Su DE, Li XY, Gao WD, Wei QH, Li HY et al. Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection. Opto-Electron Sci 2, 230018 (2023). doi: 10.29026/oes.2023.230018
Citation: Su DE, Li XY, Gao WD, Wei QH, Li HY et al. Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection. Opto-Electron Sci 2, 230018 (2023). doi: 10.29026/oes.2023.230018

Article Open Access

Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection

More Information
  • A critical function of flow cytometry is to count the concentration of blood cells, which helps in the diagnosis of certain diseases. However, the bulky nature of commercial flow cytometers makes such tests only available in hospitals or laboratories, hindering the spread of point-of-care testing (POCT), especially in underdeveloped areas. Here, we propose a smart Palm-size Optofluidic Hematology Analyzer based on a miniature fluorescence microscope and a microfluidic platform to lighten the device to improve its portability. This gadget has a dimension of 35 × 30 × 80 mm and a mass of 39 g, less than 5% of the weight of commercially available flow cytometers. Additionally, automatic leukocyte concentration detection has been realized through the integration of image processing and leukocyte counting algorithms. We compared the leukocyte concentration measurement between our approach and a hemocytometer using the Passing-Bablok analysis and achieved a correlation coefficient of 0.979. Through Bland-Altman analysis, we obtained the relationship between their differences and mean measurement values and established 95% limits of agreement, ranging from −0.93×103 to 0.94×103 cells/μL. We anticipate that this device can be used widely for monitoring and treating diseases such as HIV and tumors beyond hospitals.
  • 加载中
  • [1] Verso ML. The evolution of blood-counting techniques. Med Hist 8, 149–158 (1964). doi: 10.1017/S0025727300029392

    CrossRef Google Scholar

    [2] Yan X, Song JF, Zhang L, Li X. Analysis of risk factors for multidrug-resistant organisms in diabetic foot infection. BMC Endocr Disord 22, 46 (2022). doi: 10.1186/s12902-022-00957-0

    CrossRef Google Scholar

    [3] Trampuz A, Hanssen AD, Osmon DR, Mandrekar J, Steckelberg JM et al. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. Am J Med 117, 556–562 (2004). doi: 10.1016/j.amjmed.2004.06.022

    CrossRef Google Scholar

    [4] Saleem A, Mubeen A, Akhtar MF, Zeb A. Polystichum braunii ameliorates airway inflammation by attenuation of inflammatory and oxidative stress biomarkers, and pulmonary edema by elevation of aquaporins in ovalbumin-induced allergic asthmatic mice. Inflammopharmacology 30, 639–653 (2022). doi: 10.1007/s10787-022-00944-w

    CrossRef Google Scholar

    [5] Chmielewski PP, Strzelec B. Elevated leukocyte count as a harbinger of systemic inflammation, disease progression, and poor prognosis: a review. Folia Morphol 77, 171–178 (2018). doi: 10.5603/FM.a2017.0101

    CrossRef Google Scholar

    [6] Athale UH, Kaste SC, Bodner SM, Ribeiro RC. Splenic rupture in children with hematologic malignancies. Cancer 88, 480–490 (2000). doi: 10.1002/(SICI)1097-0142(20000115)88:2<480::AID-CNCR31>3.0.CO;2-I

    CrossRef Google Scholar

    [7] Benoit DD, Vandewoude KH, Decruyenaere JM, Hoste EA, Colardyn FA. Outcome and early prognostic indicators in patients with a hematologic malignancy admitted to the intensive care unit for a life-threatening complication. Crit Care Med 31, 104–112 (2003). doi: 10.1097/00003246-200301000-00017

    CrossRef Google Scholar

    [8] Cheng XH, Irimia D, Dixon M, Sekine K, Demirci U et al. A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 7, 170–178 (2007). doi: 10.1039/B612966H

    CrossRef Google Scholar

    [9] Vembadi A, Menachery A, Qasaimeh MA. Cell cytometry: review and perspective on biotechnological advances. Front Bioeng Biotechnol 7, 147 (2019). doi: 10.3389/fbioe.2019.00147

    CrossRef Google Scholar

    [10] Sami MA, Tayyab M, Parikh P, Govindaraju H, Hassan U. A modular microscopic smartphone attachment for imaging and quantification of multiple fluorescent probes using machine learning. Analyst 146, 2531–2541 (2021). doi: 10.1039/D0AN02451A

    CrossRef Google Scholar

    [11] Rabha D, Biswas S, Hatiboruah D, Das P, Rather MA et al. An affordable, handheld multimodal microscopic system with onboard cell morphology and counting features on a mobile device. Analyst 147, 2859–2869 (2022). doi: 10.1039/D1AN02317A

    CrossRef Google Scholar

    [12] Avci MB, Yasar SD, Cetin AE. An optofluidic platform for cell-counting applications. Anal Methods 15, 2244–2252 (2023). doi: 10.1039/D3AY00344B

    CrossRef Google Scholar

    [13] Gorti V, Kaza N, Williams EK, Lam WA, Robles FE. Compact and low-cost deep-ultraviolet microscope system for label-free molecular imaging and point-of-care hematological analysis. Biomed Opt Express 14, 1245–1255 (2023). doi: 10.1364/BOE.482294

    CrossRef Google Scholar

    [14] Lei C, Kobayashi H, Wu Y, Li M, Isozaki A et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc 13, 1603–1631 (2018). doi: 10.1038/s41596-018-0008-7

    CrossRef Google Scholar

    [15] Gӧrӧcs Z, Tamamitsu M, Bianco V, Wolf P, Roy S et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light Sci Appl 7, 66 (2018). doi: 10.1038/s41377-018-0067-0

    CrossRef Google Scholar

    [16] Holzner G, Du Y, Cao XB, Choo J, deMello AJ et al. An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry. Lab Chip 18, 3631–3637 (2018). doi: 10.1039/C8LC00593A

    CrossRef Google Scholar

    [17] Gӧrӧcs Z, Tamamitsu M, Bianco V, Wolf P, Roy S et al. Portable imaging flow cytometer using deep learning based holographic image reconstruction. In Conference on Lasers and Electro-Optics SM4H. 2 (OSA, 2019);http://doi.org/10.1364/CLEO_SI.2019.SM4H.2.

    Google Scholar

    [18] Kim S, Streets AM, Lin RR, Quake SR, Weiss S et al. High-throughput single-molecule optofluidic analysis. Nat Methods 8, 242–245 (2011). doi: 10.1038/nmeth.1569

    CrossRef Google Scholar

    [19] Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K et al. Intelligent image-activated cell sorting. Cell 175, 266–276.e13 (2018). doi: 10.1016/j.cell.2018.08.028

    CrossRef Google Scholar

    [20] Zhang H, Lu MY, Xiong Z, Yang J, Tan MY et al. Rapid trapping and tagging of microparticles in controlled flow by in situ digital projection lithography. Lab Chip 22, 1951–1961 (2022). doi: 10.1039/D2LC00186A

    CrossRef Google Scholar

    [21] Wang ZQ, Zhu LX, Zhang H, Li G, Yi CQ et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat Methods 18, 551–556 (2021). doi: 10.1038/s41592-021-01058-x

    CrossRef Google Scholar

    [22] Gonzalez G, Chiappone A, Dietliker K, Pirri CF, Roppolo I. Fabrication and functionalization of 3D printed polydimethylsiloxane‐based microfluidic devices obtained through digital light processing. Adv Mater Technol 5, 2000374 (2020). doi: 10.1002/admt.202000374

    CrossRef Google Scholar

    [23] Prakash M, Gershenfeld N. Microfluidic bubble logic. Science 315, 832–835 (2007). doi: 10.1126/science.1136907

    CrossRef Google Scholar

    [24] Saggiomo V, Velders AH. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci 2, 1500125 (2015). doi: 10.1002/advs.201500125

    CrossRef Google Scholar

    [25] Lee Y, Kim B, Choi S. Integrated microflow cytometry for portable immunophenotypic cell analysis. Sens Actuators A Phys 309, 112038 (2020). doi: 10.1016/j.sna.2020.112038

    CrossRef Google Scholar

    [26] Maleki T, Fricke T, Quesenberry JT, Todd PW, Leary JF. Point-of-care, portable microfluidic blood analyzer system. Proc SPIE 8251, 82510C (2012).

    Google Scholar

    [27] Guo CL, Blair GJ, Sehgal M, Jimka FNS, Bellafard A et al. Miniscope-LFOV: a large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals. Sci Adv 9, eadg3918 (2023). doi: 10.1126/sciadv.adg3918

    CrossRef Google Scholar

    [28] Zong WJ, Wu RL, Chen SY, Wu JJ, Wang HB et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods 18, 46–49 (2021). doi: 10.1038/s41592-020-01024-z

    CrossRef Google Scholar

    [29] De Groot A, Van Den Boom BJ, Van Genderen RM, Coppens J, Van Veldhuijzen J et al. NINscope, a versatile miniscope for multi-region circuit investigations. eLife 9, e49987 (2020). doi: 10.7554/eLife.49987

    CrossRef Google Scholar

    [30] Zong WJ, Wu RL, Li ML, Hu YH, Li YJ et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14, 713–719 (2017). doi: 10.1038/nmeth.4305

    CrossRef Google Scholar

    [31] Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y et al. Miniaturized integration of a fluorescence microscope. Nat Methods 8, 871–878 (2011). doi: 10.1038/nmeth.1694

    CrossRef Google Scholar

    [32] Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology E-Book (Elsevier, Amsterdam, 2017).

    Google Scholar

    [33] Bilić-Zulle L. Comparison of methods: passing and Bablok regression. Biochem Med 21, 49–52 (2011).

    Google Scholar

    [34] Smith S, Madzivhandila P, Sewart R, Govender U, Becker H et al. Microfluidic cartridges for automated, point-of-care blood cell counting. SLAS Technol 22, 176–185 (2017). doi: 10.1177/2211068216677820

    CrossRef Google Scholar

    [35] Osei-Bimpong A, Jury C, McLean R, Lewis SM. Point-of-care method for total white cell count: an evaluation of the HemoCue WBC device. Int J Lab Hematol 31, 657–664 (2009). doi: 10.1111/j.1751-553X.2008.01093.x

    CrossRef Google Scholar

    [36] Al-Riyami AZ, Al-Khabori M, Al-Hadhrami RM, Al-Azwani IS, Davis HM et al. The pneumatic tube system does not affect complete blood count results; a validation study at a tertiary care hospital. Int J Lab Hematol 36, 514–520 (2014). doi: 10.1111/ijlh.12180

    CrossRef Google Scholar

  • Supplementary_Video_1
    Supplementary information for Smart Palm-size Optofluidic Hematology Analyzer for automated imaging-based leukocyte concentration detection
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint