Fan JX, Li ZL, Xue ZQ, Xing HY, Lu D et al. Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron Sci 2, 230006 (2023). doi: 10.29026/oes.2023.230006
Citation: Fan JX, Li ZL, Xue ZQ, Xing HY, Lu D et al. Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron Sci 2, 230006 (2023). doi: 10.29026/oes.2023.230006

Article Open Access

Hybrid bound states in the continuum in terahertz metasurfaces

More Information
  • Bound states in the continuum (BICs) have exhibited extraordinary properties in photonics for enhanced light-matter interactions that enable appealing applications in nonlinear optics, biosensors, and ultrafast optical switches. The most common strategy to apply BICs in a metasurface is by breaking symmetry of resonators in the uniform array that leaks the otherwise uncoupled mode to free space and exhibits an inverse quadratic relationship between quality factor (Q) and asymmetry. Here, we propose a scheme to further reduce scattering losses and improve the robustness of symmetry-protected BICs by decreasing the radiation density with a hybrid BIC lattice. We observe a significant increase of radiative Q in the hybrid lattice compared to the uniform lattice with a factor larger than 14.6. In the hybrid BIC lattice, modes are transferred to Г point inherited from high symmetric X, Y, and M points in the Brillouin zone that reveal as multiple Fano resonances in the far field and would find applications in hyperspectral sensing. This work initiates a novel and generalized path toward reducing scattering losses and improving the robustness of BICs in terms of lattice engineering that would release the rigid requirements of fabrication accuracy and benefit applications of photonics and optoelectronic devices.
  • 加载中
  • [1] Zhang XD, Liu YL, Han JC, Kivshar Y, Song QH. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022). doi: 10.1126/science.abq7870

    CrossRef Google Scholar

    [2] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799

    CrossRef Google Scholar

    [3] Huang C, Zhang C, Xiao SM, Wang YH, Fan YB et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020). doi: 10.1126/science.aba4597

    CrossRef Google Scholar

    [4] Zhao AK, Jiang N, Peng JF, Liu SQ, Zhang YQ et al. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron Adv 5, 200026 (2022). doi: 10.29026/oea.2022.200026

    CrossRef Google Scholar

    [5] Song JH, Van De Groep J, Kim SJ, Brongersma ML. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat Nanotechnol 16, 1224–1230 (2021). doi: 10.1038/s41565-021-00967-4

    CrossRef Google Scholar

    [6] Overvig AC, Malek SC, Yu NF. Multifunctional nonlocal metasurfaces. Phys Rev Lett 125, 017402 (2020). doi: 10.1103/PhysRevLett.125.017402

    CrossRef Google Scholar

    [7] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum. Sci Bull 64, 836–842 (2019). doi: 10.1016/j.scib.2018.12.003

    CrossRef Google Scholar

    [8] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985

    CrossRef Google Scholar

    [9] Liu ZJ, Wang JY, Chen B, Wei YM, Liu WJ et al. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum. Nano Lett 21, 7405–7410 (2021). doi: 10.1021/acs.nanolett.1c01975

    CrossRef Google Scholar

    [10] Shi T, Deng ZL, Geng GZ, Zeng XZ, Zeng YX et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat Commun 13, 4111 (2022). doi: 10.1038/s41467-022-31877-1

    CrossRef Google Scholar

    [11] Liu ZJ, Xu Y, Lin Y, Xiang J, Feng TH et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901

    CrossRef Google Scholar

    [12] Yesilkoy F, Arvelo ER, Jahani Y, Liu MK, Tittl A et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics 13, 390–396 (2019). doi: 10.1038/s41566-019-0394-6

    CrossRef Google Scholar

    [13] Tittl A, Leitis A, Liu MK, Yesilkoy F, Choi DY et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768

    CrossRef Google Scholar

    [14] Ra’di Y, Krasnok A, Alù A. Virtual critical coupling. ACS Photonics 7, 1468–1475 (2020). doi: 10.1021/acsphotonics.0c00165

    CrossRef Google Scholar

    [15] Zhang N, Wang YJ, Sun WZ, Liu S, Huang C et al. High-Q and highly reproducible microdisks and microlasers. Nanoscale 10, 2045–2051 (2018). doi: 10.1039/C7NR08600H

    CrossRef Google Scholar

    [16] Moiseev EI, Kryzhanovskaya N, Polubavkina YS, Maximov MV, Kulagina MM et al. Light outcoupling from quantum dot-based microdisk laser via plasmonic nanoantenna. ACS Photonics 4, 275–281 (2017). doi: 10.1021/acsphotonics.6b00552

    CrossRef Google Scholar

    [17] Koschorreck M, Gehlhaar R, Lyssenko VG, Swoboda M, Hoffmann M et al. Dynamics of a high-Q vertical-cavity organic laser. Appl Phys Lett 87, 181108 (2005). doi: 10.1063/1.2125128

    CrossRef Google Scholar

    [18] Suh W, Wang Z, Fan SH. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Electron 40, 1511–1518 (2004). doi: 10.1109/JQE.2004.834773

    CrossRef Google Scholar

    [19] Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289

    CrossRef Google Scholar

    [20] Zhen B, Hsu CW, Lu L, Stone AD, Soljačić M. Topological nature of optical bound states in the continuum. Phys Rev Lett 113, 257401 (2014). doi: 10.1103/PhysRevLett.113.257401

    CrossRef Google Scholar

    [21] Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030

    CrossRef Google Scholar

    [22] Yuan LJ, Lu YY. Bound states in the continuum on periodic structures: perturbation theory and robustness. Opt Lett 42, 4490–4493 (2017). doi: 10.1364/OL.42.004490

    CrossRef Google Scholar

    [23] Minkov M, Dharanipathy UP, Houdré R, Savona V. Statistics of the disorder-induced losses of high-Q photonic crystal cavities. Opt Express 21, 28233–28245 (2013). doi: 10.1364/OE.21.028233

    CrossRef Google Scholar

    [24] Taghizadeh A, Chung IS. Quasi bound states in the continuum with few unit cells of photonic crystal slab. Appl Phys Lett 111, 031114 (2017). doi: 10.1063/1.4990753

    CrossRef Google Scholar

    [25] Jin JC, Yin XF, Ni LF, Soljačić M, Zhen B et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). doi: 10.1038/s41586-019-1664-7

    CrossRef Google Scholar

    [26] Kang M, Mao L, Zhang SP, Xiao M, Xu HX et al. Merging bound states in the continuum by harnessing higher-order topological charges. Light:Sci Appl 11, 228 (2022). doi: 10.1038/s41377-022-00923-4

    CrossRef Google Scholar

    [27] Hwang MS, Lee HC, Kim KH, Jeong KY, Kwon SH et al. Ultralow-threshold laser using super-bound states in the continuum. Nat Commun 12, 4135 (2021). doi: 10.1038/s41467-021-24502-0

    CrossRef Google Scholar

    [28] Liu DJ, Yu X, Wu F, Xiao SY, Itoigawa F et al. Terahertz high-Q quasi-bound states in the continuum in laser-fabricated metallic double-slit arrays. Opt Express 29, 24779–24791 (2021). doi: 10.1364/OE.432108

    CrossRef Google Scholar

    [29] Cong LQ, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams. Adv Mater 32, 2001418 (2020). doi: 10.1002/adma.202001418

    CrossRef Google Scholar

    [30] Yang YM, Kravchenko II, Briggs DP, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5, 5753 (2014). doi: 10.1038/ncomms6753

    CrossRef Google Scholar

    [31] Kang M, Zhang ZY, Wu T, Zhang XQ, Xu Q et al. Coherent full polarization control based on bound states in the continuum. Nat Commun 13, 4536 (2022). doi: 10.1038/s41467-022-31726-1

    CrossRef Google Scholar

    [32] Cong LQ, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials. Adv Opt Mater 7, 1900383 (2019). doi: 10.1002/adom.201900383

    CrossRef Google Scholar

    [33] Koshelev K, Lepeshov S, Liu MK, Bogdanov A, Kivshar Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett 121, 193903 (2018). doi: 10.1103/PhysRevLett.121.193903

    CrossRef Google Scholar

    [34] Overvig AC, Shrestha S, Yu NF. Dimerized high contrast gratings. Nanophotonics 7, 1157–1168 (2018). doi: 10.1515/nanoph-2017-0127

    CrossRef Google Scholar

    [35] Vaity P, Gupta H, Kala A, Dutta Gupta S, Kivshar YS et al. Polarization-independent quasibound states in the continuum. Adv Photonics Res 3, 2100144 (2022). doi: 10.1002/adpr.202100144

    CrossRef Google Scholar

    [36] Overvig AC, Malek SC, Carter MJ, Shrestha S, Yu NF. Selection rules for quasibound states in the continuum. Phys Rev B 102, 035434 (2020). doi: 10.1103/PhysRevB.102.035434

    CrossRef Google Scholar

    [37] Overvig A, Yu NF, Alù A. Chiral quasi-bound states in the continuum. Phys Rev Lett 126, 073001 (2021). doi: 10.1103/PhysRevLett.126.073001

    CrossRef Google Scholar

  • Supplementary information for Hybrid bound states in the continuum in terahertz metasurfaces
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7011) PDF downloads(841) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint