Liu HH, Hu DJJ, Sun QZ, Wei L, Li KW et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.29026/oes.2023.220025
Citation: Liu HH, Hu DJJ, Sun QZ, Wei L, Li KW et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.29026/oes.2023.220025

Review Open Access

Specialty optical fibers for advanced sensing applications

More Information
  • These authors contributed equally to this work.

  • Corresponding author: PP Shum, E-mail: shenp@sustech.edu.cn
  • Optical fiber technology has changed the world by enabling extraordinary growth in world-wide communications and sensing. The rapid development and wide deployment of optical fiber sensors are driven by their excellent sensing performance with outstanding flexibility, functionality, and versatility. Notably, the research on specialty optical fibers is playing a critical role in enabling and proliferating the optical fiber sensing applications. This paper overviews recent developments in specialty optical fibers and their sensing applications. The specialty optical fibers are reviewed based on their innovations in special structures, special materials, and technologies to realize lab in/on a fiber. An overview of sensing applications in various fields is presented. The prospects and emerging research areas of specialty optical fibers are also discussed.
  • 加载中
  • [1] Barrias A, Casas JR, Villalba S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 16, 748 (2016). doi: 10.3390/s16050748

    CrossRef Google Scholar

    [2] Lanticq V, Quiertant M, Merliot E, Delepine-Lesoille S. Brillouin sensing cable: design and experimental validation. IEEE Sens J 8, 1194–1201 (2008). doi: 10.1109/jsen.2008.926890

    CrossRef Google Scholar

    [3] Ravet F, Briffod F, Chin S, Rochat E, Martinez JG. Pipeline geohazard risk monitoring with optical fiber distributed sensors: experience with andean and arctic routes. In Proceedings of the 12th International Pipeline Conference (IPC, 2018);http://doi.org/10.1115/IPC2018-78047.

    Google Scholar

    [4] Zhang YJ, Gao HC, Zhang LT, Liu Q, Fu XH. Embedded gold-plated fiber Bragg grating temperature and stress sensors encapsulated in capillary copper tube. Opto-Electron Eng 48, 200195 (2021). doi: 10.12086/oee.2021.200195

    CrossRef Google Scholar

    [5] Lindsey NJ, Dawe TC, Ajo-Franklin JB. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366, 1103–1107 (2019). doi: 10.1126/science.aay5881

    CrossRef Google Scholar

    [6] Peng ZQ, Jian JN, Wen HQ, Gribok A, Wang MH et al. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt Express 28, 27277–27292 (2020). doi: 10.1364/oe.397509

    CrossRef Google Scholar

    [7] Zhang TZ, Pang FF, Liu HH, Cheng JJ, Lv LB et al. A fiber-optic sensor for acoustic emission detection in a high voltage cable system. Sensors 16, 2026 (2016). doi: 10.3390/s16122026

    CrossRef Google Scholar

    [8] Guo Y, Wu Y C, Wang J H, Zhang YF, Wang DN et al. Highly sensitive gas-pressure sensor based on paralleled optical fiber Fabry-Perot interferometers. Opto-Electron Eng 49, 210420 (2022). doi: 10.12086/oee.2022.210420

    CrossRef Google Scholar

    [9] Allsop TDP, Neal R, Wang CL, Nagel DA, Hine AV et al. An ultra-sensitive aptasensor on optical fibre for the direct detection of bisphenol A. Biosens Bioelectron 135, 102–110 (2019). doi: 10.1016/j.bios.2019.02.043

    CrossRef Google Scholar

    [10] Goh LS, Kumekawa N, Watanabe K, Shinomiya N. Hetero-core spliced optical fiber SPR sensor system for soil gravity water monitoring in agricultural environments. Comput Electron Agric 101, 110–117 (2014). doi: 10.1016/j.compag.2013.12.008

    CrossRef Google Scholar

    [11] Bayindir M, Sorin F, Abouraddy AF, Viens J, Hart SD et al. Metal-insulator-semiconductor optoelectronic fibres. Nature 431, 826–829 (2004). doi: 10.1038/nature02937

    CrossRef Google Scholar

    [12] Canales A, Jia XT, Froriep UP, Koppes RA, Tringides CM et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol 33, 277–284 (2015). doi: 10.1038/nbt.3093

    CrossRef Google Scholar

    [13] Guan BO, Jin L, Ma J, Liang YZ, Bai X. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging. Opto-Electron Adv 4, 200081 (2021). doi: 10.29026/oea.2021.200081

    CrossRef Google Scholar

    [14] Knight JC, Birks TA, Russell PSJ, Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding: errata. Opt Lett 22, 484–485 (1997). doi: 10.1364/ol.22.000484

    CrossRef Google Scholar

    [15] van Eijkelenborg MA, Large MCJ, Argyros A, Zagari J, Manos S et al. Microstructured polymer optical fibre. Opt Express 9, 319–327 (2001). doi: 10.1364/oe.9.000319

    CrossRef Google Scholar

    [16] Toupin P, Brilland L, Renversez G, Troles J. All-solid all-chalcogenide microstructured optical fiber. Opt Express 21, 14643–14648 (2013). doi: 10.1364/oe.21.014643

    CrossRef Google Scholar

    [17] Markos C, Travers JC, Abdolvand A, Eggleton BJ, Bang O. Hybrid photonic-crystal fiber. Rev Mod Phys 89, 045003 (2017). doi: 10.1103/RevModPhys.89.045003

    CrossRef Google Scholar

    [18] Hu DJJ, Xu ZL, Shum PP. Review on photonic crystal fibers with hybrid guiding mechanisms. IEEE Access 7, 67469–67482 (2019). doi: 10.1109/access.2019.2917892

    CrossRef Google Scholar

    [19] Russell PSJ. Photonic-crystal fibers. J Lightwave Technol 24, 4729–4749 (2006). doi: 10.1109/jlt.2006.885258

    CrossRef Google Scholar

    [20] Calcerrada M, García-Ruiz C, González-Herráez M. Chemical and biochemical sensing applications of microstructured optical fiber-based systems. Laser Photon Rev 9, 604–627 (2015). doi: 10.1002/lpor.201500045

    CrossRef Google Scholar

    [21] Ni WJ, Yang CY, Luo YY, Xia R, Lu P et al. Recent advancement of anti-resonant hollow-core fibers for sensing applications. Photonics 8, 128 (2021). doi: 10.3390/photonics8040128

    CrossRef Google Scholar

    [22] Yang X, Shi C, Newhouse R, Zhang JZ, Gu C. Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes. Int J Opt 2011, 754610 (2011). doi: 10.1155/2011/754610

    CrossRef Google Scholar

    [23] Ding HN, Hu DJJ, Yu XT, Liu XX, Zhu YF et al. Review on all-fiber online raman sensor with hollow core microstructured optical fiber. Photonics 9, 134 (2022). doi: 10.3390/photonics9030134

    CrossRef Google Scholar

    [24] Jensen JB, Pedersen LH, Hoiby PE, Nielsen LB, Hansen TP et al. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt Lett 29, 1974–1976 (2004). doi: 10.1364/ol.29.001974

    CrossRef Google Scholar

    [25] Taha BA, Ali N, Sapiee NM, Fadhel MM, Mat Yeh RM et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges. Biosensors 11, 253 (2021). doi: 10.3390/bios11080253

    CrossRef Google Scholar

    [26] Zhuo LQ, Tang JY, Zhu WG, Zheng HD, Guan HY et al. Side polished fiber: a versatile platform for compact fiber devices and sensors. Photonic Sens 13, 230120 (2023). doi: 10.1007/s13320-022-0661-x

    CrossRef Google Scholar

    [27] Liao CR, Zhu F, Lin CP. Photonic crystal fiber-based grating sensors. In Handbook of Optical Fibers, Peng GD eds. 2201–2229 (Springer, Singapore, 2019).

    Google Scholar

    [28] Rindorf L, Bang O. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing. J Opt Soc Am B 25, 310–324 (2008). doi: 10.1364/josab.25.000310

    CrossRef Google Scholar

    [29] Eggleton BJ, Westbrook PS, Windeler RS, Spälter S, Strasser TA. Grating resonances in air-silica microstructured optical fibers. Opt Lett 24, 1460–1462 (1999). doi: 10.1364/ol.24.001460

    CrossRef Google Scholar

    [30] Liu ZY, Tam HY, Htein L, Tse MLV, Lu C. Microstructured optical fiber sensors. J Lightwave Technol 35, 3425–3439 (2017). doi: 10.1109/jlt.2016.2605124

    CrossRef Google Scholar

    [31] Hu DJJ, Wong RYN, Shum PP. Photonic crystal fiber-based interferometric sensors. In Selected Topics on Optical Fiber Technologies and Applications, Xu F, Mou CB eds. 21–41 (IntechOpen, 2018).

    Google Scholar

    [32] Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A et al. Photonic crystal fiber based plasmonic sensors. Sens Actuator B:Chem 243, 311–325 (2017). doi: 10.1016/j.snb.2016.11.113

    CrossRef Google Scholar

    [33] Hu DJJ, Ho HP. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv Opt Photonics 9, 257–314 (2017). doi: 10.1364/aop.9.000257

    CrossRef Google Scholar

    [34] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407, 3883–3897 (2015). doi: 10.1007/s00216-014-8411-6

    CrossRef Google Scholar

    [35] Sun YX, Li H, Fan CZ, Yan BQ, Chen JF et al. Review of a specialty fiber for distributed acoustic sensing technology. Photonics 9, 277 (2022). doi: 10.3390/photonics9050277

    CrossRef Google Scholar

    [36] Lou JY, Wang YP, Tong LM. Microfiber optical sensors: a review. Sensors 14, 5823–5844 (2014). doi: 10.3390/s140405823

    CrossRef Google Scholar

    [37] Cai DW, Xie Y, Guo X, Wang P, Tong LM. Chalcogenide glass microfibers for mid-infrared optics. Photonics 8, 497 (2021). doi: 10.3390/photonics8110497

    CrossRef Google Scholar

    [38] Zheng Y, Wu ZF, Shum PP, Xu ZL, Keiser G et al. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron Adv 1, 180015 (2018). doi: 10.29026/oea.2018.180015

    CrossRef Google Scholar

    [39] Zhao ZY, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3, 190024 (2020). doi: 10.29026/oea.2020.190024

    CrossRef Google Scholar

    [40] Zhao ZY, Dang YL, Tang M. Advances in multicore fiber grating sensors. Photonics 9, 381 (2022). doi: 10.3390/photonics9060381

    CrossRef Google Scholar

    [41] Temelkuran B, Hart SD, Benoit G, Joannopoulos JD, Fink Y. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002). doi: 10.1038/nature01275

    CrossRef Google Scholar

    [42] Yildirim A, Ozturk FE, Bayindir M. Smelling in chemically complex environments: an optofluidic bragg fiber array for differentiation of methanol adulterated beverages. Anal Chem 85, 6384–6391 (2013). doi: 10.1021/ac4008013

    CrossRef Google Scholar

    [43] Abouraddy AF, Shapira O, Bayindir M, Arnold J, Sorin F et al. Large-scale optical-field measurements with geometric fibre constructs. Nat Mater 5, 532–536 (2006). doi: 10.1038/nmat1674

    CrossRef Google Scholar

    [44] Stolyarov AM, Wei L, Shapira O, Sorin F, Chua SL et al. Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nat Photonics 6, 229–233 (2012). doi: 10.1038/nphoton.2012.24

    CrossRef Google Scholar

    [45] Chocat N, Lestoquoy G, Wang Z, Rodgers DM, Joannopoulos JD et al. Piezoelectric fibers for conformal acoustics. Adv Mater 24, 5327–5332 (2012). doi: 10.1002/adma.201201355

    CrossRef Google Scholar

    [46] Yan W, Noel G, Loke G, Meiklejohn E, Khudiyev T et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022). doi: 10.1038/s41586-022-04476-9

    CrossRef Google Scholar

    [47] Zhang T, Li KW, Zhang J, Chen M, Wang Z et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35–42 (2017). doi: 10.1016/j.nanoen.2017.09.019

    CrossRef Google Scholar

    [48] Zhang J, Zhang T, Zhang H, Wang ZX, Li C et al. Single-crystal snse thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv Mater 32, 2002702 (2020). doi: 10.1002/adma.202002702

    CrossRef Google Scholar

    [49] Rein M, Favrod VD, Hou C, Khudiyev T, Stolyarov A et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018). doi: 10.1038/s41586-018-0390-x

    CrossRef Google Scholar

    [50] Loke G, Khudiyev T, Wang B, Fu S, Payra S et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun 12, 3317 (2021). doi: 10.1038/s41467-021-23628-5

    CrossRef Google Scholar

    [51] Chin AL, Jiang S, Jang E, Niu LQ, Li LW et al. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nat Commun 12, 5138 (2021). doi: 10.1038/s41467-021-25391-z

    CrossRef Google Scholar

    [52] Wang S, Zhang T, Li KW, Ma SY Chen M et al. Flexible piezoelectric fibers for acoustic sensing and positioning. Adv Electron Mater 3, 1600449 (2017). doi: 10.1002/aelm.201600449

    CrossRef Google Scholar

    [53] Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999). doi: 10.1038/17989

    CrossRef Google Scholar

    [54] Farsari M, Chichkov BN. Two-photon fabrication. Nat Photonics 3, 450–452 (2009). doi: 10.1038/nphoton.2009.131

    CrossRef Google Scholar

    [55] Zhang YL, Guo L, Wei S, He YY, Xia H et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15–20 (2010). doi: 10.1016/j.nantod.2009.12.009

    CrossRef Google Scholar

    [56] Wang J, Lin CP, Liao CR, Gan ZS, Li ZY et al. Bragg resonance in microfiber realized by two-photon polymerization. Opt Express 26, 3732–3737 (2018). doi: 10.1364/oe.26.003732

    CrossRef Google Scholar

    [57] Liao CR, Yang KM, Wang J, Bai ZY, Gan ZS et al. Helical microfiber bragg grating printed by femtosecond laser for refractive index sensing. IEEE Photonics Technol Lett 31, 971–974 (2019). doi: 10.1109/lpt.2019.2912634

    CrossRef Google Scholar

    [58] Liao CR, Li C, Wang C, Wang Y, He J et al. High-speed all-optical modulator based on a polymer nanofiber bragg grating printed by femtosecond laser. ACS Appl Mater Interfaces 12, 1465–1473 (2020). doi: 10.1021/acsami.9b16716

    CrossRef Google Scholar

    [59] Xiong C, Zhou JT, Liao CR, Zhu M, Wang Y et al. Fiber-tip polymer microcantilever for fast and highly sensitive hydrogen measurement. ACS Appl Mater Interfaces 12, 33163–33172 (2020). doi: 10.1021/acsami.0c06179

    CrossRef Google Scholar

    [60] Liao CR, Xiong C, Zhao JL, Zou MQ, Zhao YY et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing. Light Adv Manuf 3, 3–13 (2022). doi: 10.37188/lam.2022.005

    CrossRef Google Scholar

    [61] Zou MQ, Liao CR, Liu S, Xiong C, Zhao C et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light Sci Appl 10, 171 (2021). doi: 10.1038/s41377-021-00611-9

    CrossRef Google Scholar

    [62] Ji P, Zhu M, Liao CR, Zhao C, Yang KM et al. In-fiber polymer microdisk resonator and its sensing applications of temperature and humidity. ACS Appl Mater Interfaces 13, 48119–48126 (2021). doi: 10.1021/acsami.1c14499

    CrossRef Google Scholar

    [63] Plidschun M, Ren HR, Kim J, Förster R, Maier SA et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light Sci Appl 10, 57 (2021). doi: 10.1038/s41377-021-00491-z

    CrossRef Google Scholar

    [64] Dietrich PI, Harris RJ, Blaicher M, Corrigan MK, Morris TJ et al. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. Opt Express 25, 18288–18295 (2017). doi: 10.1364/oe.25.018288

    CrossRef Google Scholar

    [65] Dietrich PI, Blaicher M, Reuter I, Billah M, Hoose T et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat Photonics 12, 241 (2018). doi: 10.1038/s41566-018-0133-4

    CrossRef Google Scholar

    [66] Yu J, Wang YP, Yang W, Bai ZY, Xie ZW et al. All-fiber focused beam generator integrated on an optical fiber tip. Appl Phys Lett 116, 241102 (2020). doi: 10.1063/5.0007022

    CrossRef Google Scholar

    [67] Li BZ, Liao CR, Cai ZH, Zhou J, Zhao C et al. Femtosecond laser 3D printed micro objective lens for ultrathin fiber endoscope. Fundam Res (2022).

    Google Scholar

    [68] Villatoro J, Zubia J. Ultrasensitive sensors based on specialty optical fibres. In Proceedings of 2016 18th International Conference on Transparent Optical Networks (IEEE, 2016);http://doi.org/10.1109/ICTON.2016.7550360.

    Google Scholar

    [69] Cooper PR. Refractive-Index measurements of liquids used in conjunction with optical fibers. Appl Opt 22, 3070–3072 (1983). doi: 10.1364/AO.22.003070

    CrossRef Google Scholar

    [70] Jorge PAS, Silva SO, Gouveia C, Tafulo P, Coelho L et al. Fiber optic-based refractive index sensing at INESC porto. Sensors 12, 8371–8389 (2012). doi: 10.3390/s120608371

    CrossRef Google Scholar

    [71] Pereira DA, Frazao O, Santos JL. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature. Opt Eng 43, 299–304 (2004). doi: 10.1117/1.1637903

    CrossRef Google Scholar

    [72] Rego GM, Santos JL, Salgado MH. Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres. Opt Commun 259, 598–602 (2006). doi: 10.1016/j.optcom.2005.09.030

    CrossRef Google Scholar

    [73] Silva S, Santos JL, Malcata FX, Kobelke J, Schuster K et al. Optical refractometer based on large-core air-clad photonic crystal fibers. Opt Lett 36, 852–854 (2011). doi: 10.1364/OL.36.000852

    CrossRef Google Scholar

    [74] Zibaii MI, Frazao O, Latifi H, Jorge PAS. Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror. IEEE Photonics Technol Lett 23, 1219–1221 (2011). doi: 10.1109/lpt.2011.2158641

    CrossRef Google Scholar

    [75] Wang GY, Lu Y, Duan LC, Yao JQ. A refractive index sensor based on PCF with ultra-wide detection range. IEEE J Sel Top Quantum Electron 27, 5600108 (2021). doi: 10.1109/JSTQE.2020.2993866

    CrossRef Google Scholar

    [76] Silva SFO, Frazão O, Caldas P, Santos JL, Araujo FM et al. Optical fiber refractometer based on a Fabry-Pérot interferometer. Opt Eng 47, 054403 (2008). doi: 10.1117/1.2931527

    CrossRef Google Scholar

    [77] Gouveia C, Jorge PAS, Baptista JM, Frazao O. Fabry–Pérot cavity based on a high-birefringent fiber bragg grating for refractive index and temperature measurement. IEEE Sens J 12, 17–21 (2012). doi: 10.1109/JSEN.2011.2107898

    CrossRef Google Scholar

    [78] Zhao N, Lin QJ, Jiang ZD, Yao K, Tian B et al. High temperature high sensitivity multipoint sensing system based on three cascade mach–zehnder interferometers. Sensors 18, 2688 (2018). doi: 10.3390/s18082688

    CrossRef Google Scholar

    [79] Yi L, Changyuan Y. Highly stretchable hybrid silica/polymer optical fiber sensors for large-strain and high-temperature application. Opt Express 27, 20107–20116 (2019). doi: 10.1364/OE.27.020107

    CrossRef Google Scholar

    [80] Li XG, Zhou X, Zhao Y, Lv RQ. Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid. Opt Fiber Technol 41, 1–6 (2018). doi: 10.1016/j.yofte.2017.12.002

    CrossRef Google Scholar

    [81] Hou LT, Zhang XD, Yang JR, Kang J, Ran LL. Simultaneous measurement of refractive index and temperature based on half-tapered SMS fiber structure with fringe-visibility difference demodulation method. Opt Commun 433, 252–255 (2019). doi: 10.1016/j.optcom.2018.10.025

    CrossRef Google Scholar

    [82] Falate R, Frazão O, Rego G, Fabris JL, Santos JL. Refractometric sensor based on a phase-shifted long-period fiber grating. Appl Opt 45, 5066–5072 (2006). doi: 10.1364/AO.45.005066

    CrossRef Google Scholar

    [83] Silva S, Frazão O, Santos JL, Malcata FX. A reflective optical fiber refractometer based on multimode interference. Sens Actuators B:Chem 161, 88–92 (2012). doi: 10.1016/j.snb.2011.09.045

    CrossRef Google Scholar

    [84] Soge AO. Polymer optical fibre temperature sensors - A review. Asian J Res Rev Phys 3, 19–37 (2020). doi: 10.9734/ajr2p/2020/v3i330121

    CrossRef Google Scholar

    [85] Moraleda AT, García CV, Zaballa JZ, Arrue J. A temperature sensor based on a polymer optical fiber macro-bend. Sensors 13, 13076–13089 (2013). doi: 10.3390/s131013076

    CrossRef Google Scholar

    [86] Chen WJ, Chen ZH, Zhang Y, Li H, Lian YH. Agarose coated macro-bend fiber sensor for relative humidity and temperature measurement at 2μm. Opt Fiber Technol 50, 118–124 (2019). doi: 10.1016/j.yofte.2019.03.007

    CrossRef Google Scholar

    [87] Talataisong W, Ismaeel R, Brambilla G. A review of microfiber-based temperature sensors. Sensors 18, 461 (2018). doi: 10.3390/s18020461

    CrossRef Google Scholar

    [88] Lee CL, Weng ZY, Lin CJ, Lin YY. Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber. Opt Lett 35, 4172–4174 (2010). doi: 10.1364/OL.35.004172

    CrossRef Google Scholar

    [89] Sahota JK, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review. Opt Eng 59, 060901 (2020). doi: 10.1117/1.OE.59.6.060901

    CrossRef Google Scholar

    [90] Sridhar S, Sebastian S, Asokan S. Temperature sensor based on multi-layer MoS2 coated etched fiber Bragg grating. Appl Opt 58, 535–539 (2019). doi: 10.1364/AO.58.000535

    CrossRef Google Scholar

    [91] Sugino M, Ogata M, Mizuno K, Hasegawa H. Development of zinc coating methods on fiber bragg grating temperature sensors. IEEE Trans Appl Supercond 26, 9000606 (2016). doi: 10.1109/TASC.2015.2513600

    CrossRef Google Scholar

    [92] Ahmed F, Jun MBG. Microfiber bragg grating sandwiched between standard optical fibers for enhanced temperature sensing. IEEE Photonics Technol Lett 28, 685–688 (2016). doi: 10.1109/LPT.2015.2504564

    CrossRef Google Scholar

    [93] Roriz P, Silva S, Frazão O, Novais S. Optical fiber temperature sensors and their biomedical applications. Sensors 20, 2113 (2020). doi: 10.3390/s20072113

    CrossRef Google Scholar

    [94] Liu TG, Yin JD, Jiang JF, Liu K, Wang S et al. Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry. Opt Lett 40, 1049–1052 (2015). doi: 10.1364/OL.40.001049

    CrossRef Google Scholar

    [95] Hu PB, Chen ZM, Yang M, Yang JY, Zhong C. Highly sensitive liquid-sealed multimode fiber interferometric temperature sensor. Sens Actuators A:Phys 223, 114–118 (2015). doi: 10.1016/j.sna.2015.01.009

    CrossRef Google Scholar

    [96] Liu TG, Yu X, Wang S, Jiang JF, Liu K. Fiber-optic fabry-perot sensing technology in high-temperature environments: an review. Laser Optoelectron Prog 58, 1306002 (2021). doi: 10.3788/lop202158.1306002

    CrossRef Google Scholar

    [97] Yang S, Feng ZA, Jia XT, Pickrell G, Ng W et al. Miniature all-sapphire single-crystal fiber fabry-perot sensor fabricated by femtosecond laser micro-machining and CO2 laser welding. In Proceedings of 2020 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2020).

    Google Scholar

    [98] Yu X, Wang S, Jiang JF, Liu K, Wu ZY et al. Self-filtering high-resolution dual-sapphire-fiber-based high-temperature sensor. J Lightwave Technol 37, 1408–1414 (2019). doi: 10.1109/JLT.2019.2894377

    CrossRef Google Scholar

    [99] Li CX, Yang WL, Wang M, Yu XY, Fan JY et al. A review of coating materials used to improve the performance of optical fiber sensors. Sensors 20, 4215 (2020).

    Google Scholar

    [100] Hernández-Romano I, Monzón-Hernández D, Moreno-Hernández C, Moreno-Hernandez D, Villatoro J. Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer. IEEE Photonics Technol Lett 27, 2591–2594 (2015). doi: 10.1109/LPT.2015.2478790

    CrossRef Google Scholar

    [101] Zhang FC, Xu XZ, He J, Du B, Wang YP. Highly sensitive temperature sensor based on a polymer-infiltrated Mach-Zehnder interferometer created in graded index fiber. Opt Lett 44, 2466–2469 (2019). doi: 10.1364/OL.44.002466

    CrossRef Google Scholar

    [102] Zhao Y, Tong RJ, Chen MQ, Xia F. Fluorescence temperature sensor based on GQDs solution encapsulated in hollow core fiber. IEEE Photonics Technol Lett 29, 1544–1547 (2017). doi: 10.1109/LPT.2017.2723624

    CrossRef Google Scholar

    [103] Campanella CE, Cuccovillo A, Campanella C, Yurt A, Passaro VMN. Fibre bragg grating based strain sensors: review of technology and applications. Sensors 18, 3115 (2018). doi: 10.3390/s18093115

    CrossRef Google Scholar

    [104] Liu NL, Li YH, Wang Y, Wang HY, Liang WB et al. Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers. Opt Express 19, 13880–13891 (2011). doi: 10.1364/OE.19.013880

    CrossRef Google Scholar

    [105] Ferreira MS, Bierlich J, Becker M, Schuster K, Santos JL et al. Ultra-high sensitive strain sensor based on post-processed optical fiber bragg grating. Fibers 2, 142–149 (2014). doi: 10.3390/fib2020142

    CrossRef Google Scholar

    [106] Soge AO, Dairo OF, Sanyaolu ME, Kareem SO. Recent developments in polymer optical fiber strain sensors: a short review. J Opt 50, 299–313 (2021). doi: 10.1007/s12596-021-00699-7

    CrossRef Google Scholar

    [107] Mizuno Y, Hagiwara S, Kawa T, Lee H, Nakamura K. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain. Jpn J Appl Phys 57, 058002 (2018). doi: 10.7567/jjap.57.058002

    CrossRef Google Scholar

    [108] Kawa T, Numata G, Lee H, Hayashi N, Mizuno Y et al. Single-end-access strain and temperature sensing based on multimodal interference in polymer optical fibers. IEICE Electron Express 14, 20161239 (2017). doi: 10.1587/elex.14.20161239

    CrossRef Google Scholar

    [109] Alberto N, Domingues MF, Marques C, André P, Antunes P. Optical fiber magnetic field sensors based on magnetic fluid: a review. Sensors 18, 4325 (2018). doi: 10.3390/s18124325

    CrossRef Google Scholar

    [110] Bao LF, Dong XY, Zhang SQ, Shen CY, Shum PP. Magnetic field sensor based on magnetic fluid-infiltrated phase-shifted fiber bragg grating. IEEE Sens J 18, 4008–4012 (2018). doi: 10.1109/JSEN.2018.2820741

    CrossRef Google Scholar

    [111] Yang DX, Du L, Xu ZQ, Jiang YJ, Xu J et al. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl Phys Lett 104, 061903 (2014). doi: 10.1063/1.4864649

    CrossRef Google Scholar

    [112] Miao YP, Zhang KL, Liu B, Lin W, Zhang H et al. Ferrofluid-infiltrated microstructured optical fiber long-period grating. IEEE Photonics Technol Lett 25, 306–309 (2013). doi: 10.1109/LPT.2012.2231669

    CrossRef Google Scholar

    [113] Xia J, Wang FY, Luo H, Wang Q, Xiong SD. A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors 16, 620 (2016). doi: 10.3390/s16050620

    CrossRef Google Scholar

    [114] Zu P, Chan CC, Koh GW, Lew WS, Jin YX et al. Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer. Sens Actuators B:Chem 191, 19–23 (2014). doi: 10.1016/j.snb.2013.09.085

    CrossRef Google Scholar

    [115] Rodríguez-Schwendtner E, Díaz-Herrera N, Navarrete MC, González-Cano A, Esteban Ó. Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sens Actuators A:Phys 264, 58–62 (2017). doi: 10.1016/j.sna.2017.07.040

    CrossRef Google Scholar

    [116] Zhang RX, Liu TG, Han Q, Chen YF, Li L. U-bent single-mode–multimode–single-mode fiber optic magnetic field sensor based on magnetic fluid. Appl Phys Express 7, 072501 (2014). doi: 10.7567/apex.7.072501

    CrossRef Google Scholar

    [117] Rao J, Pu SL, Yao TJ, Su DL. Ultrasensitive magnetic field sensing based on refractive-index-matched coupling. Sensors 17, 1590 (2017). doi: 10.3390/s17071590

    CrossRef Google Scholar

    [118] Peng J, Jia SH, Bian JM, Zhang S, Liu JB et al. Recent progress on electromagnetic field measurement based on optical sensors. Sensors 19, 2860 (2019). doi: 10.3390/s19132860

    CrossRef Google Scholar

    [119] Liu C, Shen T, Wu HB, Feng Y, Chen JJ. Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: a review. Opt Fiber Technol 65, 102634 (2021). doi: 10.1016/j.yofte.2021.102634

    CrossRef Google Scholar

    [120] Li YQ, Wen FF, Wang SL. Research progress of temperature and magnetic field dual-parameter measurement technology based on magnetic fluids. Laser Optoelectron Prog 59, 0500003 (2022). doi: 10.3788/lop202259.0500003

    CrossRef Google Scholar

    [121] Dai ML, Chen ZM, Zhao YF, Gandhi MSA, Li Q et al. State-of-the-art optical microfiber coupler sensors for physical and biochemical sensing applications. Biosensors 10, 179 (2020). doi: 10.3390/bios10110179

    CrossRef Google Scholar

    [122] Yu YS, Zhu YQ, Zhao Y, Pan PX. Research progress on s fiber taper. Acta Photon Sin 48, 1148009 (2019). doi: 10.3788/gzxb20194811.1148009

    CrossRef Google Scholar

    [123] Yan SC, Xu F. A review on optical microfibers in fluidic applications. J Micromech Microeng 27, 093001 (2017). doi: 10.1088/1361-6439/aa7a45

    CrossRef Google Scholar

    [124] Islam R, Ali MM, Lai MH, Lim KS, Ahmad H. Chronology of fabry-perot interferometer fiber-optic sensors and their applications: a review. Sensors 14, 7451–7488 (2014). doi: 10.3390/s140407451

    CrossRef Google Scholar

    [125] Niu HW, Zhang S, Chen WH, Liu Y, Li X et al. Optical fiber sensors based on core-offset structure: a review. IEEE Sens J 21, 22388–22401 (2021). doi: 10.1109/JSEN.2021.3110852

    CrossRef Google Scholar

    [126] Gao QW, Zhang JJ, Xie ZW, Omisore O, Zhang JY et al. Highly stretchable sensors for wearable biomedical applications. J Mater Sci 54, 5187–5223 (2019). doi: 10.1007/s10853-018-3171-x

    CrossRef Google Scholar

    [127] Leal-Junior A, Avellar L, Biazi V, Soares MS, Frizera A et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

    [128] Hou MX, Yang KM, He J, Xu XZ, Ju S et al. Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings. Opt Express 26, 23770–23781 (2018). doi: 10.1364/oe.26.023770

    CrossRef Google Scholar

    [129] Chen NK, Hsieh YH, Lee YK. Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications. Opt Express 21, 11209–11214 (2013). doi: 10.1364/oe.21.011209

    CrossRef Google Scholar

    [130] Li YP, Tan SJ, Yang LY, Li LY, Fang F et al. Optical microfiber neuron for finger motion perception. Adv Fiber Mater 4, 226–234 (2022). doi: 10.1007/s42765-021-00096-6

    CrossRef Google Scholar

    [131] Zhao YH, Wang CL, Yin GL, Jiang BQ, Zhou KM et al. Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating. Appl Opt 57, 1671–1678 (2018). doi: 10.1364/ao.57.001671

    CrossRef Google Scholar

    [132] Jin YX, Chan CC, Dong XY, Zhang YF. Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber. Opt Commun 282, 3905–3907 (2009). doi: 10.1016/j.optcom.2009.06.058

    CrossRef Google Scholar

    [133] Lyu WM, Chen SY, Tan FZ, Yu CY. Vital signs monitoring based on interferometric fiber optic sensors. Photonics 9, 50 (2022). doi: 10.3390/photonics9020050

    CrossRef Google Scholar

    [134] Ushakov NA, Markvart AA, Liokumovich LB. Pulse wave velocity measurement with multiplexed fiber optic fabry-perot interferometric sensors. IEEE Sens J 20, 11302–11312 (2020). doi: 10.1109/jsen.2020.2997465

    CrossRef Google Scholar

    [135] Guo JJ, Yang CX, Dai QH, Kong LJ. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors 19, 3771 (2019). doi: 10.3390/s19173771

    CrossRef Google Scholar

    [136] Pan J, Zhang Z, Jiang CP, Zhang L, Tong LM. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale 12, 17538–17544 (2020). doi: 10.1039/d0nr03446k

    CrossRef Google Scholar

    [137] Yu W, Yao N, Pan J, Fang W, Li X et al. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron Adv 5, 210101 (2022). doi: 10.29026/oea.2022.210101

    CrossRef Google Scholar

    [138] Leal-Junior AG, Diaz CAR, Avellar LM, Pontes MJ, Marques C et al. Polymer optical fiber sensors in healthcare applications: a comprehensive review. Sensors 19, 3156 (2019). doi: 10.3390/s19143156

    CrossRef Google Scholar

    [139] Li LY, Liu YF, Song CY, Sheng SF, Yang LY et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater 4, 475–486 (2022). doi: 10.1007/s42765-021-00121-8

    CrossRef Google Scholar

    [140] Jiang CP, Zhang Z, Pan J, Wang YC, Zhang L et al. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv Mater Technol 6, 2100285 (2021). doi: 10.1002/admt.202100285

    CrossRef Google Scholar

    [141] Parent F, Loranger S, Mandal KK, Iezzi VL, Lapointe J et al. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomed Opt Express 8, 2210–2221 (2017). doi: 10.1364/boe.8.002210

    CrossRef Google Scholar

    [142] Wang HS, Zhang RX, Chen WD, Liang XW, Pfeifer R. Shape detection algorithm for soft manipulator based on fiber bragg gratings. IEEE/ASME Trans Mechatron 21, 2977–2982 (2016). doi: 10.1109/tmech.2016.2606491

    CrossRef Google Scholar

    [143] Villatoro J, van Newkirk A, Antonio-Lopez E, Zubia J, Schüelzgen A et al. Ultrasensitive vector bending sensor based on multicore optical fiber. Opt Lett 41, 832–835 (2016). doi: 10.1364/ol.41.000832

    CrossRef Google Scholar

    [144] Cusano A, Capoluongo P, Campopiano S, Cutolo A, Giordano M et al. Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors. IEEE Sens J 6, 67–77 (2006). doi: 10.1109/jsen.2005.854152

    CrossRef Google Scholar

    [145] Moon H, Jeong J, Kang S, Kim K, Song YW et al. Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery. Opt Lasers Eng 59, 50–55 (2014). doi: 10.1016/j.optlaseng.2014.03.005

    CrossRef Google Scholar

    [146] Chen Z, Wang CH, Ding ZY, Zhu DF, Guo HH et al. Demonstration of large curvature radius shape sensing using optical frequency domain reflectometry in multi-core fibers. IEEE Photonics J 13, 6800809 (2021). doi: 10.1109/jphot.2021.3098300

    CrossRef Google Scholar

    [147] Zhao ZY, Soto MA, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211–25223 (2016). doi: 10.1364/oe.24.025211

    CrossRef Google Scholar

    [148] Moore JP, Rogge MD. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967–2973 (2012). doi: 10.1364/oe.20.002967

    CrossRef Google Scholar

    [149] Yi XH, Chen XY, Fan HC, Shi F, Cheng XM et al. Separation method of bending and torsion in shape sensing based on FBG sensors array. Opt Express 28, 9367–9383 (2020). doi: 10.1364/oe.386738

    CrossRef Google Scholar

    [150] Westbrook PS, Kremp T, Feder KS, Ko W, Monberg EM et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Lightwave Technol 35, 1248–1252 (2017). doi: 10.1109/jlt.2017.2661680

    CrossRef Google Scholar

    [151] Yin GL, Lu L, Zhou L, Shao C, Fu QJ et al. Distributed directional torsion sensing based on an optical frequency domain reflectometer and a helical multicore fiber. Opt Express 28, 16140–16150 (2020). doi: 10.1364/oe.390549

    CrossRef Google Scholar

    [152] Zeni L, Picarelli L, Avolio B, Coscetta A, Papa R et al. Brillouin optical time-domain analysis for geotechnical monitoring. J Rock Mech Geotech Eng 7, 458–462 (2015). doi: 10.1016/j.jrmge.2015.01.008

    CrossRef Google Scholar

    [153] Wolf A, Dostovalov A, Bronnikov K, Babin S. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses. Opt Express 27, 13978–13990 (2019). doi: 10.1364/oe.27.013978

    CrossRef Google Scholar

    [154] Xu R, Yurkewich A, Patel RV. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot Autom Lett 1, 1052–1059 (2016). doi: 10.1109/LRA.2016.2530867

    CrossRef Google Scholar

    [155] Amantayeva A, Adilzhanova N, Issatayeva A, Blanc W, Molardi C et al. Fiber optic distributed sensing network for shape sensing-assisted epidural needle guidance. Biosensors 11, 446 (2021). doi: 10.3390/bios11110446

    CrossRef Google Scholar

    [156] Jang M, Kim JS, Kang K, Kim J, Yang S. Towards finger motion capture system using FBG sensors. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3734–3737 (IEEE, 2018);http://doi.org/10.1109/embc.2018.8513338.

    Google Scholar

    [157] Galloway KC, Chen Y, Templeton E, Rife B, Godage IS et al. Fiber optic shape sensing for soft robotics. Soft Robot 6, 671–684 (2019). doi: 10.1089/soro.2018.0131

    CrossRef Google Scholar

    [158] Kissinger T, Chehura E, Staines SE, James SW, Tatam RP. Dynamic fiber-optic shape sensing using fiber segment interferometry. J Lightwave Technol 36, 917–925 (2018). doi: 10.1109/jlt.2017.2750759

    CrossRef Google Scholar

    [159] Ukil A, Braendle H, Krippner P. Distributed temperature sensing: review of technology and applications. IEEE Sens J 12, 885–892 (2012). doi: 10.1109/jsen.2011.2162060

    CrossRef Google Scholar

    [160] Adegboye MA, Fung WK, Karnik A. Recent advances in pipeline monitoring and oil leakage detection technologies: principles and approaches. Sensors 19, 2548 (2019). doi: 10.3390/s19112548

    CrossRef Google Scholar

    [161] Smolen JJ. "Distributed Temperature Sensing", A DTS Primer for Oil & Gas Production. EP2003, 5, 2003.

    Google Scholar

    [162] Nakamura S, Morooka S, Kawasaki K. Conductor temperature monitoring system in underground power transmission XLPE cable joints. IEEE Trans Power Delivery 7, 1688–1697 (1992). doi: 10.1109/61.156967

    CrossRef Google Scholar

    [163] Kawai T, Takinami N, Chino T, Amano K, Watanabe K et al. A new approach to cable fault location using fiber optic technology. I. IEEE Trans Power Delivery 10, 85–91 (1995). doi: 10.1109/61.368412

    CrossRef Google Scholar

    [164] Liu YP, Yin JY, Fan XZ, Wang BW. Distributed temperature detection of transformer windings with externally applied distributed optical fiber. Appl Opt 58, 7962–7969 (2019). doi: 10.1364/ao.58.007962

    CrossRef Google Scholar

    [165] Glombitza U, Hoff H. Fiber optic radar system for fire detection in cable trays. In Proceedings of the 13th International Conference on Automatic Fire Detection 438–459 (2004)

    Google Scholar

    [166] Minardo A, Catalano E, Coscetta A, Zeni G, Zhang L et al. Distributed fiber optic sensors for the monitoring of a tunnel crossing a landslide. Remote Sens 10, 1291 (2018). doi: 10.3390/rs10081291

    CrossRef Google Scholar

    [167] Chen XH, Zou NM, Wan YM, Ding ZW, Zhang C et al. On-line status monitoring and surrounding environment perception of an underwater cable based on the phase-locked Φ-OTDR sensing system. Opt Express 30, 30312–30330 (2022). doi: 10.1364/OE.458546

    CrossRef Google Scholar

    [168] Li ZQ, Zhang JW, Wang MN, Zhong YZ, Peng F. Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection. Opt Express 28, 2925–2938 (2020). doi: 10.1364/oe.28.002925

    CrossRef Google Scholar

    [169] Horiguchi T, Tateda M. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Opt Lett 14, 408–410 (1989). doi: 10.1364/ol.14.000408

    CrossRef Google Scholar

    [170] Tao W, Xu BH, He B, Du M. Research on application of distributed optical fiber sensing technology in the safety monitoring of pipeline transportation. In Proceedings of the 2018 7th International Conference on Energy, Environment and Sustainable Development 1300–1307 (Atlantis Press, 2018); http://doi.org/10.2991/iceesd-18.2018.239.

    Google Scholar

    [171] Liang H, Li WH, Linze N, Chen L, Bao XY. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses. Opt Lett 35, 1503–1505 (2010). doi: 10.1364/ol.35.001503

    CrossRef Google Scholar

    [172] He ZY, Liu QW. Optical fiber distributed acoustic sensors: a review. J Lightwave Technol 39, 3671–3686 (2021). doi: 10.1109/JLT.2021.3059771

    CrossRef Google Scholar

    [173] Tejedor J, Macias-Guarasa J, Martins HF, Pastor-Graells J, Corredera P et al. Machine learning methods for pipeline surveillance systems based on distributed acoustic sensing: a review. Appl Sci 7, 841 (2017). doi: 10.3390/app7080841

    CrossRef Google Scholar

    [174] Dou S, Lindsey N, Wagner AM, Daley TM, Freifeld B et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study. Sci Rep 7, 11620 (2017). doi: 10.1038/s41598-017-11986-4

    CrossRef Google Scholar

    [175] Walter F, Gräff D, Lindner F, Paitz P, Köpfli M et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat Commun 11, 2436 (2020). doi: 10.1038/s41467-020-15824-6

    CrossRef Google Scholar

    [176] Liu T, Li H, He T, Fan CZ, Yan ZJ et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model. Opto-Electron Adv 4, 200037 (2021). doi: 10.29026/oea.2021.200037

    CrossRef Google Scholar

    [177] Lellouch A, Lindsey NJ, Ellsworth WL, Biondi BL. Comparison between distributed acoustic sensing and geophones: downhole microseismic monitoring of the FORGE geothermal experiment. Seismol Res Lett 91, 3256–3268 (2020). doi: 10.1785/0220200149

    CrossRef Google Scholar

    [178] Sun QZ, Liu DM, Xia L, Wang J, Liu HR et al. Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating. IEEE Photonics Technol Lett 20, 933–935 (2008). doi: 10.1109/lpt.2008.922903

    CrossRef Google Scholar

    [179] Zhang W, Yan ZJ, Sun QZ. Multichannel fiber Bragg grating for distributed sensing with high spatial resolution. Proc SPIE 10849, 1084919 (2018). doi: 10.1117/12.2505591

    CrossRef Google Scholar

    [180] Sanders GA, Szafraniec B, Liu RY, Laskoskie CL, Strandjord LK et al. Fiber optic gyros for space, marine, and aviation applications. Proc SPIE 2837, 61–71 (1996). doi: 10.1117/12.258208

    CrossRef Google Scholar

    [181] Bergh RA, Lefevre HC, Shaw HJ. All-single-mode fiber-optic gyroscope. Opt Lett 6, 198–200 (1981). doi: 10.1364/ol.6.000198

    CrossRef Google Scholar

    [182] Bohnert K, Gabus P, Kostovic J, Brändle H. Optical fiber sensors for the electric power industry. Opt Lasers Eng 43, 511–526 (2005). doi: 10.1016/j.optlaseng.2004.02.008

    CrossRef Google Scholar

    [183] Liu C, Lü JW, Liu W, Wang FM, Chu PK. Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited]. Chin Opt Lett 19, 102202 (2021). doi: 10.3788/col202119.102202

    CrossRef Google Scholar

    [184] Sharma AK, Pandey AK, Kaur B. A Review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt Fiber Technol 43, 20–34 (2018). doi: 10.1016/j.yofte.2018.03.008

    CrossRef Google Scholar

    [185] Keiser G. Biophotonics: Concepts to Applications (Springer, Singapore, 2016).

    Google Scholar

    [186] Pan T, Lu DY, Xin HB, Li BJ. Biophotonic probes for bio-detection and imaging. Light Sci Appl 10, 124 (2021). doi: 10.1038/s41377-021-00561-2

    CrossRef Google Scholar

    [187] Soares MS, Vidal M, Santos NF, Costa FM, Marques C et al. Immunosensing based on optical fiber technology: recent advances. Biosensors 11, 305 (2021). doi: 10.3390/bios11090305

    CrossRef Google Scholar

    [188] Miao YS, Jing JC, Desai V, Mahon SB, Brenner M et al. Automated 3D segmentation of methyl isocyanate-exposed rat trachea using an ultra-thin, fully fiber optic optical coherence endoscopic probe. Sci Rep 8, 8713 (2018). doi: 10.1038/s41598-018-26389-2

    CrossRef Google Scholar

    [189] Tan ACS, Tan GS, Denniston AK, Keane PA, Ang M et al. An overview of the clinical applications of optical coherence tomography angiography. Eye 32, 262–286 (2018). doi: 10.1038/eye.2017.181

    CrossRef Google Scholar

    [190] Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. Prog Biomed Eng 3, 032002 (2021). doi: 10.1088/2516-1091/abfeb7

    CrossRef Google Scholar

    [191] Kwak J, Lee W, Kim JB, Bae SI, Jeong KH. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting. J Biomed Opt 24, 037001 (2019). doi: 10.1117/1.Jbo.24.3.037001

    CrossRef Google Scholar

    [192] Xi X, Liang CY. Perspective of future SERS clinical application based on current status of raman spectroscopy clinical trials. Front Chem 9, 665841 (2021). doi: 10.3389/fchem.2021.665841

    CrossRef Google Scholar

    [193] Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguié B et al. Present and future of surface-enhanced raman scattering. ACS Nano 14, 28–117 (2020). doi: 10.1021/acsnano.9b04224

    CrossRef Google Scholar

    [194] Zeni L, Perri C, Cennamo N, Arcadio F, D’agostino G et al. A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci Rep 10, 11154 (2020). doi: 10.1038/s41598-020-68050-x

    CrossRef Google Scholar

    [195] Zhu SD, Xie ZM, Chen YZ, Liu SY, Kwan YW et al. Real-time detection of circulating tumor cells in bloodstream using plasmonic fiber sensors. Biosensors 12, 968 (2022). doi: 10.3390/bios12110968

    CrossRef Google Scholar

    [196] Yu X, Zhang SY, Olivo M, Li NX. Micro- and nano-fiber probes for optical sensing, imaging, and stimulation in biomedical applications. Photonics Res 8, 1703–1724 (2020). doi: 10.1364/prj.387076

    CrossRef Google Scholar

    [197] Hu DJJ, Lim JL, Jiang M, Wang YX, Luan F et al. Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index. Opt Lett 37, 2283–2285 (2012). doi: 10.1364/OL.37.002283

    CrossRef Google Scholar

    [198] Xu ZL, Lim J, Hu DJJ, Sun QZ, Wong RYN et al. Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber. Opt Express 24, 1699–1707 (2016). doi: 10.1364/oe.24.001699

    CrossRef Google Scholar

    [199] Kaushik S, Tiwari UK, Deep A, Sinha RK. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. Sci Rep 9, 6987 (2019). doi: 10.1038/s41598-019-43531-w

    CrossRef Google Scholar

    [200] Dinish US, Balasundaram G, Chang YT, Olivo M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J Biophoton 7, 956–965 (2014). doi: 10.1002/jbio.201300084

    CrossRef Google Scholar

    [201] Yan H, Liu J, Yang CX, Jin GF, Gu C et al. Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. Opt Express 16, 8300–8305 (2008). doi: 10.1364/oe.16.008300

    CrossRef Google Scholar

    [202] Xie Z, Lu Y, Wei H, Yan J, Wang P et al. Broad spectral photonic crystal fiber surface enhanced Raman scattering probe. Appl Phys B 95, 751–755 (2009). doi: 10.1007/s00340-009-3466-3

    CrossRef Google Scholar

    [203] Gong TX, Zhang N, Kong KV, Goh D, Ying C et al. Rapid SERS monitoring of lipid-peroxidation-derived protein modifications in cells using photonic crystal fiber sensor. J Biophoton 9, 32–37 (2016). doi: 10.1002/jbio.201500168

    CrossRef Google Scholar

    [204] Gong TX, Cui Y, Goh D, Voon KK, Shum PP et al. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosens Bioelectron 64, 227–233 (2015). doi: 10.1016/j.bios.2014.08.077

    CrossRef Google Scholar

    [205] He ZY, Wang P, Ye XS. Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. Biomed Eng Online 20, 5 (2021). doi: 10.1186/s12938-020-00845-5

    CrossRef Google Scholar

    [206] Gora MJ, Suter MJ, Tearney GJ, Li XD. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed Opt Express 8, 2405–2444 (2017). doi: 10.1364/boe.8.002405

    CrossRef Google Scholar

    [207] Lu LD, Yong MC, Wang QS, Bu XD, Gao QH. A hybrid distributed optical fiber vibration and temperature sensor based on optical Rayleigh and Raman scattering. Opt Commun 529, 129096 (2023). doi: 10.1016/j.optcom.2022.129096

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(10514) PDF downloads(1722) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint