Citation: | Qian YZ, Yang ZY, Huang YH, Lin KH, Wu ST. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022). doi: 10.29026/oes.2022.220021 |
[1] | Xiong JH, Hsiang EL, He ZQ, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8 |
[2] | Huang YG, Hsiang EL, Deng MY, Wu ST. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020). doi: 10.1038/s41377-020-0341-9 |
[3] | Huang YG, Tan GJ, Gou FW, Li MC, Lee SL et al. Prospects and challenges of mini‐LED and micro‐LED displays. J Soc Inf Disp 27, 387–401 (2019). doi: 10.1002/jsid.760 |
[4] | Chen Z, Yan SK, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. J Phys D Appl Phys 54, 123001 (2021). doi: 10.1088/1361-6463/abcfe4 |
[5] | Yang X, Lin Y, Wu TZ, Yan ZJ, Chen Z et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123 |
[6] | Tan GJ, Lee YH, Zhan T, Yang JL, Liu S et al. Foveated imaging for near-eye displays. Opt Express 26, 25076–25085 (2018). doi: 10.1364/OE.26.025076 |
[7] | Wu YF, Ma JS, Su P, Zhang LJ, Xia BZ. Full-color realization of micro-LED displays. Nanomaterials 10, 2482 (2020). doi: 10.3390/nano10122482 |
[8] | Han SC, Xu CC, Li HJ, Liu SG, Xu HW et al. AlGaInP-based Micro-LED array with enhanced optoelectrical properties. Opt Mater 114, 110860 (2021). doi: 10.1016/j.optmat.2021.110860 |
[9] | Olivier F, Tirano S, Dupré L, Aventurier B, Largeron C et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J Lumin 191, 112–116 (2017). doi: 10.1016/j.jlumin.2016.09.052 |
[10] | Olivier F, Daami A, Dupré L, Henry F, Aventurier B et al. 25‐4: investigation and improvement of 10 μm pixel‐pitch GaN‐based micro‐LED arrays with very high brightness. SID Symp Digest Tech Papers 48, 353–356 (2017). doi: 10.1002/sdtp.11615 |
[11] | Bulashevich KA, Kulik AV, Karpov SY. Optimal ways of colour mixing for high‐quality white‐light LED sources. Phys Status Solidi A 212, 914–919 (2015). doi: 10.1002/pssa.201431576 |
[12] | Gilet P, Robin IC. 52-1: invited paper: nanostructures on silicon to solve the active display paradigms. SID Symp Digest Tech Papers 49, 684–687 (2018). doi: 10.1002/sdtp.12349 |
[13] | Zhao SR, Nguyen HPT, Kibria MG, Mi ZT. III-Nitride nanowire optoelectronics. Prog Quantum Electron 44, 14–68 (2015). doi: 10.1016/j.pquantelec.2015.11.001 |
[14] | Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quantum Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263 |
[15] | Jain B, Velpula RT, Bui HQT, Nguyen HD, Lenka TR et al. High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes. Opt Express 28, 665–675 (2020). doi: 10.1364/OE.28.000665 |
[16] | Yan RX, Gargas D, Yang PF. Nanowire photonics. Nat Photonics 3, 569–576 (2009). doi: 10.1038/nphoton.2009.184 |
[17] | Ra YH, Lee CR. Core–shell tunnel junction nanowire white-light-emitting diode. Nano Lett 20, 4162–4168 (2020). doi: 10.1021/acs.nanolett.0c00420 |
[18] | Zhao S, Liu XH, Woo SY, Kang JJ, Botton GA et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl Phys Lett 107, 043101 (2015). doi: 10.1063/1.4927602 |
[19] | Gong Z, Jin SR, Chen YJ, McKendry J, Massoubre D et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J Appl Phys 107, 013103 (2010). doi: 10.1063/1.3276156 |
[20] | Ra YH, Kang S, Lee CR. Ultraviolet light-emitting diode using nonpolar algan core–shell nanowire heterostructures. Adv Opt Mater 6, 1701391 (2018). doi: 10.1002/adom.201701391 |
[21] | Monemar B, Ohlsson BJ, Gardner NF, Samuelson L. Nanowire-based visible light emitters, present status and outlook. Semicond Semimet 94, 227–271 (2016). |
[22] | Liu XH, Sun Y, Malhotra Y, Wu YP, Mi ZT. Monolithic integration of multicolor InGaN LEDs with uniform luminescence emission. Opt Express 29, 32826–32832 (2021). doi: 10.1364/OE.435871 |
[23] | Wang RJ, Nguyen HPT, Connie AT, Lee J, Shih I et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt Express 22, A1768–A1775 (2014). doi: 10.1364/OE.22.0A1768 |
[24] | Ito K, Lu WF, Katsuro S, Okuda R, Nakayama N et al. Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs. Nanoscale Adv 4, 102–110 (2022). doi: 10.1039/D1NA00299F |
[25] | Ra YH, Wang RJ, Woo SY, Djavid M, Sadaf SM et al. Full-color single nanowire pixels for projection displays. Nano Lett 16, 4608–4615 (2016). doi: 10.1021/acs.nanolett.6b01929 |
[26] | Sekiguchi H, Kishino K, Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett 96, 231104 (2010). doi: 10.1063/1.3443734 |
[27] | Gou FW, Hsiang EL, Tan GJ, Chou PT, Li YL et al. Angular color shift of micro-LED displays. Opt Express 27, A746–A757 (2019). doi: 10.1364/OE.27.00A746 |
[28] | Mangalgiri GM, Manley P, Riedel W, Schmid M. Dielectric nanorod scattering and its influence on material interfaces. Sci Rep 7, 4311 (2017). doi: 10.1038/s41598-017-03721-w |
[29] | Zhan T, Hsiang EL, Li K, Wu ST. Enhancing the optical efficiency of near-eye displays with liquid crystal optics. Crystals 11, 107 (2021). doi: 10.3390/cryst11020107 |
[30] | Zou JY, Zhan T, Hsiang EL, Du XP, Yu XM et al. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film. Opt Express 29, 20673–20686 (2021). doi: 10.1364/OE.430920 |
[31] | Motohisa J, Kohashi Y, Maeda S. Far-field emission patterns of nanowire light-emitting diodes. Nano Lett 14, 3653–3660 (2014). doi: 10.1021/nl501438r |
[32] | Dinges HW, Burkhard H, Lösch R, Nickel H, Schlapp W. Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry. Appl Surf Sci 54, 477–481 (1992). doi: 10.1016/0169-4332(92)90090-K |
[33] | König TAF, Ledin PA, Kerszulis J, Mahmoud MA, El-Sayed MA et al. Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8, 6182–6192 (2014). doi: 10.1021/nn501601e |
[34] | Palik ED. Handbook of Optical Constants of Solids Vol. 3 (Academic Press, San Diego, 1998). |
[35] | Liu ZY, Wang K, Luo XB, Liu S. Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing. Opt Express 18, 9398–9412 (2010). doi: 10.1364/OE.18.009398 |
[36] | Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Zhou L et al. Status and future of high-power light-emitting diodes for solid-state lighting. J Disp Technol 3, 160–175 (2007). doi: 10.1109/JDT.2007.895339 |
[37] | Robin Y, Pristovsek M, Amano H, Oehler F, Oliver RA et al. What is red? On the chromaticity of orange-red InGaN/GaN based LEDs. J Appl Phys 124, 183102 (2018). doi: 10.1063/1.5047240 |
[38] | Ryu HY. Evaluation of light extraction efficiency of GaN-based nanorod light-emitting diodes by averaging over source positions and polarizations. Crystals 8, 27 (2018). doi: 10.3390/cryst8010027 |
[39] | McCamy CS, Marcus H, Davidson JG. A color-rendition chart. J Appl Photogr Eng 2, 95–99 (1976). |
[40] | Nguyen HPT, Zhang SF, Cui K, Korinek A, Botton GA et al. High-efficiency InGaN/GaN dot-in-a-wire red light-emitting diodes. IEEE Photonics Technol Lett 24, 321–323 (2012). doi: 10.1109/LPT.2011.2178091 |
[41] | Wong MS, Lee C, Myers DJ, Hwang D, Kearns JA et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl Phys Express 12, 097004 (2019). doi: 10.7567/1882-0786/ab3949 |
[42] | Ley RT, Smith JM, Wong MS, Margalith T, Nakamura S et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl Phys Lett 116, 251104 (2020). doi: 10.1063/5.0011651 |
[43] | Smith JM, Ley R, Wong MS, Baek YH, Kang JH et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl Phys Lett 116, 071102 (2020). doi: 10.1063/1.5144819 |
[44] | Templier F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems. J Soc Inf Disp 24, 669–675 (2016). doi: 10.1002/jsid.516 |
[45] | Zhanghu M, Hyun BR, Jiang FL, Liu ZJ. Ultra-bright green InGaN micro-LEDs with brightness over 10M nits. Opt Express 30, 10119–10125 (2022). doi: 10.1364/OE.451509 |
[46] | Wang L, Wang L, Chen CJ, Chen KC, Hao ZB et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs. Laser Photonics Rev 15, 2000406 (2021). doi: 10.1002/lpor.202000406 |
[47] | Hashimoto R, Hwang J, Saito S, Nunoue S. High‐efficiency green‐yellow light‐emitting diodes grown on sapphire (0001) substrates. Phys Status Solidi C 10, 1529–1532 (2013). doi: 10.1002/pssc.201300238 |
[48] | Fan KL, Tao J, Zhao YZ, Li PY, Sun WC et al. Size effects of AlGaInP red vertical micro-LEDs on silicon substrate. Results Phys 36, 105449 (2022). doi: 10.1016/j.rinp.2022.105449 |
Supplementary information for Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays |
(a) 3D-FDTD InP nanowire LED simulation schematic. (b) Simulated far-field radiation patterns of InP nanowire LED. The experimental data (black curve) included for comparison are from ref.31.
(a) Schematic of FDTD simulation model in x-z plane. (b) Top view of blue hexagonal nanowire LED. (c) Measured EL spectra of single nanowire LEDs with different diameters from ref.25.
(a–c) Normalized 2D angular distribution for (a) blue, (b) green, and (c) red LEDs. (d) Normalized 1D angular distribution when azimuthal angle φ=0°.
(a) Simulated color triangle of the GaN/InGaN nanowire LED display and CIE coordinates of 18 reference colors at 0° viewing angle. (b) Simulated color shift of 18 reference colors from 0° to 20° viewing angle. Inset: Simulated average color shift from 0° to 30° viewing angle.
(a–c) 2D colormap of angular FWHM as a function of n-GaN thickness and p-GaN capping height: (a) blue, (b) green, and (c) red nanowire LEDs. (d–f) 2D colormap of effective LEE as a function of n-GaN thickness and p-GaN capping height: (d) blue, (e) green, and (f) red nanowire LEDs.
(a–c) Normalized 2D angular distribution for optimized (a) blue, (b) green, and (c) red LEDs. (d) Comparison of normalized 1D angular distribution between unoptimized (solid lines) and optimized (dashed lines) nanowire LEDs.
Comparison between calculated effective EQE of nanowire LED (horizontal dash lines) with measured EQE of (a) blue InGaN µLEDs from ref.9,43, (b) green InGaN µLEDs from ref.43-47 and (c) red AlGaInP µLEDs from ref.48 as a function of mesa diameter. Vertical dash lines: EQE of µLEDs with 10-µm mesa size.
(a) Simulated angular color shift of 18 reference colors from 0° to 20° after optimization. (b) Simulated average color shift from 0° to 30° viewing angle after optimization.