Citation: | Xiao YT, Chen LW, Pu MB et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci 2, 230037 (2023). doi: 10.29026/oes.2023.230037 |
[1] | Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016). doi: 10.1126/science.aaf3928 |
[2] | Bourzac K. Cell imaging: beyond the limits. Nature 526, S50–S54 (2015). doi: 10.1038/526S50a |
[3] | Cheng PH, Pu KY. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat Rev Mater 6, 1095–1113 (2021). doi: 10.1038/s41578-021-00328-6 |
[4] | Huang YY, Yu MX, Zheng J. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. Nat Nanotechnol 18, 637–646 (2023). doi: 10.1038/s41565-023-01366-7 |
[5] | Yamanaka Y, Hamidi S, Yoshioka-Kobayashi K, Munira S, Sunadome K et al. Reconstituting human somitogenesis in vitro. Nature 614, 509–520 (2023). doi: 10.1038/s41586-022-05649-2 |
[6] | Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S et al. The case for early detection. Nat Rev Cancer 3, 243–252 (2003). doi: 10.1038/nrc1041 |
[7] | Freedman BS, Brooks CR, Lam AQ, Fu HX, Morizane R et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6, 8715 (2015). doi: 10.1038/ncomms9715 |
[8] | Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913.e7 (2020). doi: 10.1016/j.cell.2020.04.004 |
[9] | Huang XS, Fan JC, Li LJ, Liu HS, Wu RL et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol 36, 451–459 (2018). doi: 10.1038/nbt.4115 |
[10] | Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG, Shroff H. Assessing phototoxicity in live fluorescence imaging. Nat Methods 14, 657–661 (2017). doi: 10.1038/nmeth.4344 |
[11] | Tamamitsu M, Toda K, Shimada H, Honda T, Takarada M et al. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect. Optica 7, 359–366 (2020). doi: 10.1364/OPTICA.390186 |
[12] | Fu PC, Cao WL, Chen TR, Huang XJ, Le TR et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat Photonics 17, 330–337 (2023). doi: 10.1038/s41566-022-01143-3 |
[13] | Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x |
[14] | Kandel ME, Hu CF, Naseri Kouzehgarani G, Min E, Sullivan KM et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat Commun 10, 4691 (2019). doi: 10.1038/s41467-019-12634-3 |
[15] | Nguyen TH, Kandel ME, Rubessa M, Wheeler MB, Popescu G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat Commun 8, 210 (2017). doi: 10.1038/s41467-017-00190-7 |
[16] | Kandel ME, Teng KW, Selvin PR, Popescu G. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11, 647–655 (2017). doi: 10.1021/acsnano.6b06945 |
[17] | Bertolotti J, Katz O. Imaging in complex media. Nat Phys 18, 1008–1017 (2022). doi: 10.1038/s41567-022-01723-8 |
[18] | Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control. Rev Mod Phys 89, 015005 (2017). doi: 10.1103/RevModPhys.89.015005 |
[19] | Yoon S, Kim M, Jang M, Choi Y, Choi W et al. Deep optical imaging within complex scattering media. Nat Rev Phys 2, 141–158 (2020). doi: 10.1038/s42254-019-0143-2 |
[20] | Guo YT, Li D, Zhang SW, Yang YR, Liu JJ et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e17 (2018). doi: 10.1016/j.cell.2018.09.057 |
[21] | Li D, Shao L, Chen BC, Zhang X, Zhang MS et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015). doi: 10.1126/science.aab3500 |
[22] | Kang S, Kang P, Jeong S, Kwon Y, Yang TD et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat Commun 8, 2157 (2017). doi: 10.1038/s41467-017-02117-8 |
[23] | Bertolotti J, van Putten EG, Blum C, Lagendijk A, Vos WL et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012). doi: 10.1038/nature11578 |
[24] | Hernandez O, Papagiakoumou E, Tanese D, Fidelin K, Wyart C et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7, 11928 (2016). doi: 10.1038/ncomms11928 |
[25] | Liu RH, Sun Y, Zhu JB, Tian L, Kamilov US. Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nat Mach Intell 4, 781–791 (2022). doi: 10.1038/s42256-022-00530-3 |
[26] | Redo-Sanchez A, Heshmat B, Aghasi A, Naqvi S, Zhang MJ et al. Terahertz time-gated spectral imaging for content extraction through layered structures. Nat Commun 7, 12665 (2016). doi: 10.1038/ncomms12665 |
[27] | Wang L, Ho PP, Liu C, Zhang G, Alfano RR. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769–771 (1991). doi: 10.1126/science.253.5021.769 |
[28] | Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat Methods 12, i–ii (2015). |
[29] | Wang JF, Yang M, Yang L, Zhang Y, Yuan J et al. A confocal endoscope for cellular imaging. Engineering 1, 351–360 (2015). doi: 10.15302/J-ENG-2015081 |
[30] | Singh VR, Yang YA, Yu H, Kamm RD, Yaqoob Z et al. Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy. Nat Commun 10, 3652 (2019). doi: 10.1038/s41467-019-11645-4 |
[31] | Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Tutorial: guidance for quantitative confocal microscopy. Nat Protoc 15, 1585–1611 (2020). doi: 10.1038/s41596-020-0313-9 |
[32] | Ding YC, Xie H, Peng T, Lu YQ, Jin DY et al. Laser oblique scanning optical microscopy (LOSOM) for phase relief imaging. Opt Express 20, 14100–14108 (2012). doi: 10.1364/OE.20.014100 |
[33] | Chen X, Kandel ME, He SH, Hu CF, Lee YJ et al. Artificial confocal microscopy for deep label-free imaging. Nat Photonics 17, 250–258 (2023). doi: 10.1038/s41566-022-01140-6 |
[34] | Zhao WS, Zhao SQ, Li LJ, Huang XS, Xing SJ et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 40, 606–617 (2022). doi: 10.1038/s41587-021-01092-2 |
[35] | Chen SQ, Xie ZQ, Ye HP, Wang XR, Guo ZH et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci Appl 10, 222 (2021). doi: 10.1038/s41377-021-00667-7 |
[36] | Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Appl Opt 45, 460–469 (2006). doi: 10.1364/AO.45.000460 |
[37] | Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med 7, 1245–1248 (2001). doi: 10.1038/nm1101-1245 |
[38] | Liu J, Liu T, Chen L, Zhang LB, Xu GJ et al. A compact sub-hertz linewidth Fabry Perot cavity frequency stabilized laser for space application. Opt Laser Technol 136, 106777 (2021). doi: 10.1016/j.optlastec.2020.106777 |
[39] | Gundavarapu S, Brodnik GM, Puckett M, Huffman T, Bose D et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat Photonics 13, 60–67 (2019). doi: 10.1038/s41566-018-0313-2 |
[40] | Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9, 413–468 (1873). doi: 10.1007/BF02956173 |
[41] | Airy GB. On the diffraction of an object-glass with circular aperture. Trans Cambridge Philos Soc 5, 283 (1835). |
[42] | Sang D, Xu MF, Pu MB, Zhang F, Guo YH et al. Toward high-efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization. Laser Photonics Rev 16, 2200265 (2022). doi: 10.1002/lpor.202200265 |
[43] | Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644 |
[44] | Luo XG. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680 |
[45] | Luo XG. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018). doi: 10.1021/acsphotonics.8b01036 |
[46] | Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062 |
[47] |
Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci. |
[48] | Ha YL, Luo Y, Pu MB, Zhang F, He Q et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133 |
[49] | Huang K, Ye HP, Teng JH, Yeo SP, Luk'yanchuk B et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev 8, 152–157 (2014). doi: 10.1002/lpor.201300123 |
[50] | Wu GX, Zhou Y, Hong MH. Sub-50 nm optical imaging in ambient air with 10× objective lens enabled by hyper-hemi-microsphere. Light Sci Appl 12, 49 (2023). doi: 10.1038/s41377-023-01091-9 |
[51] | Zhou Y, Hong MH. Realization of noncontact confocal optical microsphere imaging microscope. Microsc Res Tech 84, 2381–2387 (2021). doi: 10.1002/jemt.23793 |
[52] | Chen LW, Zhou Y, Li Y, Hong MH. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev 6, 021304 (2019). doi: 10.1063/1.5082215 |
[53] | Luo XG. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1 |
[54] | Luo XG. Multiscale optical field manipulation via planar digital optics. ACS Photonics 10, 2116–2127 (2023). doi: 10.1021/acsphotonics.2c01752 |
Supplementary information for Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging | |
Video |
(a) The SWM system configuration comprises four main components: a synthetic wave source generation module, a metalens, a pinhole, and a PMT. (b) The schematic diagram of the post-processing process. The first row is the four phase-shifting frames. The second row is the reconstructed quantitative phase gradient image. The third row is the reconstructed quantitative phase image.
(a) The unit cell of the metalens is shown from both a top view and a side view. (b) The transmission coefficient's amplitude and (c) its phase delay for square lattice periodic nanopillar transmit arrays as a function of duty cycles of the nanopillars and the lattice constant. The square lattice period of 500 nm is indicated by a white dashed line. (d) The amplitude and phase of the transmission coefficient with a fixed lattice constant of 500 nm while varying the width of the nanopillars. (e) The calculated phase profile. (f) The schematic of metalens operating in transmission mode.
(a) Normalized intensity distribution when metawave source is incident normally. The first row is 2D distribution. The dotted line indicates the Airy spot area. The second row is 1D distribution along the x- and y-direction. The arrow indicates the FWHM of focus spot. (b) Lateral resolution as a function of incident angles. (c) Normalized intensity profiles of the focal spot for different incident angles x-y plane. (d) Normalized intensity distribution along the x-direction in the x-y plane when metawave source is incident with different angles. The arrow represents the resolution of the SWM. The incident angles are 2.5°, 2°, 1.9° and 1.8°, respectively. D represents the distance between the centers of two focused light spots.
(a) Normalized intensity curve recorded by PMT during one period for different phase differences. (b) The top section represents an anti-scattering imaging model with a medium screen positioned above the imaged object, while the bottom section depicts an anti-scattering imaging model with a medium screen placed below the imaged object. On the left-hand side, there is a map illustrating the distribution of the scattering media's phase. (c) Reconstruction phase difference vs. real phase difference. (d) Detection error as it varies with the distance of the scattering medium screen from the metalens, with the medium screen located above the imaged object. (e) Detection error as it varies with the distance of the scattering medium screen from the sample, with the medium screen situated below the imaged object.
(a) LS-GLIM image and SWM image taken without the scattering layer. (b) traditional image taken with the scattering layer. (c) SWM image taken with the scattering layer.