Huang HJ, Balčytis A, Dubey A, Boes A, Nguyen TG et al. Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron Sci 2, 220022 (2023). doi: 10.29026/oes.2023.220022
Citation: Huang HJ, Balčytis A, Dubey A, Boes A, Nguyen TG et al. Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron Sci 2, 220022 (2023). doi: 10.29026/oes.2023.220022

Article Open Access

Spatio-temporal isolator in lithium niobate on insulator

More Information
  • In this contribution, we simulate, design, and experimentally demonstrate an integrated optical isolator based on spatiotemporal modulation in the thin-film lithium niobate on an insulator waveguide platform. We used two cascaded travelling wave phase modulators for spatiotemporal modulation and a racetrack resonator as a wavelength filter to suppress the sidebands of the reverse propagating light. This enabled us to achieve an isolation of 27 dB. The demonstrated suppression of the reverse propagating light makes such isolators suitable for the integration with III-V laser diodes and Erbium doped gain sections in the thin-film lithium niobate on the insulator waveguide platform.
  • 加载中
  • [1] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019). doi: 10.1038/s41586-019-1008-7

    CrossRef Google Scholar

    [2] Xu MY, He MB, Zhang HG, Jian J, Pan Y et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun 11, 3911 (2020). doi: 10.1038/s41467-020-17806-0

    CrossRef Google Scholar

    [3] Wang C, Zhang M, Yu MJ, Zhu RR, Hu H et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun 10, 978 (2019). doi: 10.1038/s41467-019-08969-6

    CrossRef Google Scholar

    [4] Lu JJ, Surya JB, Liu XW, Bruch AW, Gong Z et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455–1460 (2019). doi: 10.1364/OPTICA.6.001455

    CrossRef Google Scholar

    [5] Ma JJ, Xie F, Chen WJ, Chen JX, Wu W et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev 15, 2000521 (2021). doi: 10.1002/lpor.202000521

    CrossRef Google Scholar

    [6] Fedotova A, Younesi M, Sautter J, Vaskin A, Löchner FJF et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett 20, 8608–8614 (2020). doi: 10.1021/acs.nanolett.0c03290

    CrossRef Google Scholar

    [7] Wooten EL, Kissa KM, Yi-Yan A, Murphy EJ, Lafaw DA et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron 6, 69–82 (2000). doi: 10.1109/2944.826874

    CrossRef Google Scholar

    [8] Zhou JX, Liang YT, Liu ZX, Chu W, Zhang HS et al. On‐chip integrated waveguide amplifiers on erbium‐doped thin‐film lithium niobate on insulator. Laser Photonics Rev 15, 2100030 (2021). doi: 10.1002/lpor.202100030

    CrossRef Google Scholar

    [9] Luo Q, Yang C, Zhang R, Hao ZZ, Zheng DH et al. On-chip erbium-doped lithium niobate microring lasers. Opt Lett 46, 3275–3278 (2021). doi: 10.1364/OL.425178

    CrossRef Google Scholar

    [10] Snigirev V, Riedhauser A, Lihachev G, Riemensberger J, Wang RN et al. Ultrafast tunable lasers using lithium niobate integrated photonics. arXiv: 2112.02036 (2021). https://doi.org/10.48550/arXiv.2112.02036

    Google Scholar

    [11] Tang LW, Li JC, Yang SG, Chen HW, Chen MH. A method for improving reflection tolerance of laser source in hybrid photonic packaged micro-system. IEEE Photonics Technol Lett 33, 465–468 (2021). doi: 10.1109/LPT.2021.3069220

    CrossRef Google Scholar

    [12] Levy M, Osgood RM, Hegde H, Cadieu FJ, Wolfe R et al. Integrated optical isolators with sputter-deposited thin-film magnets. IEEE Photonics Technol Lett 8, 903–905 (1996). doi: 10.1109/68.502265

    CrossRef Google Scholar

    [13] Kittlaus EA, Weigel PO, Jones WM. Low-loss nonlinear optical isolators in silicon. Nat Photonics 14, 338–339 (2020).

    Google Scholar

    [14] Sounas DL, Alù A. Non-reciprocal photonics based on time modulation. Nat Photonics 11, 774–783 (2017). doi: 10.1038/s41566-017-0051-x

    CrossRef Google Scholar

    [15] Srinivasan K, Stadler BJH. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics [Invited]. Opt Mater Express 12, 697–716 (2022). doi: 10.1364/OME.447398

    CrossRef Google Scholar

    [16] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y

    CrossRef Google Scholar

    [17] Doerr CR, Dupuis N, Zhang LM. Optical isolator using two tandem phase modulators. Opt Lett 36, 4293–4295 (2011). doi: 10.1364/OL.36.004293

    CrossRef Google Scholar

    [18] Lin Q, Wang JH, Fan SH. Compact dynamic optical isolator based on tandem phase modulators. Opt Lett 44, 2240–2243 (2019). doi: 10.1364/OL.44.002240

    CrossRef Google Scholar

    [19] Huang HJ, Han X, Balčytis A, Dubey A, Boes A et al. Non-resonant recirculating light phase modulator. APL Photonics 7, 106102 (2022). doi: 10.1063/5.0103558

    CrossRef Google Scholar

    [20] Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev 12, 1700256 (2018). doi: 10.1002/lpor.201700256

    CrossRef Google Scholar

    [21] Pan BC, Cao HY, Huang YS, Wang Z, Chen KX et al. Compact electro-optic modulator on lithium niobate. Photonics Res 10, 697–702 (2022). doi: 10.1364/PRJ.449172

    CrossRef Google Scholar

    [22] Dostart N, Gevorgyan H, Onural D, Popović MA. Optical isolation using microring modulators. Opt Lett 46, 460–463 (2021). doi: 10.1364/OL.408614

    CrossRef Google Scholar

    [23] Doerr CR, Chen L, Vermeulen D. Silicon photonics broadband modulation-based isolator. Opt Express 22, 4493–4498 (2014). doi: 10.1364/OE.22.004493

    CrossRef Google Scholar

    [24] Lira H, Yu ZF, Fan SH, Lipson M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys Rev Lett 109, 033901 (2012). doi: 10.1103/PhysRevLett.109.033901

    CrossRef Google Scholar

    [25] Bhandare S, Ibrahim SK, Sandel D, Zhang HB, Wust F et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material. IEEE J Sel Top Quantum Electron 11, 417–421 (2005). doi: 10.1109/JSTQE.2005.845620

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(4301) PDF downloads(498) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint