Xiao YT, Chen LW, Pu MB et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci 2, 230037 (2023). doi: 10.29026/oes.2023.230037
Citation: Xiao YT, Chen LW, Pu MB et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci 2, 230037 (2023). doi: 10.29026/oes.2023.230037

Article Open Access

Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging

More Information
  • These authors contributed equally to this work.

  • Corresponding authors: MB Pu, E-mail: pmb@ioe.ac.cn;  XG Luo, E-mail: lxg@ioe.ac.cn
  • Super-resolution (SR) microscopy has dramatically enhanced our understanding of biological processes. However, scattering media in thick specimens severely limits the spatial resolution, often rendering the images unclear or indistinguishable. Additionally, live-cell imaging faces challenges in achieving high temporal resolution for fast-moving subcellular structures. Here, we present the principles of a synthetic wave microscopy (SWM) to extract three-dimensional information from thick unlabeled specimens, where photobleaching and phototoxicity are avoided. SWM exploits multiple-wave interferometry to reveal the specimen’s phase information in the area of interest, which is not affected by the scattering media in the optical path. SWM achieves ~0.42λ/NAresolution at an imaging speed of up to 106 pixels/s. SWM proves better temporal resolution and sensitivity than the most conventional microscopes currently available while maintaining exceptional SR and anti-scattering capabilities. Penetrating through the scattering media is challenging for conventional imaging techniques. Remarkably, SWM retains its efficacy even in conditions of low signal-to-noise ratios. It facilitates the visualization of dynamic subcellular structures in live cells, encompassing tubular endoplasmic reticulum (ER), lipid droplets, mitochondria, and lysosomes.
  • 加载中
  • [1] Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016). doi: 10.1126/science.aaf3928

    CrossRef Google Scholar

    [2] Bourzac K. Cell imaging: beyond the limits. Nature 526, S50–S54 (2015). doi: 10.1038/526S50a

    CrossRef Google Scholar

    [3] Cheng PH, Pu KY. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat Rev Mater 6, 1095–1113 (2021). doi: 10.1038/s41578-021-00328-6

    CrossRef Google Scholar

    [4] Huang YY, Yu MX, Zheng J. Proximal tubules eliminate endocytosed gold nanoparticles through an organelle-extrusion-mediated self-renewal mechanism. Nat Nanotechnol 18, 637–646 (2023). doi: 10.1038/s41565-023-01366-7

    CrossRef Google Scholar

    [5] Yamanaka Y, Hamidi S, Yoshioka-Kobayashi K, Munira S, Sunadome K et al. Reconstituting human somitogenesis in vitro. Nature 614, 509–520 (2023). doi: 10.1038/s41586-022-05649-2

    CrossRef Google Scholar

    [6] Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S et al. The case for early detection. Nat Rev Cancer 3, 243–252 (2003). doi: 10.1038/nrc1041

    CrossRef Google Scholar

    [7] Freedman BS, Brooks CR, Lam AQ, Fu HX, Morizane R et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6, 8715 (2015). doi: 10.1038/ncomms9715

    CrossRef Google Scholar

    [8] Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913.e7 (2020). doi: 10.1016/j.cell.2020.04.004

    CrossRef Google Scholar

    [9] Huang XS, Fan JC, Li LJ, Liu HS, Wu RL et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol 36, 451–459 (2018). doi: 10.1038/nbt.4115

    CrossRef Google Scholar

    [10] Laissue PP, Alghamdi RA, Tomancak P, Reynaud EG, Shroff H. Assessing phototoxicity in live fluorescence imaging. Nat Methods 14, 657–661 (2017). doi: 10.1038/nmeth.4344

    CrossRef Google Scholar

    [11] Tamamitsu M, Toda K, Shimada H, Honda T, Takarada M et al. Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect. Optica 7, 359–366 (2020). doi: 10.1364/OPTICA.390186

    CrossRef Google Scholar

    [12] Fu PC, Cao WL, Chen TR, Huang XJ, Le TR et al. Super-resolution imaging of non-fluorescent molecules by photothermal relaxation localization microscopy. Nat Photonics 17, 330–337 (2023). doi: 10.1038/s41566-022-01143-3

    CrossRef Google Scholar

    [13] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x

    CrossRef Google Scholar

    [14] Kandel ME, Hu CF, Naseri Kouzehgarani G, Min E, Sullivan KM et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat Commun 10, 4691 (2019). doi: 10.1038/s41467-019-12634-3

    CrossRef Google Scholar

    [15] Nguyen TH, Kandel ME, Rubessa M, Wheeler MB, Popescu G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat Commun 8, 210 (2017). doi: 10.1038/s41467-017-00190-7

    CrossRef Google Scholar

    [16] Kandel ME, Teng KW, Selvin PR, Popescu G. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11, 647–655 (2017). doi: 10.1021/acsnano.6b06945

    CrossRef Google Scholar

    [17] Bertolotti J, Katz O. Imaging in complex media. Nat Phys 18, 1008–1017 (2022). doi: 10.1038/s41567-022-01723-8

    CrossRef Google Scholar

    [18] Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control. Rev Mod Phys 89, 015005 (2017). doi: 10.1103/RevModPhys.89.015005

    CrossRef Google Scholar

    [19] Yoon S, Kim M, Jang M, Choi Y, Choi W et al. Deep optical imaging within complex scattering media. Nat Rev Phys 2, 141–158 (2020). doi: 10.1038/s42254-019-0143-2

    CrossRef Google Scholar

    [20] Guo YT, Li D, Zhang SW, Yang YR, Liu JJ et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e17 (2018). doi: 10.1016/j.cell.2018.09.057

    CrossRef Google Scholar

    [21] Li D, Shao L, Chen BC, Zhang X, Zhang MS et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015). doi: 10.1126/science.aab3500

    CrossRef Google Scholar

    [22] Kang S, Kang P, Jeong S, Kwon Y, Yang TD et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat Commun 8, 2157 (2017). doi: 10.1038/s41467-017-02117-8

    CrossRef Google Scholar

    [23] Bertolotti J, van Putten EG, Blum C, Lagendijk A, Vos WL et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012). doi: 10.1038/nature11578

    CrossRef Google Scholar

    [24] Hernandez O, Papagiakoumou E, Tanese D, Fidelin K, Wyart C et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7, 11928 (2016). doi: 10.1038/ncomms11928

    CrossRef Google Scholar

    [25] Liu RH, Sun Y, Zhu JB, Tian L, Kamilov US. Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nat Mach Intell 4, 781–791 (2022). doi: 10.1038/s42256-022-00530-3

    CrossRef Google Scholar

    [26] Redo-Sanchez A, Heshmat B, Aghasi A, Naqvi S, Zhang MJ et al. Terahertz time-gated spectral imaging for content extraction through layered structures. Nat Commun 7, 12665 (2016). doi: 10.1038/ncomms12665

    CrossRef Google Scholar

    [27] Wang L, Ho PP, Liu C, Zhang G, Alfano RR. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769–771 (1991). doi: 10.1126/science.253.5021.769

    CrossRef Google Scholar

    [28] Huff J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat Methods 12, i–ii (2015).

    Google Scholar

    [29] Wang JF, Yang M, Yang L, Zhang Y, Yuan J et al. A confocal endoscope for cellular imaging. Engineering 1, 351–360 (2015). doi: 10.15302/J-ENG-2015081

    CrossRef Google Scholar

    [30] Singh VR, Yang YA, Yu H, Kamm RD, Yaqoob Z et al. Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy. Nat Commun 10, 3652 (2019). doi: 10.1038/s41467-019-11645-4

    CrossRef Google Scholar

    [31] Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Tutorial: guidance for quantitative confocal microscopy. Nat Protoc 15, 1585–1611 (2020). doi: 10.1038/s41596-020-0313-9

    CrossRef Google Scholar

    [32] Ding YC, Xie H, Peng T, Lu YQ, Jin DY et al. Laser oblique scanning optical microscopy (LOSOM) for phase relief imaging. Opt Express 20, 14100–14108 (2012). doi: 10.1364/OE.20.014100

    CrossRef Google Scholar

    [33] Chen X, Kandel ME, He SH, Hu CF, Lee YJ et al. Artificial confocal microscopy for deep label-free imaging. Nat Photonics 17, 250–258 (2023). doi: 10.1038/s41566-022-01140-6

    CrossRef Google Scholar

    [34] Zhao WS, Zhao SQ, Li LJ, Huang XS, Xing SJ et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 40, 606–617 (2022). doi: 10.1038/s41587-021-01092-2

    CrossRef Google Scholar

    [35] Chen SQ, Xie ZQ, Ye HP, Wang XR, Guo ZH et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light Sci Appl 10, 222 (2021). doi: 10.1038/s41377-021-00667-7

    CrossRef Google Scholar

    [36] Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Appl Opt 45, 460–469 (2006). doi: 10.1364/AO.45.000460

    CrossRef Google Scholar

    [37] Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K et al. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med 7, 1245–1248 (2001). doi: 10.1038/nm1101-1245

    CrossRef Google Scholar

    [38] Liu J, Liu T, Chen L, Zhang LB, Xu GJ et al. A compact sub-hertz linewidth Fabry Perot cavity frequency stabilized laser for space application. Opt Laser Technol 136, 106777 (2021). doi: 10.1016/j.optlastec.2020.106777

    CrossRef Google Scholar

    [39] Gundavarapu S, Brodnik GM, Puckett M, Huffman T, Bose D et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat Photonics 13, 60–67 (2019). doi: 10.1038/s41566-018-0313-2

    CrossRef Google Scholar

    [40] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9, 413–468 (1873). doi: 10.1007/BF02956173

    CrossRef Google Scholar

    [41] Airy GB. On the diffraction of an object-glass with circular aperture. Trans Cambridge Philos Soc 5, 283 (1835).

    Google Scholar

    [42] Sang D, Xu MF, Pu MB, Zhang F, Guo YH et al. Toward high-efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization. Laser Photonics Rev 16, 2200265 (2022). doi: 10.1002/lpor.202200265

    CrossRef Google Scholar

    [43] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [44] Luo XG. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater 31, 1804680 (2019). doi: 10.1002/adma.201804680

    CrossRef Google Scholar

    [45] Luo XG. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018). doi: 10.1021/acsphotonics.8b01036

    CrossRef Google Scholar

    [46] Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [47] Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci. 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [48] Ha YL, Luo Y, Pu MB, Zhang F, He Q et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133

    CrossRef Google Scholar

    [49] Huang K, Ye HP, Teng JH, Yeo SP, Luk'yanchuk B et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev 8, 152–157 (2014). doi: 10.1002/lpor.201300123

    CrossRef Google Scholar

    [50] Wu GX, Zhou Y, Hong MH. Sub-50 nm optical imaging in ambient air with 10× objective lens enabled by hyper-hemi-microsphere. Light Sci Appl 12, 49 (2023). doi: 10.1038/s41377-023-01091-9

    CrossRef Google Scholar

    [51] Zhou Y, Hong MH. Realization of noncontact confocal optical microsphere imaging microscope. Microsc Res Tech 84, 2381–2387 (2021). doi: 10.1002/jemt.23793

    CrossRef Google Scholar

    [52] Chen LW, Zhou Y, Li Y, Hong MH. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev 6, 021304 (2019). doi: 10.1063/1.5082215

    CrossRef Google Scholar

    [53] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [54] Luo XG. Multiscale optical field manipulation via planar digital optics. ACS Photonics 10, 2116–2127 (2023). doi: 10.1021/acsphotonics.2c01752

    CrossRef Google Scholar

  • Supplementary information for Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
    Video
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3815) PDF downloads(475) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint