Porfirev A, Khonina S, Ustinov A, Ivliev N, Golub I. Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films. Opto-Electron Sci 2, 230014 (2023). doi: 10.29026/oes.2023.230014
Citation: Porfirev A, Khonina S, Ustinov A, Ivliev N, Golub I. Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films. Opto-Electron Sci 2, 230014 (2023). doi: 10.29026/oes.2023.230014

Article Open Access

Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films

More Information
  • Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum (OAM) possessing optical system and is caused by e.g. refractive index gradient/interface between media or focusing of a spatially asymmetrical beam, similar to the electric field breaking the symmetry in spin Hall effect for electrons. The angular momentum (AM) conservation law in the ensuing asymmetric system dictates redistribution of spin and orbital angular momentum, and is manifested in spin-orbit, orbit-orbit, and orbit-spin conversions and reorganization, i.e. spin-orbit and orbit-orbit interaction. This AM restructuring in turn requires shifts of the barycenter of the electric field of light. In the present study we show, both analytically and by numerical simulation, how different electric field components are displaced upon tight focusing of an asymmetric light beam having OAM and spin. The relation between field components shifts and the AM components shifts/redistribution is presented too. Moreover, we experimentally demonstrate, for the first time, to the best of our knowledge, the spin-orbit Hall effect of light upon tight focusing in free space. This is achieved using azopolymers as a media detecting longitudinal or z component of the electrical field of light. These findings elucidate the Hall effect of light and may broaden the spectrum of its applications.
  • 加载中
  • [1] Liu L, Chen SS, Lin ZZ, Zhang X. A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature. J Phys Chem Lett 11, 7893–7900 (2020). doi: 10.1021/acs.jpclett.0c01911

    CrossRef Google Scholar

    [2] Córdova C, Ohmori K, Rudelius T. Generalized symmetry breaking scales and weak gravity conjectures. J High Energy Phys 2022, 154 (2022).

    Google Scholar

    [3] Devínsky F. Chirality and the origin of life. Symmetry 13, 2277 (2021). doi: 10.3390/sym13122277

    CrossRef Google Scholar

    [4] Yang SH, Naaman R, Paltiel Y, Parkin SSP. Chiral spintronics. Nat Rev Phys 3, 328–343 (2021). doi: 10.1038/s42254-021-00302-9

    CrossRef Google Scholar

    [5] Cheng JH, Zhang Z, Mei W, Cao Y, Ling XH et al. Symmetry-breaking enabled topological phase transitions in spin-orbit optics. Opt Express 31, 23621–23630 (2023). doi: 10.1364/OE.494534

    CrossRef Google Scholar

    [6] Baranova NB, Savchenko AY, Zel’dovich BY. Transverse shift of a focal spot due to switching of the sign of circular polarization. JETP Lett 59, 232–234 (1994).

    Google Scholar

    [7] Aiello A, Lindlein N, Marquardt C, Leuchs G. Transverse angular momentum and geometric spin hall effect of light. Phys Rev Lett 103, 100401 (2009). doi: 10.1103/PhysRevLett.103.100401

    CrossRef Google Scholar

    [8] Bliokh KY, Alonso MA, Ostrovskaya EA, Aiello A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys Rev A 82, 063825 (2010). doi: 10.1103/PhysRevA.82.063825

    CrossRef Google Scholar

    [9] Zhu WG, She WL. Transverse angular momentum and transverse barycenter shift of a focused light field due to nonuniform input angular momentum. Opt Lett 39, 1337–1340 (2014). doi: 10.1364/OL.39.001337

    CrossRef Google Scholar

    [10] Khonina SN, Golub I. Vectorial spin Hall effect of light upon tight focusing. Opt Lett 47, 2166–2169 (2022). doi: 10.1364/OL.457507

    CrossRef Google Scholar

    [11] Porfirev A, Khonina S, Kuchmizhak A. Light–matter interaction empowered by orbital angular momentum: control of matter at the micro-and nanoscale. Prog Quantum Electron 88, 100459 (2023). doi: 10.1016/j.pquantelec.2023.100459

    CrossRef Google Scholar

    [12] Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV. Spin–orbit interactions of light. Nat Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201

    CrossRef Google Scholar

    [13] Khonina SN, Golub I. Breaking the symmetry to structure light. Opt Lett 46, 2605–2608 (2021). doi: 10.1364/OL.423660

    CrossRef Google Scholar

    [14] Zhang Z, Mei W, Cheng JH, Tan YW, Dai ZP et al. Revisiting vortex generation in the spin-orbit interactions of refraction and focusing of light. Phys Rev A 106, 063520 (2022). doi: 10.1103/PhysRevA.106.063520

    CrossRef Google Scholar

    [15] Richards B, Wolf E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc Roy Soc A:Math Phys Sci 253, 358–379 (1959).

    Google Scholar

    [16] Pereira SF, van de Nes AS. Superresolution by means of polarisation, phase and amplitude pupil masks. Opt Commun 234, 119–124 (2004). doi: 10.1016/j.optcom.2004.02.020

    CrossRef Google Scholar

    [17] Bokor N, Davidson N. A three dimensional dark focal spot uniformly surrounded by light. Opt Commun 279, 229–234 (2007). doi: 10.1016/j.optcom.2007.07.014

    CrossRef Google Scholar

    [18] Khonina SN, Volotovskiy SG, Fidirko NS. Iterative approach to solve the inverse diffraction problem under sharp focusing conditions. Opt Mem Neural Netw 26, 18–25 (2017). doi: 10.3103/S1060992X17010040

    CrossRef Google Scholar

    [19] Mansuripur M. Certain computational aspects of vector diffraction problems. J Opt Soc Am A 6, 786–805 (1989). doi: 10.1364/JOSAA.6.000786

    CrossRef Google Scholar

    [20] Kogelnik H, Li T. Laser beams and resonators. Appl Opt 5, 1550–1567 (1966). doi: 10.1364/AO.5.001550

    CrossRef Google Scholar

    [21] Enderlein J, Pampaloni F. Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes. J Opt Soc Am A 21, 1553–1558 (2004). doi: 10.1364/JOSAA.21.001553

    CrossRef Google Scholar

    [22] Volotovskiy SG, Karpeev SV, Khonina SN. Algorithm for reconstructing complex coefficients of Laguerre–Gaussian modes from the intensity distribution of their coherent superposition. Comput Opt 44, 352–362 (2020).

    Google Scholar

    [23] Goodman JW. Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

    Google Scholar

    [24] Marcuse D. Light Transmission Optics 2nd ed (Van Nostrand Reinhold, New York, 1982).

    Google Scholar

    [25] Han L, Liu S, Li P, Zhang Y, Cheng HC et al. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams. Phys. Rev. A 97, 053802 (2018). doi: 10.1103/PhysRevA.97.053802

    CrossRef Google Scholar

    [26] Meshalkin A, Losmanschii C, Prisacar A, Achimova E, Abashkin V et al. Carbazole-based azopolymers as media for polarization holographic recording. Adv Phys Res 1, 86–98 (2019).

    Google Scholar

    [27] Priimagi A, Shevchenko A. Azopolymer-based micro-and nanopatterning for photonic applications. J Polym Sci Part B Polym Phys 52, 163–182 (2014). doi: 10.1002/polb.23390

    CrossRef Google Scholar

    [28] Sekkat Z, Wood J, Aust EF, Knoll W, Volksen W et al. Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain. J Opt Soc Am B 13, 1713–1724 (1996). doi: 10.1364/JOSAB.13.001713

    CrossRef Google Scholar

    [29] Sekkat Z, Kawata S. Laser nanofabrication in photoresists and azopolymers. Laser Photonics Rev 8, 1–26 (2014). doi: 10.1002/lpor.201200081

    CrossRef Google Scholar

    [30] Sava I, Hurduc N, Sacarescu L, Apostol I, Damian V. Study of the nanostructuration capacity of some azopolymers with rigid or flexible chains. High Perform Polym 25, 13–24 (2013). doi: 10.1177/0954008312454151

    CrossRef Google Scholar

    [31] Ishitobi H, Nakamura I, Kobayashi TA, Hayazawa N, Sekkat Z et al. Nanomovement of azo polymers induced by longitudinal fields. ACS Photonics 1, 190–197 (2014). doi: 10.1021/ph400052b

    CrossRef Google Scholar

    [32] Porfirev A, Khonina S, Ivliev N, Meshalkin A, Achimova E et al. Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci Rep 12, 3477 (2022). doi: 10.1038/s41598-022-07440-9

    CrossRef Google Scholar

    [33] Porfirev AP, Khonina SN, Khorin PA, Ivliev NA. Polarization-sensitive direct laser patterning of azopolymer thin films with vortex beams. Opt Lett 47, 5080–5083 (2022). doi: 10.1364/OL.471236

    CrossRef Google Scholar

    [34] Porfirev AP, Ivliev NA, Fomchenkov SA, Khonina SN. Multi-spiral laser patterning of azopolymer thin films for generation of orbital angular momentum light. Nanomaterials 13, 612 (2023). doi: 10.3390/nano13030612

    CrossRef Google Scholar

    [35] Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat Commun 3, 989 (2012). doi: 10.1038/ncomms1996

    CrossRef Google Scholar

    [36] Sekkat Z. Vectorial motion of matter induced by light fueled molecular machines. OSA Continuum 1, 668–681 (2018). doi: 10.1364/OSAC.1.000668

    CrossRef Google Scholar

    [37] Sekkat Z. Model for athermal enhancement of molecular mobility in solid polymers by light. Phys Rev E 102, 032501 (2020). doi: 10.1103/PhysRevE.102.032501

    CrossRef Google Scholar

    [38] Masuda K, Shinozaki R, Kinezuka Y, Lee J, Ohno S et al. Nanoscale chiral surface relief of azo-polymers with nearfield OAM light. Opt Express 26, 22197–22207 (2018). doi: 10.1364/OE.26.022197

    CrossRef Google Scholar

    [39] Masuda K, Shinozaki R, Shiraishi A, Ichijo M, Yamane K et al. Picosecond optical vortex-induced chiral surface relief in an azo-polymer film. J Nanophoton 14, 016012 (2020).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(2653) PDF downloads(414) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint