Han YN, Xiang SY, Song ZW, Gao S, Guo XX et al. Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip. Opto-Electron Sci 2, 230021 (2023). doi: 10.29026/oes.2023.230021
Citation: Han YN, Xiang SY, Song ZW, Gao S, Guo XX et al. Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip. Opto-Electron Sci 2, 230021 (2023). doi: 10.29026/oes.2023.230021

Article Open Access

Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip

More Information
  • Spiking neural networks (SNNs) utilize brain-like spatiotemporal spike encoding for simulating brain functions. Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing. Here, we proposed a multi-synaptic photonic SNN, combining the modified remote supervised learning with delay-weight co-training to achieve pattern classification. The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations. In addition, the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber (DFB-SA), where 10 different noisy digital patterns were successfully classified. A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing, demonstrating the capability of hardware-algorithm co-computation.
  • 加载中
  • [1] Moradi S, Qiao N, Stefanini F, Indiveri G. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans Biomed Circuits Syst 12, 106–122 (2018). doi: 10.1109/TBCAS.2017.2759700

    CrossRef Google Scholar

    [2] Rathi N, Chakraborty I, Kosta A, Sengupta A, Ankit A et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware. ACM Comput Surv 55, 243 (2023).

    Google Scholar

    [3] Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019). doi: 10.1038/s41586-019-1677-2

    CrossRef Google Scholar

    [4] Ponulak F, Kasinski A. Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol Exp 71, 409–433 (2011).

    Google Scholar

    [5] Taherkhani A, Belatreche A, Li YH, Cosma G, Maguire LP et al. A review of learning in biologically plausible spiking neural networks. Neural Netw 122, 253–272 (2020). doi: 10.1016/j.neunet.2019.09.036

    CrossRef Google Scholar

    [6] Nandakumar SR, Boybat I, Le Gallo M, Eleftheriou E, Sebastian A et al. Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses. Sci Rep 10, 8080 (2020). doi: 10.1038/s41598-020-64878-5

    CrossRef Google Scholar

    [7] Sengupta A, Banerjee A, Roy K. Hybrid spintronic-CMOS spiking neural network with on-chip learning: devices, circuits, and systems. Phys Rev Appl 6, 064003 (2016). doi: 10.1103/PhysRevApplied.6.064003

    CrossRef Google Scholar

    [8] Sengupta A, Panda P, Wijesinghe P, Kim Y, Roy K. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci Rep 6, 30039 (2016). doi: 10.1038/srep30039

    CrossRef Google Scholar

    [9] Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10, 1297–1301 (2010). doi: 10.1021/nl904092h

    CrossRef Google Scholar

    [10] Boybat I, Le Gallo M, Nandakumar SR, Moraitis T, Parnell T et al. Neuromorphic computing with multi-memristive synapses. Nat Commun 9, 2514 (2018). doi: 10.1038/s41467-018-04933-y

    CrossRef Google Scholar

    [11] Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B et al. Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In Proceedings of 2013 International Joint Conference on Neural Networks 1–10 (IEEE, 2013); http://doi.org/10.1109/IJCNN.2013.6707077.

    Google Scholar

    [12] Kim H, Hwang S, Park J, Yun S, Lee JH et al. Spiking neural network using synaptic transistors and neuron circuits for pattern recognition with noisy images. IEEE Electron Device Lett 39, 630–633 (2018). doi: 10.1109/LED.2018.2809661

    CrossRef Google Scholar

    [13] Erdener Ö, Ozoguz S. A new neuron and synapse model suitable for low power VLSI implementation. Analog Integr Circ Sig Process 89, 749–770 (2016). doi: 10.1007/s10470-016-0773-6

    CrossRef Google Scholar

    [14] Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME et al. A survey of neuromorphic computing and neural networks in hardware. arXiv: 1705.06963, 2017.https://doi.org/10.48550/arXiv.1705.06963

    Google Scholar

    [15] Meng XY, Zhang GJ, Shi NN, Li GY, Azaña J et al. Compact optical convolution processing unit based on multimode interference. Nat Commun 14, 3000 (2023). doi: 10.1038/s41467-023-38786-x

    CrossRef Google Scholar

    [16] Ohno S, Tang R, Toprasertpong K, Takagi S, Takenaka M. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics 9, 2614–2622 (2022). doi: 10.1021/acsphotonics.1c01777

    CrossRef Google Scholar

    [17] Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci 1, 220010 (2022). doi: 10.29026/oes.2022.220010

    CrossRef Google Scholar

    [18] Huang CR, Sorger VJ, Miscuglio M, Al-Qadasi M, Mukherjee A et al. Prospects and applications of photonic neural networks. Adv Phys:X 7, 1981155 (2022).

    Google Scholar

    [19] Gu JQ, Feng CH, Zhu HQ, Chen RT, Pan DZ. Light in AI: toward efficient neurocomputing with optical neural networks—a tutorial. IEEE Trans Circuits Syst II:Express Briefs 69, 2581–2585 (2022).

    Google Scholar

    [20] Zhao AK, Jiang N, Peng JF, Liu SQ, Zhang YQ et al. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron Adv 5, 200026 (2022). doi: 10.29026/oea.2022.200026

    CrossRef Google Scholar

    [21] Li CH, Du W, Huang YX, Zou JH, Luo LZ et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv 5, 210069 (2022). doi: 10.29026/oea.2022.210069

    CrossRef Google Scholar

    [22] Xiang SY, Han YN, Song ZW, Guo XX, Zhang YH et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J Semicond 42, 023105 (2021). doi: 10.1088/1674-4926/42/2/023105

    CrossRef Google Scholar

    [23] Coomans W, Gelens L, Beri S, Danckaert J, Van der Sande G. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E 84, 036209 (2011). doi: 10.1103/PhysRevE.84.036209

    CrossRef Google Scholar

    [24] Scirè A, Mulet J, Mirasso CR, Miguel MS. Intensity and polarization self-pulsations in vertical-cavity surface-emitting lasers. Opt Lett 27, 391–393 (2002). doi: 10.1364/OL.27.000391

    CrossRef Google Scholar

    [25] Xiang SY, Zhang H, Guo XX, Li JF, Wen AJ et al. Cascadable neuron-like spiking dynamics in coupled VCSELs subject to orthogonally polarized optical pulse injection. IEEE J Sel Top Quantum Electron 23, 1700207 (2017).

    Google Scholar

    [26] Robertson J, Hejda M, Zhang YH, Bueno J, Xiang SY et al. Neuromorphic object edge detection with artifical photonic spiking VCSEL-neurons. In Proceedings of 2020 IEEE Photonics Conference 1–2 (IEEE, 2020);http://doi.org/10.1109/IPC47351.2020.9252334.

    Google Scholar

    [27] Chen ZJ, Sludds A, Davis R, Christen I, Ateshian L et al. Coherent VCSEL network computing. In Proceedings of the 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC) 1–3 (IEEE, 2022);http://doi.org/10.23919/OECC/PSC53152.2022.9849860.

    Google Scholar

    [28] Ma BW, Zou WW. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci. China Inf. Sci 63, 160408 (2020). doi: 10.1007/s11432-020-2887-6

    CrossRef Google Scholar

    [29] Shi YC, Xiang SY, Guo XX, Zhang YH, Wang HJ et al. Photonic integrated spiking neuron chip based on a self-pulsating DFB laser with a saturable absorber. Photonics Res 11, 1382–1389 (2023). doi: 10.1364/PRJ.485941

    CrossRef Google Scholar

    [30] Xiang SY, Shi YC, Zhang YH, Guo XX, Zheng L et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network. arXiv: 2306.02724, 2023. https://doi.org/10.48550/arXiv.2306.02724

    Google Scholar

    [31] Xiang SY, Shi YC, Guo XX, Zhang YH, Wang HJ. et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber. Optica 10, 162–171 (2023). doi: 10.1364/OPTICA.468347

    CrossRef Google Scholar

    [32] Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R et al. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett 112, 183902 (2014). doi: 10.1103/PhysRevLett.112.183902

    CrossRef Google Scholar

    [33] Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019). doi: 10.1038/s41586-019-1157-8

    CrossRef Google Scholar

    [34] Fauth MJ, Wörgötter F, Tetzlaff C. Collective information storage in multiple synapses enables fast learning and slow forgetting. BMC Neurosci 16, O15 (2015). doi: 10.1186/1471-2202-16-S1-O15

    CrossRef Google Scholar

    [35] Federmeier KD, Kleim JA, Greenough WT. Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett 332, 180–184 (2002). doi: 10.1016/S0304-3940(02)00759-0

    CrossRef Google Scholar

    [36] Golding NL, Staff NP, Spruston N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002). doi: 10.1038/nature00854

    CrossRef Google Scholar

    [37] Hiratani N, Fukai T. Redundancy in synaptic connections enables neurons to learn optimally. Proc Natl Acad Sci USA 115, E6871–E6879 (2018). doi: 10.1073/iti2718115

    CrossRef Google Scholar

    [38] Ponulak F, Kasiński A. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput 22, 467–510 (2010). doi: 10.1162/neco.2009.11-08-901

    CrossRef Google Scholar

    [39] Xiang SY, Ren ZX, Song ZW, Zhang YH, Guo XX et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst 32, 2494–2505 (2021). doi: 10.1109/TNNLS.2020.3006263

    CrossRef Google Scholar

    [40] Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci 9, 420–428 (2006). doi: 10.1038/nn1643

    CrossRef Google Scholar

    [41] Taherkhani A, Belatreche A, Li YH, Maguire LP. DL-ReSuMe: a delay learning-based remote supervised method for spiking neurons. IEEE Trans Neural Netw Learn Syst 26, 3137–3149 (2015). doi: 10.1109/TNNLS.2015.2404938

    CrossRef Google Scholar

    [42] Han YN, Xiang SY, Ren ZX, Fu CT, Wen AJ et al. Delay-weight plasticity-based supervised learning in optical spiking neural networks. Photonics Res 9, B119–B127 (2021). doi: 10.1364/PRJ.413742

    CrossRef Google Scholar

    [43] Xiang SY, Gong JK, Zhang YH, Guo XX, Han YN et al. Numerical implementation of wavelength-dependent photonic spike timing dependent plasticity based on VCSOA. IEEE J Quantum Electron 54, 8100107 (2018).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(4273) PDF downloads(788) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint