossRef Google Scholar

    [49] Yang FB, Tian BY, Xu LJ, Huang JP. Experimental demonstration of thermal chameleonlike rotators with transformation-invariant metamaterials. Phys Rev Appl 14, 054024 (2020). doi: 10.1103/PhysRevApplied.14.054024

    CrossRef Google Scholar

    [50] Sedeh HB, Fakheri MH, Abdolali A, Sun F, Ma Y. Feasible thermodynamics devices enabled by thermal-null medium. Phys Rev Appl 14, 064034 (2020). doi: 10.1103/PhysRevApplied.14.064034

    CrossRef Google Scholar

    [51] Powell RW, Touloukian YS. Thermal conductivities of the elements. Science 181, 999–1008 (1973). doi: 10.1126/science.181.4104.999

    CrossRef Google Scholar

    [52] Bandyopadhyay PC, Chaki TK, Srivastava S, Sanyal GS. Dielectric behavior of polystyrene foam at microwave frequency. Polym Eng Sci 20, 441–446 (1980). doi: 10.1002/pen.760200610

    CrossRef Google Scholar

    [53] Ramli Sulong NH, Mustapa SAS, Abdul Rashid MK. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J Appl Polym Sci 136, 4752 (2019). doi: 10.1002/app.47529

    CrossRef Google Scholar

    [54] Garcia-Vidal FJ, Martín-Moreno L, Pendry JB. Surfaces with holes in them: new plasmonic metamaterials. J Opt A:Pure Appl Opt 7, S97–S101 (2005). doi: 10.1088/1464-4258/7/2/013

    CrossRef Google Scholar

    [55] Shin J, Shen JT, Catrysse PB, Fan SH. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Sel Top Quant 12, 1116–1122 (2006). doi: 10.1109/JSTQE.2006.879577

    CrossRef Google Scholar

    [56] Ji WJ, Luo J, Chu HC, Zhou XX, Meng XD et al. Crosstalk prohibition at the deep-subwavelength scale by epsilon-near-zero claddings. Nanophotonics 12, 2007–2017 (2023). doi: 10.1515/nanoph-2023-0085

    CrossRef Google Scholar

    [57] Belov PA, Hao Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B 73, 113110 (2006). doi: 10.1103/PhysRevB.73.113110

    CrossRef Google Scholar

    [58] Belov PA, Hao Y, Sudhakaran S. Subwavelength microwave imaging using an array of parallel conducting wires as a lens. Phys Rev B 73, 033108 (2006). doi: 10.1103/PhysRevB.73.033108

    CrossRef Google Scholar

    [59] Luo J, Lu WX, Hang ZH, Chen HY, Hou B et al. Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys Rev Lett 112, 073903 (2014). doi: 10.1103/PhysRevLett.112.073903

    CrossRef Google Scholar

  • Supplementary information for Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
    Movie S1: The whole graphic design process
    Movie S2: The function of thermal-electromagnetic cloaking in the on-chip system
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1113) PDF downloads(145) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint