Lyu JB, Zhu T, Zhou Y et al. Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer. Opto-Electron Sci 2, 230038 (2023). doi: 10.29026/oes.2023.230038
Citation: Lyu JB, Zhu T, Zhou Y et al. Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer. Opto-Electron Sci 2, 230038 (2023). doi: 10.29026/oes.2023.230038

Article Open Access

Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer

More Information
  • Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices. Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate (LN). To the best of our knowledge, this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices. Specifically, the orientation dependent properties of anisotropic materials are included in the adjoint method, which provides a more precise prediction of light propagation within such materials. The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate (TFLN) platform. By benchmarking the device performances of our method with those of classical scalar-based inverse design, we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform. This proposed method fills the gap of inverse design of anisotropic materials based photonic devices, which finds prominent applications in TFLN platforms and other anisotropic-material based photonic integration platforms.
  • 加载中
  • [1] Koenderink AF, Alù A, Polman A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015). doi: 10.1126/science.1261243

    CrossRef Google Scholar

    [2] Liu ZC, Zhu DY, Raju L, Cai WS. Tackling photonic inverse design with machine learning. Adv Sci 8, 2002923 (2021). doi: 10.1002/advs.202002923

    CrossRef Google Scholar

    [3] Molesky S, Lin ZN, Piggott AY, Jin WL, Vucković J et al. Inverse design in nanophotonics. Nat Photonics 12, 659–670 (2018). doi: 10.1038/s41566-018-0246-9

    CrossRef Google Scholar

    [4] Callewaert F, Velev V, Kumar P, Sahakian AV, Aydin K. Inverse-designed broadband all-dielectric electromagnetic metadevices. Sci Rep 8, 1358 (2018). doi: 10.1038/s41598-018-19796-y

    CrossRef Google Scholar

    [5] Su LG, Trivedi R, Sapra NV, Piggott AY, Vercruysse D et al. Fully-automated optimization of grating couplers. Opt Express 26, 4023–4034 (2018). doi: 10.1364/OE.26.004023

    CrossRef Google Scholar

    [6] Lin CH, Chen YS, Lin JT, Wu HC, Kuo HT et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type tree optimization. Nano Lett 21, 4981–4989 (2021). doi: 10.1021/acs.nanolett.1c00720

    CrossRef Google Scholar

    [7] Feichtner T, Selig O, Kiunke M, Hecht B. Evolutionary optimization of optical antennas. Phys Rev Lett 109, 127701 (2012). doi: 10.1103/PhysRevLett.109.127701

    CrossRef Google Scholar

    [8] Qi HX, Du ZC, Hu XY, Yang JY, Chu SS et al. High performance integrated photonic circuit based on inverse design method. Opto-Electron Adv 5, 210061 (2022). doi: 10.29026/oea.2022.210061

    CrossRef Google Scholar

    [9] Hughes TW, Minkov M, Williamson IAD, Fan SH. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics 5, 4781–4787 (2018). doi: 10.1021/acsphotonics.8b01522

    CrossRef Google Scholar

    [10] Liu JC, Zhang D, Yu DQ, Ren MX, Xu JJ. Machine learning powered ellipsometry. Light Sci Appl 10, 55 (2021). doi: 10.1038/s41377-021-00482-0

    CrossRef Google Scholar

    [11] Paganini A, Sargheini S, Hiptmair R, Hafner C. Shape optimization of microlenses. Opt Express 23, 13099–13107 (2015). doi: 10.1364/OE.23.013099

    CrossRef Google Scholar

    [12] Zhu RC, Qiu TS, Wang JF, Sui S, Hao CL et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat Commun 12, 2974 (2021). doi: 10.1038/s41467-021-23087-y

    CrossRef Google Scholar

    [13] Jiang JQ, Fan JA. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett 19, 5366–5372 (2019). doi: 10.1021/acs.nanolett.9b01857

    CrossRef Google Scholar

    [14] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [15] Ma TG, Tobah M, Wang HZ, Guo LJ. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [16] Zhou M, Liu DJ, Belling SW, Cheng HT, Kats MA et al. Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization. ACS Photonics 8, 2265–2273 (2021). doi: 10.1021/acsphotonics.1c00100

    CrossRef Google Scholar

    [17] Sell D, Yang JJ, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082

    CrossRef Google Scholar

    [18] Piggott AY, Lu J, Lagoudakis KG, Petykiewicz J, Babinec TM et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics 9, 374–377 (2015). doi: 10.1038/nphoton.2015.69

    CrossRef Google Scholar

    [19] Fan LJ, Mei J. Acoustic metagrating circulators: nonreciprocal, robust, and tunable manipulation with unitary efficiency. Phys Rev Appl 15, 064002 (2021). doi: 10.1103/PhysRevApplied.15.064002

    CrossRef Google Scholar

    [20] Sell D, Yang JJ, Wang EW, Phan T, Doshay S et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces. ACS Photonics 5, 2402–2407 (2018). doi: 10.1021/acsphotonics.8b00183

    CrossRef Google Scholar

    [21] Dai DX. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc IEEE 106, 2117–2143 (2018). doi: 10.1109/JPROC.2018.2822787

    CrossRef Google Scholar

    [22] Bayati E, Pestourie R, Colburn S, Lin ZN, Johnson SG et al. Inverse designed metalenses with extended depth of focus. ACS Photonics 7, 873–878 (2020). doi: 10.1021/acsphotonics.9b01703

    CrossRef Google Scholar

    [23] Ramirez JM, Elfaiki H, Verolet T, Besancon C, Gallet A et al. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J Sel Top Quantum Electron 26, 6100213 (2020).

    Google Scholar

    [24] Zhu D, Shao LB, Yu MJ, Cheng R, Desiatov B et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photonics 13, 242–352 (2021). doi: 10.1364/AOP.411024

    CrossRef Google Scholar

    [25] Shang CF, Yang JW, Hammond AM, Chen ZX, Chen M et al. Inverse-designed lithium niobate nanophotonics. ACS Photonics 10, 1019–1026 (2023). doi: 10.3390/photonics10091019

    CrossRef Google Scholar

    [26] Xie YJ, Nie MM, Huang SW. Inverse-designed broadband low-loss grating coupler on thick lithium-niobate-on-insulator platform. arXiv: 2309.12976 (2023). https://doi.org/10.48550/arXiv.2309.12976

    Google Scholar

    [27] Xu Q, Liu JM, Zhang DL, Hua PR. Ultra-compact lithium niobate power splitters designed by an intelligent algorithm. Opt Laser Technol 160, 109057 (2023). doi: 10.1016/j.optlastec.2022.109057

    CrossRef Google Scholar

    [28] Chen GY, Ng JD, Lin HL, Zhang G, Gong X et al. Design and fabrication of high-performance multimode interferometer in lithium niobate thin film. Opt Express 29, 15689–15698 (2021). doi: 10.1364/OE.419255

    CrossRef Google Scholar

    [29] Zhang L, Zhang L, Fu X, Yang L. Compact, broadband and low-loss polarization beam splitter on lithium-niobate-on-insulator using a silicon nanowire assisted waveguide. IEEE Photonics J 12, 6601906 (2020).

    Google Scholar

    [30] Kar A, Bahadori M, Gong SB, Goddard LL. Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate. Opt Express 27, 15856–15867 (2019). doi: 10.1364/OE.27.015856

    CrossRef Google Scholar

    [31] Tu HL, Zhang YD, Guo WH. Arrayed waveguide grating based on z-cut lithium niobate platform. In 2023 Opto-Electronics and Communications Conference (OECC) 1–3 (IEEE, 2023);http://doi.org/10.1109/OECC56963.2023.10209708.

    Google Scholar

    [32] Gong Z, Liu XW, Xu YT, Xu MR, Surya JB et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Opt Lett 44, 3182–3185 (2019). doi: 10.1364/OL.44.003182

    CrossRef Google Scholar

    [33] Chen GY, Lin HL, Ng JD, Danner AJ. Integrated thermally tuned Mach-Zehnder interferometer in z-cut lithium niobate thin film. IEEE Photonics Technol Lett 33, 664–667 (2021). doi: 10.1109/LPT.2021.3086850

    CrossRef Google Scholar

    [34] Chen GY, Lin HL, Ng JD, Danner AJ. Integrated electro-optic modulator in z-cut lithium niobate thin film with vertical structure. IEEE Photonics Technol Lett 33, 1285–1288 (2021). doi: 10.1109/LPT.2021.3114993

    CrossRef Google Scholar

    [35] Zhao WK, Liu RR, Zhu MY, Guo ZH, He JH et al. High-performance mode-multiplexing device with anisotropic lithium-niobate-on-insulator waveguides. Laser Photonics Rev 17, 2200774 (2023). doi: 10.1002/lpor.202200774

    CrossRef Google Scholar

    [36] Zheng XX, Lin ZX, Huang QS, He SL. Elimination of the fundamental mode hybridization on an x-cut lithium-niobate-on-insulator by using a densely packed bent waveguide array. Appl Opt 62, 5765–5771 (2023). doi: 10.1364/AO.495166

    CrossRef Google Scholar

    [37] Chen GX, Ruan ZL, Wang Z, Huang PC, Guo CJ et al. Four-channel CWDM device on a thin-film lithium niobate platform using an angled multimode interferometer structure. Photonics Res 10, 8–13 (2022).

    Google Scholar

    [38] Pan BC, Tan Y, Chen PX, Liu L, Shi YC et al. Compact racetrack resonator on LiNbO3. J Lightwave Technol 39, 1770–1776 (2021). doi: 10.1109/JLT.2020.3040387

    CrossRef Google Scholar

    [39] Liu HX, Pan BC, Huang YS, He JH, Zhang M et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. Light Adv Manuf 4, 133–142 (2023).

    Google Scholar

    [40] Tan HY, Wang J, Ke W, Zhang X, Zhao ZK et al. C-Band optical 90-degree hybrid using thin film lithium niobate. Opt Lett 48, 1946–1949 (2023). doi: 10.1364/OL.480380

    CrossRef Google Scholar

    [41] Liu XY, Gao SQ, Zhang C, Pan Y, Ma R et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Adv Photonics Nexus 1, 016001 (2022).

    Google Scholar

    [42] Xu MY, Zhu YT, Pittalà F, Tang J, He MB et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022). doi: 10.1364/OPTICA.449691

    CrossRef Google Scholar

    [43] Halir R, Cheben P, Luque-González JM, Sarmiento-Merenguel JD, Schmid JH et al. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial. Laser Photonics Rev 10, 1039–1046 (2016). doi: 10.1002/lpor.201600213

    CrossRef Google Scholar

    [44] Zhuang RJ, He JZ, Qi YF, Li Y. High-Q thin-film lithium niobate microrings fabricated with wet etching. Adv Mater 35, 2208113 (2023). doi: 10.1002/adma.202208113

    CrossRef Google Scholar

    [45] Sun DH, Zhang YW, Wang DZ, Song W, Liu XY et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci Appl 9, 197 (2020). doi: 10.1038/s41377-020-00434-0

    CrossRef Google Scholar

    [46] Rao A, Patil A, Rabiei P, Honardoost A, Desalvo R et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt Lett 41, 5700–5703 (2016). doi: 10.1364/OL.41.005700

    CrossRef Google Scholar

    [47] He MB, Xu MY, Ren YX, Jian J, Ruan ZL et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6

    CrossRef Google Scholar

    [48] Chen L, Xu Q, Wood MG, Reano RM. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1, 112–118 (2014). doi: 10.1364/OPTICA.1.000112

    CrossRef Google Scholar

    [49] Weigel PO, Zhao J, Fang K, Al-Rubaye H, Trotter D et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt Express 26, 23728–23739 (2018). doi: 10.1364/OE.26.023728

    CrossRef Google Scholar

    [50] Jensen JS, Sigmund O. Topology optimization for nano-photonics. Laser Photonics Rev 5, 308–321 (2011). doi: 10.1002/lpor.201000014

    CrossRef Google Scholar

    [51] Lin Z, Liu V, Pestourie R, Johnson SG. Topology optimization of freeform large-area metasurfaces. Opt Express 27, 15765–15775 (2019). doi: 10.1364/OE.27.015765

    CrossRef Google Scholar

    [52] Wang Q, Chumak AV, Pirro P. Inverse-design magnonic devices. Nat Commun 12, 2636 (2021). doi: 10.1038/s41467-021-22897-4

    CrossRef Google Scholar

    [53] Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev 12, 1700256 (2018). doi: 10.1002/lpor.201700256

    CrossRef Google Scholar

    [54] Lee D, So S, Hu GW, Kim M, Badloe T et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2, 1 (2022). doi: 10.1186/s43593-021-00008-6

    CrossRef Google Scholar

    [55] Dai ZG, Hu GW, Si GY, Ou QD, Zhang Q et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat Commun 11, 6086 (2020). doi: 10.1038/s41467-020-19913-4

    CrossRef Google Scholar

    [56] Lalau-Keraly CM, Bhargava S, Miller OD, Yablonovitch E. Adjoint shape optimization applied to electromagnetic design. Opt Express 21, 21693–21701 (2013). doi: 10.1364/OE.21.021693

    CrossRef Google Scholar

  • Supplementary information for Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint