Liu X, Chen Q, Zeng J, Cai YJ, Liang CH. Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment. Opto-Electron Sci 2, 220024 (2023). doi: 10.29026/oes.2023.220024
Citation: Liu X, Chen Q, Zeng J, Cai YJ, Liang CH. Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment. Opto-Electron Sci 2, 220024 (2023). doi: 10.29026/oes.2023.220024

Article Open Access

Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment

More Information
  • The optical coherence structures of random optical fields can determine beam propagation behavior, light–matter interactions, etc. Their performance makes a light beam robust against turbulence, scattering, and distortion. Recently, we proposed optical coherence encryption and robust far-field optical imaging techniques. All related applications place a high demand on precision in the experimental measurements of complex optical coherence structures, including their real and imaginary parts. Past studies on these measurements have mainly adopted theoretical mathematical approximations, limited to Gaussian statistic involving speckle statistic (time-consuming), or used complicated and delicate optical systems in the laboratory. In this study, we provide: a robust, convenient, and fast protocol to measure the optical coherence structures of random optical fields via generalized Arago (or Poisson) spot experiments with rigorous mathematical solutions. Our proposal only requires to capture the intensity thrice, and is applicable to any optical coherence structures, regardless of their type or optical statistics. The theoretical and experimental results demonstrated that the real and imaginary parts of the structures could be simultaneously recovered with high precision. We believe that such a protocol can be widely employed in phase measurement, optical imaging, and image transfer.
  • 加载中
  • [1] Mandel L, Wolf E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).

    Google Scholar

    [2] Liu YL, Dong Z, Chen YH, Cai YJ. Research advances of partially coherent beams with novel coherence structures: engineering and applications. Opto-Electron Eng 49, 220178 (2022). doi: 10.12086/oee.2022.220178

    CrossRef Google Scholar

    [3] Karamata B, Lambelet P, Laubscher M, Salathé RP, Lasser T. Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography. Opt Lett 29, 736–738 (2004). doi: 10.1364/OL.29.000736

    CrossRef Google Scholar

    [4] Dhalla AH, Migacz JV, Izatt JA. Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources. Opt Lett 35, 2305–2307 (2010). doi: 10.1364/OL.35.002305

    CrossRef Google Scholar

    [5] Kang JQ, Zhu R, Sun YX, Li JN, Wong KKY. Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electron Adv 5, 200050 (2022). doi: 10.29026/oea.2022.200050

    CrossRef Google Scholar

    [6] Ricklin JC, Davidson FM. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. J Opt Soc Am A 19, 1794–1802 (2002). doi: 10.1364/josaa.19.001794

    CrossRef Google Scholar

    [7] Lu XY, Wang ZY, Zhang SX, Konijnenberg AP, Ouyang YQ et al. Microscopic phase reconstruction of cervical exfoliated cell under partially coherent illumination. J Biophotonics 14, e202000401 (2021). doi: 10.1002/jbio.202000401

    CrossRef Google Scholar

    [8] Lu XY, Shao YF, Zhao CL, Konijnenberg S, Zhu XL et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Adv Photonics 1, 016005 (2019). doi: 10.1117/1.AP.1.1.016005

    CrossRef Google Scholar

    [9] Anand V, Han ML, Maksimovic J, Ng SH, Katkus T et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci 1, 210006 (2022). doi: 10.29026/oes.2022.210006

    CrossRef Google Scholar

    [10] Schneider R, Mehringer T, Mercurio G, Wenthaus L, Classen A et al. Quantum imaging with incoherently scattered light from a free-electron laser. Nat Phys 14, 126–129 (2018). doi: 10.1038/nphys4301

    CrossRef Google Scholar

    [11] Dravins D, Lagadec T, Nuñez PD. Optical aperture synthesis with electronically connected telescopes. Nat Commun 6, 6852 (2015). doi: 10.1038/ncomms7852

    CrossRef Google Scholar

    [12] Liang CH, Monfared YE, Liu X, Qi BX, Wang F et al. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit. Chin Opt Lett 19, 052601 (2021). doi: 10.3788/COL202119.052601

    CrossRef Google Scholar

    [13] Batarseh M, Sukhov S, Shen Z, Gemar H, Rezvani R et al. Passive sensing around the corner using spatial coherence. Nat Commun 9, 3629 (2018). doi: 10.1038/s41467-018-05985-w

    CrossRef Google Scholar

    [14] Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027

    CrossRef Google Scholar

    [15] Liu YL, Zhang X, Dong Z, Peng DM, Chen YH et al. Robust far-field optical image transmission with structured random light beams. Phys Rev Appl 17, 024043 (2022). doi: 10.1103/PhysRevApplied.17.024043

    CrossRef Google Scholar

    [16] Pan RX, Liu X, Tang JH, Ye H, Liu ZZ et al. Enhancing the self-reconstruction ability of the degree of coherence of a light beam via manipulating the cross-phase structure. Appl Phys Lett 119, 111105 (2021). doi: 10.1063/5.0063939

    CrossRef Google Scholar

    [17] Peng DM, Huang ZF, Liu YL, Chen YH, Wang F et al. Optical coherence encryption with structured random light. PhotoniX 2, 6 (2021). doi: 10.1186/s43074-021-00027-z

    CrossRef Google Scholar

    [18] Liang CH, Wang F, Liu XL, Cai YJ, Korotkova O. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt Lett 39, 769–772 (2014). doi: 10.1364/OL.39.000769

    CrossRef Google Scholar

    [19] Cai YJ, Chen YH, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited]. J Opt Soc Am A 31, 2083–2096 (2014).

    Google Scholar

    [20] Hyde IV MW, Bose-Pillai S, Voelz DG, Xiao XF. Generation of vector partially coherent optical sources using phase-only spatial light modulators. Phys Rev Appl 6, 064030 (2016). doi: 10.1103/PhysRevApplied.6.064030

    CrossRef Google Scholar

    [21] Voelz D, Xiao XF, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Opt Lett 40, 352–355 (2015). doi: 10.1364/OL.40.000352

    CrossRef Google Scholar

    [22] Zhu SJ, Li P, Li ZH, Cai YJ, He WJ. Generating non-uniformly correlated twisted sources. Opt Lett 46, 5100–5103 (2021). doi: 10.1364/OL.442264

    CrossRef Google Scholar

    [23] Wang F, Lv H, Chen YH, Cai YJ, Korotkova O. Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Opt Express 29, 29676–29689 (2021). doi: 10.1364/OE.435767

    CrossRef Google Scholar

    [24] Ponomarenko SA. Complex Gaussian representation of statistical pulses. Opt Express 19, 17086–17091 (2011). doi: 10.1364/OE.19.017086

    CrossRef Google Scholar

    [25] Divitt S, Novotny L. Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica 2, 95–103 (2015). doi: 10.1364/OPTICA.2.000095

    CrossRef Google Scholar

    [26] González AI, Mejía Y. Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram. J Opt Soc Am A 28, 1107–1113 (2011). doi: 10.1364/JOSAA.28.001107

    CrossRef Google Scholar

    [27] Partanen H, Turunen J, Tervo J. Coherence measurement with digital micromirror device. Opt Lett 39, 1034–1037 (2014). doi: 10.1364/OL.39.001034

    CrossRef Google Scholar

    [28] Mendlovic D, Shabtay G, Lohmann AW, Konforti N. Display of spatial coherence. Opt Lett 23, 1084–1086 (1998). doi: 10.1364/OL.23.001084

    CrossRef Google Scholar

    [29] Halder A, Partanen H, Leinonen A, Koivurova M, Hakala TK et al. Mirror-based scanning wavefront-folding interferometer for coherence measurements. Opt Lett 45, 4260–4263 (2020). doi: 10.1364/OL.398704

    CrossRef Google Scholar

    [30] Bhattacharjee A, Aarav S, Jha AK. Two-shot measurement of spatial coherence. Appl Phys Lett 113, 051102 (2018). doi: 10.1063/1.5041076

    CrossRef Google Scholar

    [31] Tran CQ, Williams GJ, Roberts A, Flewett S, Peele AG et al. Experimental measurement of the four-dimensional coherence function for an undulator x-ray source. Phys Rev Lett 98, 224801 (2007). doi: 10.1103/PhysRevLett.98.224801

    CrossRef Google Scholar

    [32] Cho S, Alonso MA, Brown TG. Measurement of spatial coherence through diffraction from a transparent mask with a phase discontinuity. Opt Lett 37, 2724–2726 (2012). doi: 10.1364/OL.37.002724

    CrossRef Google Scholar

    [33] Wood JK, Sharma KA, Cho S, Brown TG, Alonso MA. Using shadows to measure spatial coherence. Opt Lett 39, 4927–4930 (2014). doi: 10.1364/OL.39.004927

    CrossRef Google Scholar

    [34] Shao YF, Lu XY, Konijnenberg S, Zhao CL, Cai YJ et al. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography. Opt Express 26, 4479–4490 (2018). doi: 10.1364/OE.26.004479

    CrossRef Google Scholar

    [35] Wang ZY, Lu XY, Huang WR, Konijnenberg AP, Zhang H et al. Measuring the complete complex correlation matrix of a partially coherent vector beam via self-referencing holography. Appl Phys Lett 119, 111101 (2021). doi: 10.1063/5.0061838

    CrossRef Google Scholar

    [36] Liu XL, Wang F, Liu L, Chen YH, Cai YJ et al. Complex degree of coherence measurement for classical statistical fields. Opt Lett 42, 77–80 (2017). doi: 10.1364/OL.42.000077

    CrossRef Google Scholar

    [37] Huang ZF, Chen YH, Wang F, Ponomarenko SA, Cai YJ. Measuring complex degree of coherence of random light fields with generalized Hanbury Brown-Twiss experiment. Phys Rev Appl 13, 044042 (2020). doi: 10.1103/PhysRevApplied.13.044042

    CrossRef Google Scholar

    [38] Rennie R. A Dictionary of Physics 7th ed (Oxford University Press, New York, 2015).

    Google Scholar

    [39] Ma PJ, Kacerovská B, Khosravi R, Liang CH, Zeng J et al. Numerical approach for studying the evolution of the degrees of coherence of partially coherent beams propagation through an ABCD optical system. Appl Sci 9, 2084 (2019). doi: 10.3390/app9102084

    CrossRef Google Scholar

    [40] Shen YC, Sun H, Peng DM, Chen YH, Cai QL et al. Optical image reconstruction in 4f imaging system: Role of spatial coherence structure engineering. Appl Phys Lett 118, 181102 (2021). doi: 10.1063/5.0046288

    CrossRef Google Scholar

    [41] Schmidt JD. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, Bellingham, 2010).

    Google Scholar

    [42] Rosales-Guzmán C, Forbes A. How to Shape Light with Spatial Light Modulators (SPIE, Bellingham, 2017).

    Google Scholar

    [43] Liu X, Monfared YE, Pan RX, Ma PJ, Cai YJ et al. Experimental realization of scalar and vector perfect Laguerre–Gaussian beams. Appl Phys Lett 119, 021105 (2021). doi: 10.1063/5.0048741

    CrossRef Google Scholar

    [44] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13, 600–612 (2004). doi: 10.1109/TIP.2003.819861

    CrossRef Google Scholar

    [45] Yu JY, Cai YJ, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties. Opt Express 26, 27894–27906 (2018). doi: 10.1364/OE.26.027894

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(4243) PDF downloads(495) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint