Citation: | Xiao TX, Tu S, Liang SZ, Guo RJ, Tian T et al. Solar cell-based hybrid energy harvesters towards sustainability. Opto-Electron Sci 2, 230011 (2023). doi: 10.29026/oes.2023.230011 |
[1] | Pang YK, Cao YT, Derakhshani M, Fang YH, Wang ZL et al. Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 4, 116–143 (2021). doi: 10.1016/j.matt.2020.10.018 |
[2] | Zhong JW, Zhong QZ, Hu QY, Wu N, Li WB et al. Stretchable self‐powered fiber‐based strain sensor. Adv Funct Mater 25, 1798–1803 (2015). doi: 10.1002/adfm.201404087 |
[3] | Xu CH, Yang YR, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. Matter 2 1414–1445 (2020). |
[4] | Salter SH. Wave power. Nature 249, 720–724 (1974). doi: 10.1038/249720a0 |
[5] | Liang SZ, Wang XY, Cheng YJ, Xia YG, Müller-Buschbaum P. Anatase titanium dioxide as rechargeable ion battery electrode-a chronological review. Energy Storage Mater 45, 201–264 (2022). doi: 10.1016/j.ensm.2021.11.023 |
[6] | Herbert GMJ, Iniyan S, Sreevalsan E, Rajapandian S. A review of wind energy technologies. Renew Sustainable Energy Rev 11, 1117–1145 (2007). doi: 10.1016/j.rser.2005.08.004 |
[7] | Lehmann J. Bio‐energy in the black. Front Ecol Environ 5, 381–387 (2007). doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 |
[8] | Lai YC, Hsiao YC, Wu HM, Wang ZL. Waterproof fabric‐based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self‐powered sensors. Adv Sci 6, 1801883 (2019). doi: 10.1002/advs.201801883 |
[9] | Cho Y, Lee K, Park S, Ahn S, Kim W et al. Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure. Nano Energy 61, 370–380 (2019). doi: 10.1016/j.nanoen.2019.04.083 |
[10] | Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006 |
[11] | Tan DZ, Sun K, Li ZL, Xu BB, Qiu JR. Photo-processing of perovskites: current research status and challenges. Opto-Electron Sci 1, 220014 (2022). doi: 10.29026/oes.2022.220014 |
[12] | Jiang XY, Chotard P, Luo KX, Eckmann F, Tu S et al. Revealing donor-acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv Energy Mater 12, 2103977 (2022). doi: 10.1002/aenm.202103977 |
[13] | Zou YQ, Yuan S, Buyruk A, Eichhorn J, Yin SS et al. The influence of CsBr on crystal orientation and optoelectronic properties of MAPbI3-based solar cells. ACS Appl Mater Interfaces 14, 2958–2967 (2022). doi: 10.1021/acsami.1c22184 |
[14] | Yang Y, Chen L, He J, Hou XJ, Qiao XJ et al. Flexible and extendable honeycomb‐shaped triboelectric nanogenerator for effective human motion energy harvesting and biomechanical sensing. Adv Mater Technol 7, 2100702 (2022). doi: 10.1002/admt.202100702 |
[15] | Guo TM, Gong YJ, Li ZG, Liu YM, Li W et al. A new hybrid lead‐free metal halide piezoelectric for energy harvesting and human motion sensing. Small 18, 2103829 (2022). doi: 10.1002/smll.202103829 |
[16] | Qu XC, Liu Z, Tan PC, Wang C, Liu Y et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv 8, eabq2521 (2022). doi: 10.1126/sciadv.abq2521 |
[17] | Jiang DJ, Shi BJ, Ouyang H, Fan YB, Wang ZL et al. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14, 6436–6448 (2020). doi: 10.1021/acsnano.9b08268 |
[18] | Guo XG, He TYY, Zhang ZX, Luo AX, Wang F et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15, 19054–19069 (2021). doi: 10.1021/acsnano.1c04464 |
[19] | Xiao TX, Jiang T, Zhu JX, Liang X, Xu L et al. Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl Mater Interfaces 10, 3616–3623 (2018). doi: 10.1021/acsami.7b17239 |
[20] | Liang X, Jiang T, Liu GX, Feng YW, Zhang C et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ Sci 13, 277–285 (2020). doi: 10.1039/C9EE03258D |
[21] | Jiang T, Pang H, An J, Lu PJ, Feng YW et al. Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater 10, 2000064 (2020). doi: 10.1002/aenm.202000064 |
[22] | Cheng C, Dai YW, Yu J, Liu C, Wang SJ et al. Review of liquid-based systems to recover low-grade waste heat for electrical energy generation. Energy Fuels 35, 161–175 (2021). doi: 10.1021/acs.energyfuels.0c03733 |
[23] | Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). doi: 10.1126/science.1158899 |
[24] | Lee TD, Ebong AU. A review of thin film solar cell technologies and challenges. Renew Sustainable Energy Rev 70, 1286–1297 (2017). doi: 10.1016/j.rser.2016.12.028 |
[25] | Sengupta D, Das P, Mondal B, Mukherjee K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application-a review. Renew Sustainable Energy Rev 60, 356–376 (2016). doi: 10.1016/j.rser.2016.01.104 |
[26] | Sathiyan G, Sivakumar EKT, Ganesamoorthy R, Thangamuthu R, Sakthivel P. Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 57, 243–252 (2016). doi: 10.1016/j.tetlet.2015.12.057 |
[27] | Kim JY, Lee JW, Jung HS, Shin H, Park NG. High-efficiency perovskite solar cells. Chem Rev 120, 7867–7918 (2020). doi: 10.1021/acs.chemrev.0c00107 |
[28] | Wu TH, Qin ZZ, Wang YB, Wu YZ, Chen W et al. The main progress of perovskite solar cells in 2020-2021. Nano-Micro Lett 13, 152 (2021). doi: 10.1007/s40820-021-00672-w |
[29] | Xie L, Song W, Ge JF, Tang BC, Zhang XL et al. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 82, 105770 (2021). doi: 10.1016/j.nanoen.2021.105770 |
[30] | Cui Y, Yao HF, Hong L, Zhang T, Tang YB et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl Sci Rev 7, 1239–1246 (2020). doi: 10.1093/nsr/nwz200 |
[31] | Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L et al. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020). doi: 10.1016/j.nanoen.2020.104495 |
[32] | Nayak PK, Mahesh S, Snaith HJ, Cahen D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4, 269–285 (2019). doi: 10.1038/s41578-019-0097-0 |
[33] | Yuan JY, Hazarika A, Zhao Q, Ling XF, Moot T et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020). doi: 10.1016/j.joule.2020.04.006 |
[34] | Hu L, Zhao Q, Huang SJ, Zheng JH, Guan XW et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat Commun 12, 466 (2021). doi: 10.1038/s41467-020-20749-1 |
[35] | Chen D, Vaqueiro Contreras M, Ciesla A, Hamer P, Hallam B et al. Progress in the understanding of light‐and elevated temperature‐induced degradation in silicon solar cells: a review. Prog Photovolt Res Appl 29, 1180–1201 (2021). doi: 10.1002/pip.3362 |
[36] | Omazic A, Oreski G, Halwachs M, Eder GC, Hirschl C et al. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: a literature review. Sol Energy Mater Sol Cells 192, 123–133 (2019). doi: 10.1016/j.solmat.2018.12.027 |
[37] | Dunfield SP, Bliss L, Zhang F, Luther JM, Zhu K et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv Energy Mater 10, 1904054 (2020). doi: 10.1002/aenm.201904054 |
[38] | Kundu S, Kelly TL. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2, e12025 (2020). |
[39] | Guo RJ, Han D, Chen W, Dai LJ, Ji KY et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat Energy 6, 977–986 (2021). doi: 10.1038/s41560-021-00912-8 |
[40] | Xiong Z, Chen X, Zhang B, Odunmbaku GO, Ou ZP et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv Mater 34, 2106118 (2022). doi: 10.1002/adma.202106118 |
[41] | Sharma R, Sharma A, Agarwal S, Dhaka MS. Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol Energy 244, 516–535 (2022). doi: 10.1016/j.solener.2022.08.001 |
[42] | Li CQ, Gu XB, Chen ZH, Han X, Yu N et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J Am Chem Soc 144, 14731–14739 (2022). doi: 10.1021/jacs.2c05303 |
[43] | Tang QW. All‐weather solar cells: a rising photovoltaic revolution. Chem Eur J 23, 8118–8127 (2017). doi: 10.1002/chem.201700098 |
[44] | Ryu H, Yoon HJ, Kim SW. Hybrid energy harvesters: toward sustainable energy harvesting. Adv Mater 31, 1802898 (2019). doi: 10.1002/adma.201802898 |
[45] | Wu YH, Qu JK, Chu PK, Shin DM, Luo Y et al. Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy 89, 106376 (2021). doi: 10.1016/j.nanoen.2021.106376 |
[46] | Gautam A, Saini RP. A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. J Energy Storage 27, 101046 (2020). doi: 10.1016/j.est.2019.101046 |
[47] | Makki A, Omer S, Sabir H. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sustainable Energy Rev 41, 658–684 (2015). doi: 10.1016/j.rser.2014.08.069 |
[48] | Yang Y, Wang ZL. Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy 14, 245–256 (2015). doi: 10.1016/j.nanoen.2014.11.058 |
[49] | Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). doi: 10.1016/j.nanoen.2012.01.004 |
[50] | Yang YQ, Guo XG, Zhu ML, Sun ZD, Zhang ZX et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv Energy Mater 13, 2203040 (2023). doi: 10.1002/aenm.202203040 |
[51] | Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). doi: 10.1126/science.1124005 |
[52] | Champier D. Thermoelectric generators: a review of applications. Energy Convers Manag 140, 167–181 (2017). doi: 10.1016/j.enconman.2017.02.070 |
[53] | Sivasubramanian R, Vaithilingam CA, Indira SS, Paiman S, Misron N et al. A review on photovoltaic and nanogenerator hybrid system. Mater Today Energy 20, 100772 (2021). doi: 10.1016/j.mtener.2021.100772 |
[54] | Das D, Kalita P, Roy O. Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development. Renew Sustainable Energy Rev 84, 111–130 (2018). doi: 10.1016/j.rser.2018.01.002 |
[55] | Wang J, Xiao F, Zhao H. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renew Sustainable Energy Rev 151, 111522 (2021). doi: 10.1016/j.rser.2021.111522 |
[56] | Sharov VA, Alekseev PA, Borodin BR, Dunaevskiy MS, Reznik RR et al. InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation. ACS Appl Energy Mater 2, 4395–4401 (2019). doi: 10.1021/acsaem.9b00576 |
[57] | Bensmail S, Rekioua D, Azzi H. Study of hybrid photovoltaic/fuel cell system for stand-alone applications. Int J Hydrogen Energy 40, 13820–13826 (2015). doi: 10.1016/j.ijhydene.2015.04.013 |
[58] | Chen YD, Jie Y, Zhu JQ, Lu QX, Cheng Y et al. Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Res 15, 2069–2076 (2022). doi: 10.1007/s12274-021-3822-0 |
[59] | Cao R, Wang JN, Xing Y, Song WX, Li NW et al. A self-powered lantern based on a triboelectric-photovoltaic hybrid nanogenerator. Adv Mater 3, 1700371 (2018). |
[60] | Le XH, Guo XG, Lee C. Evolution of micro-nano energy harvesting technology—scavenging energy from diverse sources towards self-sustained micro/nano systems. Nanoenergy Adv 3, 101–125 (2023). doi: 10.3390/nanoenergyadv3020006 |
[61] | Qiu CK, Wu F, Lee C, Yuce MR. Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 70, 104456 (2020). doi: 10.1016/j.nanoen.2020.104456 |
[62] | Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering 2nd ed (Wiley, Chichester, 2011). |
[63] | Halme J, Vahermaa P, Miettunen K, Lund P. Device physics of dye solar cells. Adv Mater 22, E210–E234 (2010). doi: 10.1002/adma.201000726 |
[64] | Clarke TM, Durrant JR. Charge photogeneration in organic solar cells. Chem Rev 110, 6736–6767 (2010). doi: 10.1021/cr900271s |
[65] | Li H, Zhou JJ, Tan LG, Li MH, Jiang CF et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci Adv 8, eabo7422 (2022). doi: 10.1126/sciadv.abo7422 |
[66] | Sun YN, Chang MJ, Meng LX, Wan XJ, Gao HH et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat Electron 2, 513–520 (2019). doi: 10.1038/s41928-019-0315-1 |
[67] | Yang ZY, Fan JZ, Proppe AH, Arquer FPGD, Rossouw D et al. Mixed-quantum-dot solar cells. Nat Commun 8, 1325 (2017). doi: 10.1038/s41467-017-01362-1 |
[68] | Rath AK, Bernechea M, Martinez L, De Arquer FPG, Osmond J et al. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nat Photonics 6, 529–534 (2012). doi: 10.1038/nphoton.2012.139 |
[69] | Luo X, Luo HW, Li HJ, Xia R, Zheng XT et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater 35, 2207883 (2023). doi: 10.1002/adma.202207883 |
[70] | Reb LK, Böhmer M, Predeschly B, Grott S, Weindl CL et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020). doi: 10.1016/j.joule.2020.07.004 |
[71] | Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today 30, 34–51 (2019). doi: 10.1016/j.mattod.2019.05.016 |
[72] | Wang ZL. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20, 74–82 (2017). doi: 10.1016/j.mattod.2016.12.001 |
[73] | Kim S, Gupta MK, Lee KY, Sohn A, Kim TY et al. Transparent flexible graphene triboelectric nanogenerators. Adv Mater 26, 3918–3925 (2014). doi: 10.1002/adma.201400172 |
[74] | Saha CR, O’Donnell T, Wang N, McCloskey P. Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147, 248–253 (2008). doi: 10.1016/j.sna.2008.03.008 |
[75] | Zhao JQ, Zhen GW, Liu GX, Bu TZ, Liu WB et al. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019). doi: 10.1016/j.nanoen.2019.04.047 |
[76] | Hinchet R, Yoon HJ, Ryu H, Kim MK, Choi EK et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). doi: 10.1126/science.aan3997 |
[77] | Zi YL, Wang ZL. Nanogenerators: an emerging technology towards nanoenergy. APL Mater 5, 074103 (2017). doi: 10.1063/1.4977208 |
[78] | Zhao ZF, Pu X, Du CH, Li LX, Jiang CY et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 10, 1780–1787 (2016). doi: 10.1021/acsnano.5b07157 |
[79] | Xiao TX, Liang X, Jiang T, Xu L, Shao JJ et al. Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater 28, 1802634 (2018). doi: 10.1002/adfm.201802634 |
[80] | Kang Y, Wang B, Dai SG, Liu GL, Pu YP et al. Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications. ACS Appl Mater Interfaces 7, 20469–20476 (2015). doi: 10.1021/acsami.5b06675 |
[81] | Huang T, Wang C, Yu H, Wang HZ, Zhang QH et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015). doi: 10.1016/j.nanoen.2015.01.038 |
[82] | Wang C, Hu YR, Liu Y, Shan YZ, Qu XC et al. Tissue‐adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation. Adv Funct Mater , 202303696 (2023). doi: 10.1002/adfm.202303696 |
[83] | Qin Y, Wang XD, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008). doi: 10.1038/nature06601 |
[84] | Zhang C, Fan W, Wang SJ, Wang Q, Zhang YF et al. Recent progress of wearable piezoelectric nanogenerators. ACS Appl Electron Mater 3, 2449–2467 (2021). doi: 10.1021/acsaelm.1c00165 |
[85] | Xu S, Qin Y, Xu C, Wei YG, Yang RS et al. Self-powered nanowire devices. Nat Nanotechnol 5, 366–373 (2010). doi: 10.1038/nnano.2010.46 |
[86] | Park KI, Son JH, Hwang GT, Jeong CK, Ryu J et al. Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26, 2514–2520 (2014). doi: 10.1002/adma.201305659 |
[87] | Zhang M, Gao T, Wang JS, Liao JJ, Qiu YQ et al. Single BaTiO3 nanowires-polymer fiber based nanogenerator. Nano Enery 11, 510–517 (2015). doi: 10.1016/j.nanoen.2014.11.028 |
[88] | Chang C, Tran VH, Wang JB, Fuh YK, Lin LW. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10, 726–731 (2010). doi: 10.1021/nl9040719 |
[89] | Zhang X, Chen JF, Wang Y. Hierarchical PbZrxTi1-xO3 nanowires for vibrational energy harvesting. ACS Appl Nano Mater 1, 1461–1466 (2018). doi: 10.1021/acsanm.7b00317 |
[90] | Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev 120, 7399–7515 (2020). doi: 10.1021/acs.chemrev.0c00026 |
[91] | Yang L, Chen ZG, Dargusch MS, Zou J. High performance thermoelectric materials: progress and their applications. Adv Energy Mater 8, 1701797 (2018). doi: 10.1002/aenm.201701797 |
[92] | Oechsle AL, Heger JE, Li N, Yin SS, Bernstorff S et al. Correlation of thermoelectric performance, domain morphology and doping level in PEDOT: PSS thin films post‐treated with ionic liquids. Macromol Rapid Commun 42, 2100397 (2021). doi: 10.1002/marc.202100397 |
[93] | Tu S, Tian T, Oechsle AL, Yin SS, Jiang XY et al. Improvement of the thermoelectric properties of PEDOT: PSS films via DMSO addition and DMSO/salt post-treatment resolved from a fundamental view. Chem Eng J 429, 132295 (2022). doi: 10.1016/j.cej.2021.132295 |
[94] | Xie WJ, Weidenkaff A, Tang XF, Zhang QJ, Poon J et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012). doi: 10.3390/nano2040379 |
[95] | Liu ZJ, Tian B, Li Y, Lei JM, Zhang ZK et al. A large-area bionic skin for high-temperature energy harvesting applications. Nano Res 16, 10245–10255 (2023). doi: 10.1007/s12274-023-5699-6 |
[96] | Migita T, Tachikawa N, Katayama Y, Miura T. Thermoelectromotive force of some redox couples in an amide-type room-temperature ionic liquid. Electrochemistry 77, 639–641 (2009). doi: 10.5796/electrochemistry.77.639 |
[97] | Orr B, Akbarzadeh A, Mochizuki M, Singh R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl Therm Eng 101, 490–495 (2016). doi: 10.1016/j.applthermaleng.2015.10.081 |
[98] | Iezzi B, Ankireddy K, Twiddy J, Losego MD, Jur JS. Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Appl Energy 208, 758–765 (2017). doi: 10.1016/j.apenergy.2017.09.073 |
[99] | Proto A, Penhaker M, Conforto S, Schmid M. Nanogenerators for human body energy harvesting. Trends Biotechnol 35, 610–624 (2017). doi: 10.1016/j.tibtech.2017.04.005 |
[100] | Settaluri KT, Lo H, Ram RJ. Thin thermoelectric generator system for body energy harvesting. J Electron Mater 41, 984–988 (2012). doi: 10.1007/s11664-011-1834-3 |
[101] | Trung NH, Van Toan N, Ono T. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl Energy 210, 467–476 (2018). doi: 10.1016/j.apenergy.2017.05.005 |
[102] | Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1, 16050 (2016). doi: 10.1038/natrevmats.2016.50 |
[103] | Zhang FJ, Zang YP, Huang DZ, Di CA, Zhu DB. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 6, 8356 (2015). doi: 10.1038/ncomms9356 |
[104] | Shi H, Liu CC, Jiang QL, Xu JK. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater 1, 1500017 (2015). doi: 10.1002/aelm.201500017 |
[105] | Bießmann L, Kreuzer LP, Widmann T, Hohn N, Moulin JF et al. Monitoring the swelling behavior of PEDOT: PSS electrodes under high humidity conditions. ACS Appl Mater Interfaces 10, 9865–9872 (2018). doi: 10.1021/acsami.8b00446 |
[106] | Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C et al. The crystallization of PEDOT: PSS polymeric electrodes probed in situ during printing. Adv Mater 27, 3391–3397 (2015). doi: 10.1002/adma.201500315 |
[107] | Oechsle AL, Heger JE, Li N, Yin SS, Bernstorff S et al. In situ observation of morphological and oxidation level degradation processes within ionic liquid post-treated PEDOT: PSS thin films upon operation at high temperatures. ACS Appl Mater Interfaces 14, 30802–30811 (2022). doi: 10.1021/acsami.2c05745 |
[108] | Saxena N, Pretzl B, Lamprecht X, Bießmann L, Yang D et al. Ionic liquids as post-treatment agents for simultaneous improvement of Seebeck coefficient and electrical conductivity in PEDOT: PSS Films. ACS Appl Mater Interfaces 11, 8060–8071 (2019). doi: 10.1021/acsami.8b21709 |
[109] | Kluge RM, Saxena N, Chen W, Körstgens V, Schwartzkopf M et al. Doping dependent in‐plane and cross‐plane thermoelectric performance of thin n‐type polymer P(NDI2OD‐T2) films. Adv Funct Mater 30, 2003092 (2020). doi: 10.1002/adfm.202003092 |
[110] | Kluge RM, Saxena N, Müller-Buschbaum, P. A solution-processable polymer-based thin-film thermoelectric generator. Adv Energy Sustainability Res 2, 2000060 (2021). doi: 10.1002/aesr.202000060 |
[111] | Huo ZY, Lee DM, Kim YJ, Kim SW. Solar-induced hybrid energy harvesters for advanced oxidation water treatment. IScience 24, 102808 (2021). doi: 10.1016/j.isci.2021.102808 |
[112] | Liu YQ, Sun N, Liu JW, Wen Z, Sun XH et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12, 2893–2899 (2018). doi: 10.1021/acsnano.8b00416 |
[113] | Zhao LL, Duan JL, Liu LQ, Wang JW, Duan YY et al. Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy 82, 105773 (2021). doi: 10.1016/j.nanoen.2021.105773 |
[114] | Ren ZY, Zheng Q, Wang HB, Guo H, Miao LM et al. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 67, 104243 (2020). doi: 10.1016/j.nanoen.2019.104243 |
[115] | Pu X, Song WX, Liu MM, Sun CW, Du CH et al. Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells. Adv Energy Mater 6, 1601048 (2016). doi: 10.1002/aenm.201601048 |
[116] | Kim B, Song JY, Kim DY, Kim MC, Lin ZH et al. All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester. Nano Energy 104, 107878 (2022). doi: 10.1016/j.nanoen.2022.107878 |
[117] | Liu T, Zheng Y, Xu YX, Liu XJ, Wang CF et al. Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications. Nano Energy 103, 107776 (2022). doi: 10.1016/j.nanoen.2022.107776 |
[118] | Liu YQ, Li EL, Yan YJ, Lin ZN, Chen QZ et al. A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy 86, 106118 (2021). doi: 10.1016/j.nanoen.2021.106118 |
[119] | Xu C, Wang XD, Wang ZL. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131, 5866–5872 (2009). doi: 10.1021/ja810158x |
[120] | Xu C, Wang ZL. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv Mater 23, 873–877 (2011). doi: 10.1002/adma.201003696 |
[121] | Ahmed R, Kim Y, Zeeshan, Chun W. Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films. Energies 12, 229 (2019). doi: 10.3390/en12020229 |
[122] | Yoon GC, Shin KS, Gupta MK, Lee KY, Lee JH et al. High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy 12, 547–555 (2015). doi: 10.1016/j.nanoen.2015.01.028 |
[123] | Liu X, Li J, Fang ZZ, Wang C, Shu LS et al. Ultraviolet-protecting, flexible and stable photovoltaic-assisted piezoelectric hybrid unit nanogenerator for simultaneously harvesting ultraviolet light and mechanical energies. J Mater Sci 55, 15222–15237 (2020). doi: 10.1007/s10853-020-05078-4 |
[124] | Kim YM, Kim W, Choi DW, Choi DH. Reliable output performance of a photovoltaic–piezoelectric hybridized energy harvester with an automatic position-adjustable bending instrument. Int. J Precis Eng Manuf - Green Technol 9, 1077–1086 (2022). doi: 10.1007/s40684-021-00350-7 |
[125] | Lee DH. Direct parallel and hybrid power control scheme of a low-power PV and piezoelectric energy harvesting module. J Electr Eng Technol 16, 2045–2053 (2021). doi: 10.1007/s42835-021-00722-8 |
[126] | Sundarraj P, Maity D, Roy SS, Taylor RA. Recent advances in thermoelectric materials and solar thermoelectric generators-a critical review. RSC Adv 4, 46860–46874 (2014). doi: 10.1039/C4RA05322B |
[127] | Ju X, Wang ZF, Flamant G, Li P, Zhao WY. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Sol Energy 86, 1941–1954 (2012). doi: 10.1016/j.solener.2012.02.024 |
[128] | Li YL, Witharana S, Cao H, Lasfargues M, Huang Y et al. Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system. Particuology 15, 39–44 (2014). doi: 10.1016/j.partic.2013.08.003 |
[129] | Deng Y, Zhu W, Wang Y, Shi YM. Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design. Sol Energy 88, 182–191 (2013). doi: 10.1016/j.solener.2012.12.002 |
[130] | Xu L, Xiong Y, Mei AY, Hu Y, Rong YG et al. Efficient perovskite photovoltaic‐thermoelectric hybrid device. Adv Energy Mater 8, 1702937 (2018). doi: 10.1002/aenm.201702937 |
[131] | Hsueh TJ, Shieh JM, Yeh YM. Hybrid Cd‐free CIGS solar cell/TEG device with ZnO nanowires. Prog Photovolt Res Appl 23, 507–512 (2015). doi: 10.1002/pip.2457 |
[132] | Liu ZY, Sun B, Zhong Y, Liu XY, Han JH et al. Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy 38, 457–466 (2017). doi: 10.1016/j.nanoen.2017.06.016 |
[133] | Zhou YP, He YL, Qiu Y, Ren QL, Xie T. Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method. Appl Energy 207, 18–26 (2017). doi: 10.1016/j.apenergy.2017.05.115 |
[134] | Jurado JP, Dörling B, Zapata-Arteaga O, Goñi AR, Campoy-Quiles M. Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics. J Mater Chem C 9, 2123–2132 (2021). doi: 10.1039/D0TC05067A |
[135] | Zhang KW, Wang YH, Yang Y. Structure design and performance of hybridized nanogenerators. Adv Funct Mater 29, 1806435 (2019). doi: 10.1002/adfm.201806435 |
[136] | Zhang KW, Wang ZL, Yang Y. Enhanced P3HT/ZnO nanowire array solar cells by pyro-phototronic effect. ACS Nano 10, 10331–10338 (2016). doi: 10.1021/acsnano.6b06049 |
[137] | Shao HY, Wen Z, Cheng P, Sun N, Shen QQ et al. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). doi: 10.1016/j.nanoen.2017.07.045 |
[138] | Yang Y, Zhang HL, Zhu G, Lee S, Lin ZH et al. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7, 785–790 (2013). doi: 10.1021/nn305247x |
[139] | Yoon HJ, Kwak SS, Kim SM, Kim SW. Aim high energy conversion efficiency in triboelectric nanogenerators. Sci Technol Adv Mater 21, 683–688 (2020). doi: 10.1080/14686996.2020.1800366 |
Outline illustration of the review of SCHEHs.
Photovoltaic effect-based energy harvester. (a) Schematic illustration of the photovoltaic effect-based energy harvester44. (b) Simplified scheme presenting the Cl-containing alloy-mediated sequential vacuum deposition approach65. (c) Schematic architecture of the flexible OSCs (left), J-V curves of a typical single-junction device (D1:A1) based on FlexAgNEs and ITO glass electrodes (middle), J-V curves of a typical tandem device (D2:A2/D1:A1:A4) based on FlexAgNEs and ITO electrodes (right)66. (d) Scheme of the solution ligand exchange process67. (e) Schematic diagram of perovskite/SHJ tandem solar cell69. (f) Maximum power point tracking of encapsulated tandem solar cells in air. Inset is the photograph of the encapsulated device69. (g) Schematic overview of the MAPHEUS-8 sounding rocket flight. Inset is the different illumination states70. (h) Scatter plot showing the Jsc evolution and flight-altitude (black line) during micro-gravity70. Figure reproduced with permission from: (a) ref.44, Copyright © 2019 John Wiley and Sons; (b) ref.65, Copyright © 2022 AAAS; (c) ref.66, Copyright © 2019 Springer Nature; (d) ref.67, under a Creative Commons Attribution 4.0 International License; (e, f) ref.69, Copyright © 2023 John Wiley and Sons. (g, h) ref.70, Copyright © 2020 Elsevier.
Triboelectric effect-based energy harvester. (a) Schematic illustration of the triboelectric effect-based nanogenerator44. (b) Variation of current and power of the TENG-flag with external load resistances and the output performances of the TENG-flag (the woven unit is 1.5 × 1.5 cm2, and the degree of tightness is 1.09) at a 22 m s-1 wind speed78. (c) Voltage profiles of the button battery charged by TENG-flag and galvanostatically discharged at 1 μA78. (d) Schematic diagram of the spherical TENG with spring-assisted multilayered structure floating on water, and schematic representation enlarged structure for the zigzag multilayered TENG with five basic units79. (e) Schematic diagram of the folded elastic strip-based TENG80. (f) Schematic diagram (left) and photographs (middle) of the wearable all-fiber TENG, as well as hundreds of LEDs powered by the TENG81. Figure reproduced with permission from: (a) ref.44, Copyright © 2019 John Wiley and Sons; (b, c) ref.78, Copyright © 2016 American Chemical Society; (d) ref.79, Copyright © 2018 John Wiley and Sons; (e) ref.80, Copyright © 2015 American Chemical Society; (f) ref.81, Copyright © 2015 Elsevier.
Piezoelectric effect-based energy harvester. (a) Schematic illustration of the piezoelectric effect-based nanogenerator44. (b) Schematic structure (left), output voltage (middle), and output current (right) of the lateral-nanowire-array integrated nanogenerator85. (c) Schematic diagram of the fabrication process (left) and the photograph (right) of a high-efficient, flexible, and large-area PZT thin film-based NG using the LLO method86. (d) Schematic images (left and middle) and the corresponding output voltage (right) of the flexible nanogenerator under the finger movement87. (e) Fabrication process (left), SEM image (top), and output current (bottom) of the piezoelectric PVDF nanogenerator88. (f) SEM image and the schematic structure of the PZT-PDMS energy harvester89. Figure reproduced with permission from: (a) ref.44, Copyright © 2019 John Wiley and Sons; (b) ref.85, Copyright © 2010 Springer Nature; (c) ref.86, Copyright © 2014 John Wiley and Sons. (d) ref.87, Copyright © 2015 Elsevier. (e) ref.88, Copyright © 2010 American Chemical Society. (f) ref.89, Copyright © 2018 American Chemical Society.
Thermoelectric effect-based energy harvester. (a) Schematic illustration of the thermoelectric effect-based generator44. (b) Practical TE generators connecting large numbers of junctions in series to increase operating voltage and spread heat flow23. (c) Honda prototype TEG exhaust heat recovery system97. (d) Schematic illustration (left) and photographs (right) of the complete TEG device on pipe98. (e) Structure of the proposed lateral Y type FTEGs101. (f) Practical applications of the fabricated dual-functional sensor as electronic skins103. (g) Sketch of the sample preparation of a solution-processable all-polymer TEG110. (h) Performances (left), as well as photographs of the undoped (top) and 40 wt% doped (bottom) thin-film TEGs110. Figure reproduced with permission from: (a) ref.44, Copyright © 2019 John Wiley and Sons; (b) ref.23, Copyright © 2008 AAAS; (c) ref.97, Copyright © 2016 Elsevier; (d) ref.98, Copyright © 2017 Elsevier; (e) ref.101, Copyright © 2018 Elsevier. (f) ref.103, under a Creative Commons Attribution 4.0 International License. (g, h) ref.110, Copyright © 2020 John Wiley and Sons.
SCHEHs based on solar cell and triboelectric nanogenerator. (a) Schematic illustration and the photograph of the hybrid energy harvester112. (b) Architecture of the hybrid TENG/Si tandem solar cell113. (c) Schematic illustration of the flexible hybrid energy harvesting system114. (d) Scheme of the configuration of the TENG fabrics and the fiber-shaped dye-sensitized solar cell (top), as well as output current of the hybrid energy-harvesting device115. (e) Schematic illustration (left) and the working principle (right) of the raindrop-solar hybrid energy harvester with embedded charge-storage layer116. (f) Photographs and the schematic illustration of the synergistic solar and raindrop hybrid energy harvester117. (g) Schematic diagram of the multifunctional hybrid device118. (h) Schematic illustration of the self-powered environmental visualized system (left), and alterable colored LED showing different light at different environment (right)118. Figure reproduced with permission from: (a) ref.112, Copyright © 2018 American Chemical Society; (b) ref.113, Copyright © 2021 Elsevier; (c) ref.114, Copyright © 2020 Elsevier. (d) ref.115, Copyright © 2016 John Wiley and Sons. (e) ref.116, Copyright © 2022 Elsevier; (f) ref.117, Copyright © 2022 Elsevier; (g, h) ref.118, Copyright © 2021 Elsevier.
SCHEHs based on solar cell and piezoelectric nanogenerator. (a) Schematic structure of a serially integrated hybrid cell119. (b) Schematic illustration of a compact hybrid cell120. (c) Schematic illustration (left) and the photograph (right) of the tree shaped hybrid nanogenerator121. (d) Output voltage of the hybrid cell when the pressure is applied periodically at an interval of 3.0 s for an extended period of 1.0 s122. (e) Schematic illustration of a composite photovoltaic/PENG film123. (f) Output performance (left) and schematic illustration (middle and right) of the hybrid device with the bending instrument124. (g) Experimental configuration of the parallel hybrid power system125. Figure reproduced with permission from: (a) ref.119, Copyright © 2009 American Chemical Society; (b) ref.120, Copyright © 2011 John Wiley and Sons; (c) ref.121, under a Creative Commons Attribution 4.0 International License; (d) ref.122, Copyright © 2015 Elsevier; (e) ref.123, Copyright © 2020 Springer Nature; (f) ref.124, Copyright © 2022 Springer Nature; (g) ref.125, Copyright © 2021 Springer Nature.
SCHEHs based on solar cell and thermoelectric generator. (a) Schematic of the PV-TE hybrid power system128. (b) Hybrid system efficiency vs. cutoff wavelength for different concentration ratio (h = 10000 W/m2 K-1)127. (c) Comparison of the efficiency between the PV-only system and the PV-TE hybrid system127. (d) Schematic illustration of the hybrid generation system129. (e) Schematic illustration (left), and electron energy band diagram of the PSC-TE hybrid device130. (f) Schematic cross section of ZnO nanowires/CIGS solar cell connected to the thermoelectric generator131. (g) Schematic illustration of the photovoltaic-thermoelectric hybrid device (left), and best performed J-V curves (symbol-line) and output power (dash-line) of the PSC/TE hybrid devices tested with the assisted cooling system or not (right)132. ref.132, Copyright © 2017 Elsevier. (h) Non-contact reflection geometry (left), non-contact transmission geometry (middle), and contact transmission geometry (right)134. (i) Calculated TEG efficiencies for the PV-TEG hybrid system in the three different geometries134. Figure reproduced with permission from: (a) ref.128, Copyright © 2014 Elsevier; (b, c) ref.127, Copyright © 2012 Elsevier; (d) ref.129, Copyright © 2013 Elsevier; (e) ref.130, Copyright © 2018 John Wiley and Sons; (f) ref.131, Copyright © 2015 John Wiley and Sons; (g–i) ref.134, Copyright © 2021 Royal Society of Chemistry.