Jiang BQ, Hou YG, Wu JX, Ma YX, Gan XT et al. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron Sci 2, 230012 (2023). doi: 10.29026/oes.2023.230012
Citation: Jiang BQ, Hou YG, Wu JX, Ma YX, Gan XT et al. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron Sci 2, 230012 (2023). doi: 10.29026/oes.2023.230012

Article Open Access

In-fiber photoelectric device based on graphene-coated tilted fiber grating

More Information
  • Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures. Here, we report an in-fiber photoelectric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating (TFBG) for photoelectric and electric-induced thermo-optic conversions. The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer. The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W, allowing the spectrum analysis by real-time monitoring of photocurrent evolution. Based on the thermal-optic effect of electrical injection, the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TFBG, with a high sensitivity approaching 2.167×104 nm/A2. The in-fiber photoelectric device, therefore as a powerful tool, could be widely available as off-the-shelf product for photodetection, spectrometer and current sensor.
  • 加载中
  • [1] Chen JH, Jing Q, Xu F, Lu ZD, Lu YQ. High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3-graphene hybrid structure. Optica 4, 835–838 (2017). doi: 10.1364/OPTICA.4.000835

    CrossRef Google Scholar

    [2] Xiong YF, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv Photon 2, 064001 (2020). doi: 10.1117/1.AP.2.6.064001

    CrossRef Google Scholar

    [3] Principe M, Consales M, Micco A, Crescitelli A, Castaldi G et al. Optical fiber meta-tips. Light Sci Appl 6, e16226 (2017).

    Google Scholar

    [4] Hao Z, Jiang BQ, Ma YX, Yi RX, Gan XT et al. Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal. Opto-Electron Adv 6, 230012 (2023). doi: 10.29026/oea.2023.230012

    CrossRef Google Scholar

    [5] Hao Z, Ma YX, Jiang BQ, Hou YG, Li AL et al. Second harmonic generation in a hollow-core fiber filled with GaSe nanosheets. Sci China Inf Sci 65, 162403 (2022). doi: 10.1007/s11432-021-3331-3

    CrossRef Google Scholar

    [6] Zhuo LQ, Fan PP, Zhang S, Zhan YS, Lin YM et al. High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation. Photon Res 8, 1949–1957 (2020). doi: 10.1364/PRJ.402108

    CrossRef Google Scholar

    [7] Chen JH, Xiong YF, Xu F, Lu YQ. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light Sci Appl 10, 78 (2021). doi: 10.1038/s41377-021-00520-x

    CrossRef Google Scholar

    [8] Chiavaioli F, Santano Rivero D, Del Villar I, Socorro-Leránoz AB, Zhang XJ et al. Ultrahigh sensitive detection of Tau protein as Alzheimer's biomarker via microfluidics and nanofunctionalized optical fiber sensors. Adv Photonics Res 3, 2200044 (2022). doi: 10.1002/adpr.202200044

    CrossRef Google Scholar

    [9] Chiavaioli F, Zubiate P, Del Villar I, Zamarreño CR, Giannetti A et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens 3, 936–943 (2018). doi: 10.1021/acssensors.7b00918

    CrossRef Google Scholar

    [10] Hill KO, Fujii Y, Johnson DC, Kawasaki BS. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl Phys Lett 32, 647–649 (1978). doi: 10.1063/1.89881

    CrossRef Google Scholar

    [11] Erdogan T, Sipe JE. Tilted fiber phase gratings. J Opt Soc Am A 13, 296–313 (1996). doi: 10.1364/JOSAA.13.000296

    CrossRef Google Scholar

    [12] Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055

    CrossRef Google Scholar

    [13] Caucheteur C, Guo T, Albert J. Multiresonant fiber gratings. Opt Photonics News 33, 42–49 (2022). doi: 10.1364/OPN.33.5.000042

    CrossRef Google Scholar

    [14] Jiang BQ, Zhao JL. Nanomaterial-functionalized tilted fiber gratings for optical modulation and sensing. J Lightwave Technol 41, 4103–4113 (2023). doi: 10.1109/JLT.2022.3216728

    CrossRef Google Scholar

    [15] Sun YZ, Yan ZJ, Zhou KM, Luo BB, Jiang BQ et al. Excessively tilted fiber grating sensors. J Lightwave Technol 39, 3761–3770 (2021). doi: 10.1109/JLT.2020.3048981

    CrossRef Google Scholar

    [16] Gan XT, Englund D, Van Thourhout D, Zhao JL. 2D materials-enabled optical modulators: from visible to terahertz spectral range. Appl Phys Rev 9, 021302 (2022). doi: 10.1063/5.0078416

    CrossRef Google Scholar

    [17] Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159

    CrossRef Google Scholar

    [18] Chen JH, Zheng BC, Shao GH, Ge SJ, Xu F et al. An all-optical modulator based on a stereo graphene-microfiber structure. Light Sci Appl 4, e360 (2015). doi: 10.1038/lsa.2015.133

    CrossRef Google Scholar

    [19] Yu SL, Wu XQ, Chen KR, Chen GB, Guo X et al. All-optical graphene modulator based on optical Kerr phase shift. Optica 3, 541–544 (2016). doi: 10.1364/OPTICA.3.000541

    CrossRef Google Scholar

    [20] Bao QL, Zhang H, Wang B, Ni ZH, Lim CHYX et al. Broadband graphene polarizer. Nat Photonics 5, 411–415 (2011). doi: 10.1038/nphoton.2011.102

    CrossRef Google Scholar

    [21] Jiang BQ, Yin GL, Zhou KM, Wang CL, Gan XT et al. Graphene-induced unique polarization tuning properties of excessively tilted fiber grating. Opt Lett 41, 5450–5453 (2016). doi: 10.1364/OL.41.005450

    CrossRef Google Scholar

    [22] Jiang BQ, Hou YG, Wang HY, Gan XT, Li AL et al. Few-layer graphene integrated tilted fiber grating for all-optical switching. J Lightwave Technol 39, 1477–1482 (2021). doi: 10.1109/JLT.2020.3036761

    CrossRef Google Scholar

    [23] Gan XT, Zhao CY, Wang YD, Mao D, Fang L et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468–471 (2015). doi: 10.1364/OPTICA.2.000468

    CrossRef Google Scholar

    [24] Jiang BQ, Zhang XM, Li AL, Hou YG, Hao Z et al. Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating. Photonics Res 10, 05001238 (2022).

    Google Scholar

    [25] Jiang BQ, Lu X, Gan XT, Qi M, Wang YD et al. Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region. Opt Lett 40, 3994–3997 (2015). doi: 10.1364/OL.40.003994

    CrossRef Google Scholar

    [26] Qi M, Zhou YX, Hu FR, Xu XL, Li WL et al. Improving terahertz sheet conductivity of graphene films synthesized by atmospheric pressure chemical vapor deposition with acetylene. J Phys Chem C 118, 15054–15060 (2014). doi: 10.1021/jp502260k

    CrossRef Google Scholar

    [27] Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143, 47–57 (2007). doi: 10.1016/j.ssc.2007.03.052

    CrossRef Google Scholar

    [28] Ma P, Salamin Y, Baeuerle B, Josten A, Heni W et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6, 154–161 (2019). doi: 10.1021/acsphotonics.8b01234

    CrossRef Google Scholar

    [29] Khosravian E, Mashayekhi HR, Farmani A. Highly polarization-sensitive, broadband, low dark current, high responsivity graphene-based photodetector utilizing a metal nano-grating at telecommunication wavelengths. J Opt Soc Am B 38, 1192–1199 (2021). doi: 10.1364/JOSAB.418804

    CrossRef Google Scholar

    [30] Sun LX, Zhang YQ, Wang YJ, Yang Y, Zhang CL et al. Real-time subcellular imaging based on graphene biosensors. Nanoscale 10, 1759–1765 (2018). doi: 10.1039/C7NR07479D

    CrossRef Google Scholar

    [31] Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007

    CrossRef Google Scholar

    [32] Li Z, Xiao YG, Liu F, Yan XY, You DT et al. Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions. Light Sci Appl 11, 220 (2022). doi: 10.1038/s41377-022-00914-5

    CrossRef Google Scholar

    [33] Albert J, Shao LY, Caucheteur C. Tilted fiber Bragg grating sensors. Laser Photonics Rev 7, 83–108 (2013). doi: 10.1002/lpor.201100039

    CrossRef Google Scholar

    [34] Kipriksiz SE, Yücel M. Tilted fiber Bragg grating design for a simultaneous measurement of temperature and strain. Opt Quant Electron 53, 6 (2021). doi: 10.1007/s11082-020-02609-w

    CrossRef Google Scholar

    [35] Cheng Y, Cui G, Liu CH, Liu ZT, Yan LG et al. Electric current aligning component units during graphene fiber Joule heating. Adv Funct Mater 32, 2103493 (2022). doi: 10.1002/adfm.202103493

    CrossRef Google Scholar

    [36] Yan SC, Zheng BC, Chen JH, Xu F, Lu YQ. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Appl Phys Lett 107, 053502 (2015). doi: 10.1063/1.4928247

    CrossRef Google Scholar

    [37] Sulaiman A, Harun SW, Ahmad F, Norizan SF, Ahmad H. Electrically tunable microfiber knot resonator based erbium-doped fiber laser. IEEE J Quantum Electron 48, 443–446 (2012). doi: 10.1109/JQE.2012.2184525

    CrossRef Google Scholar

    [38] Xie XD, Li J, Sun LP, Shen X, Jin L et al. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils. Sensors 14, 8423–8429 (2014). doi: 10.3390/s140508423

    CrossRef Google Scholar

    [39] R K, Kumar N, Sahoo V. A highly accurate all-fiber MMZI current sensor. IEEE Sens J 15, 1270–1274 (2015). doi: 10.1109/JSEN.2014.2361837

    CrossRef Google Scholar

    [40] Jasim AA, Faruki J, Ismail MF, Ahmad H. Fabrication and characterization of microbent inline microfiber interferometer for compact temperature and current sensing applications. J Lightwave Technol 35, 2150–2155 (2017). doi: 10.1109/JLT.2016.2642989

    CrossRef Google Scholar

    [41] Sulaiman A, Harun SW, Aryangar I, Ahmad H. DC current sensing capability of microfibre Mach-Zehnder interferometer. Electron Lett 48, 943–945 (2012). doi: 10.1049/el.2012.1435

    CrossRef Google Scholar

    [42] Jasim AA, Harun SW, Muhammad MZ, Arof H, Ahmad H. Current sensor based on inline microfiber Mach–Zehnder interferometer. Sens Actuators A Phys 192, 9–12 (2013). doi: 10.1016/j.sna.2012.12.012

    CrossRef Google Scholar

    [43] Nodehi S, Mohammed WS, Ahmad H, Harun SW. Realization of spectral tunable filter based on thermal effect in microfiber structure. Opt Fiber Technol 28, 38–41 (2016). doi: 10.1016/j.yofte.2016.01.001

    CrossRef Google Scholar

    [44] Chen GY, Brambilla G, Newson TP. Inspection of electrical wires for insulation faults and current surges using sliding temperature sensor based on optical Microfibre coil resonator. Electron Lett 49, 46–47 (2013). doi: 10.1049/el.2012.3554

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(4524) PDF downloads(776) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint