Qian YZ, Yang ZY, Huang YH, Lin KH, Wu ST. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022). doi: 10.29026/oes.2022.220021
Citation: Qian YZ, Yang ZY, Huang YH, Lin KH, Wu ST. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022). doi: 10.29026/oes.2022.220021

Original Article Open Access

Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays

More Information
  • The emission wavelength of InGaN/GaN dot-in-wire LED can be tuned by modifying the nanowire diameter, but it causes mismatched angular distributions between blue, green, and red nanowires because of the excitation of different waveguide modes. Besides, the far-field radiation patterns and light extraction efficiency are typically calculated by center dipoles, which fails to provide accurate results. To address these issues, we first compare the simulation results between central dipole and dipole cloud with experimental data. Next, we calculate and analyze the display metrics for full-color nanowire LEDs by 3D dipole cloud. Finally, we achieve unnoticeable angular color shift within ±20° viewing cone for augmented reality (AR) and virtual reality (VR) displays with an improved light extraction efficiency.
  • 加载中
  • [1] Xiong JH, Hsiang EL, He ZQ, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [2] Huang YG, Hsiang EL, Deng MY, Wu ST. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020). doi: 10.1038/s41377-020-0341-9

    CrossRef Google Scholar

    [3] Huang YG, Tan GJ, Gou FW, Li MC, Lee SL et al. Prospects and challenges of mini‐LED and micro‐LED displays. J Soc Inf Disp 27, 387–401 (2019). doi: 10.1002/jsid.760

    CrossRef Google Scholar

    [4] Chen Z, Yan SK, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. J Phys D Appl Phys 54, 123001 (2021). doi: 10.1088/1361-6463/abcfe4

    CrossRef Google Scholar

    [5] Yang X, Lin Y, Wu TZ, Yan ZJ, Chen Z et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [6] Tan GJ, Lee YH, Zhan T, Yang JL, Liu S et al. Foveated imaging for near-eye displays. Opt Express 26, 25076–25085 (2018). doi: 10.1364/OE.26.025076

    CrossRef Google Scholar

    [7] Wu YF, Ma JS, Su P, Zhang LJ, Xia BZ. Full-color realization of micro-LED displays. Nanomaterials 10, 2482 (2020). doi: 10.3390/nano10122482

    CrossRef Google Scholar

    [8] Han SC, Xu CC, Li HJ, Liu SG, Xu HW et al. AlGaInP-based Micro-LED array with enhanced optoelectrical properties. Opt Mater 114, 110860 (2021). doi: 10.1016/j.optmat.2021.110860

    CrossRef Google Scholar

    [9] Olivier F, Tirano S, Dupré L, Aventurier B, Largeron C et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J Lumin 191, 112–116 (2017). doi: 10.1016/j.jlumin.2016.09.052

    CrossRef Google Scholar

    [10] Olivier F, Daami A, Dupré L, Henry F, Aventurier B et al. 25‐4: investigation and improvement of 10 μm pixel‐pitch GaN‐based micro‐LED arrays with very high brightness. SID Symp Digest Tech Papers 48, 353–356 (2017). doi: 10.1002/sdtp.11615

    CrossRef Google Scholar

    [11] Bulashevich KA, Kulik AV, Karpov SY. Optimal ways of colour mixing for high‐quality white‐light LED sources. Phys Status Solidi A 212, 914–919 (2015). doi: 10.1002/pssa.201431576

    CrossRef Google Scholar

    [12] Gilet P, Robin IC. 52-1: invited paper: nanostructures on silicon to solve the active display paradigms. SID Symp Digest Tech Papers 49, 684–687 (2018). doi: 10.1002/sdtp.12349

    CrossRef Google Scholar

    [13] Zhao SR, Nguyen HPT, Kibria MG, Mi ZT. III-Nitride nanowire optoelectronics. Prog Quantum Electron 44, 14–68 (2015). doi: 10.1016/j.pquantelec.2015.11.001

    CrossRef Google Scholar

    [14] Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quantum Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263

    CrossRef Google Scholar

    [15] Jain B, Velpula RT, Bui HQT, Nguyen HD, Lenka TR et al. High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes. Opt Express 28, 665–675 (2020). doi: 10.1364/OE.28.000665

    CrossRef Google Scholar

    [16] Yan RX, Gargas D, Yang PF. Nanowire photonics. Nat Photonics 3, 569–576 (2009). doi: 10.1038/nphoton.2009.184

    CrossRef Google Scholar

    [17] Ra YH, Lee CR. Core–shell tunnel junction nanowire white-light-emitting diode. Nano Lett 20, 4162–4168 (2020). doi: 10.1021/acs.nanolett.0c00420

    CrossRef Google Scholar

    [18] Zhao S, Liu XH, Woo SY, Kang JJ, Botton GA et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl Phys Lett 107, 043101 (2015). doi: 10.1063/1.4927602

    CrossRef Google Scholar

    [19] Gong Z, Jin SR, Chen YJ, McKendry J, Massoubre D et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J Appl Phys 107, 013103 (2010). doi: 10.1063/1.3276156

    CrossRef Google Scholar

    [20] Ra YH, Kang S, Lee CR. Ultraviolet light-emitting diode using nonpolar algan core–shell nanowire heterostructures. Adv Opt Mater 6, 1701391 (2018). doi: 10.1002/adom.201701391

    CrossRef Google Scholar

    [21] Monemar B, Ohlsson BJ, Gardner NF, Samuelson L. Nanowire-based visible light emitters, present status and outlook. Semicond Semimet 94, 227–271 (2016).

    Google Scholar

    [22] Liu XH, Sun Y, Malhotra Y, Wu YP, Mi ZT. Monolithic integration of multicolor InGaN LEDs with uniform luminescence emission. Opt Express 29, 32826–32832 (2021). doi: 10.1364/OE.435871

    CrossRef Google Scholar

    [23] Wang RJ, Nguyen HPT, Connie AT, Lee J, Shih I et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt Express 22, A1768–A1775 (2014). doi: 10.1364/OE.22.0A1768

    CrossRef Google Scholar

    [24] Ito K, Lu WF, Katsuro S, Okuda R, Nakayama N et al. Identification of multi-color emission from coaxial GaInN/GaN multiple-quantum-shell nanowire LEDs. Nanoscale Adv 4, 102–110 (2022). doi: 10.1039/D1NA00299F

    CrossRef Google Scholar

    [25] Ra YH, Wang RJ, Woo SY, Djavid M, Sadaf SM et al. Full-color single nanowire pixels for projection displays. Nano Lett 16, 4608–4615 (2016). doi: 10.1021/acs.nanolett.6b01929

    CrossRef Google Scholar

    [26] Sekiguchi H, Kishino K, Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett 96, 231104 (2010). doi: 10.1063/1.3443734

    CrossRef Google Scholar

    [27] Gou FW, Hsiang EL, Tan GJ, Chou PT, Li YL et al. Angular color shift of micro-LED displays. Opt Express 27, A746–A757 (2019). doi: 10.1364/OE.27.00A746

    CrossRef Google Scholar

    [28] Mangalgiri GM, Manley P, Riedel W, Schmid M. Dielectric nanorod scattering and its influence on material interfaces. Sci Rep 7, 4311 (2017). doi: 10.1038/s41598-017-03721-w

    CrossRef Google Scholar

    [29] Zhan T, Hsiang EL, Li K, Wu ST. Enhancing the optical efficiency of near-eye displays with liquid crystal optics. Crystals 11, 107 (2021). doi: 10.3390/cryst11020107

    CrossRef Google Scholar

    [30] Zou JY, Zhan T, Hsiang EL, Du XP, Yu XM et al. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film. Opt Express 29, 20673–20686 (2021). doi: 10.1364/OE.430920

    CrossRef Google Scholar

    [31] Motohisa J, Kohashi Y, Maeda S. Far-field emission patterns of nanowire light-emitting diodes. Nano Lett 14, 3653–3660 (2014). doi: 10.1021/nl501438r

    CrossRef Google Scholar

    [32] Dinges HW, Burkhard H, Lösch R, Nickel H, Schlapp W. Refractive indices of InAlAs and InGaAs/InP from 250 to 1900 nm determined by spectroscopic ellipsometry. Appl Surf Sci 54, 477–481 (1992). doi: 10.1016/0169-4332(92)90090-K

    CrossRef Google Scholar

    [33] König TAF, Ledin PA, Kerszulis J, Mahmoud MA, El-Sayed MA et al. Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8, 6182–6192 (2014). doi: 10.1021/nn501601e

    CrossRef Google Scholar

    [34] Palik ED. Handbook of Optical Constants of Solids Vol. 3 (Academic Press, San Diego, 1998).

    Google Scholar

    [35] Liu ZY, Wang K, Luo XB, Liu S. Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing. Opt Express 18, 9398–9412 (2010). doi: 10.1364/OE.18.009398

    CrossRef Google Scholar

    [36] Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Zhou L et al. Status and future of high-power light-emitting diodes for solid-state lighting. J Disp Technol 3, 160–175 (2007). doi: 10.1109/JDT.2007.895339

    CrossRef Google Scholar

    [37] Robin Y, Pristovsek M, Amano H, Oehler F, Oliver RA et al. What is red? On the chromaticity of orange-red InGaN/GaN based LEDs. J Appl Phys 124, 183102 (2018). doi: 10.1063/1.5047240

    CrossRef Google Scholar

    [38] Ryu HY. Evaluation of light extraction efficiency of GaN-based nanorod light-emitting diodes by averaging over source positions and polarizations. Crystals 8, 27 (2018). doi: 10.3390/cryst8010027

    CrossRef Google Scholar

    [39] McCamy CS, Marcus H, Davidson JG. A color-rendition chart. J Appl Photogr Eng 2, 95–99 (1976).

    Google Scholar

    [40] Nguyen HPT, Zhang SF, Cui K, Korinek A, Botton GA et al. High-efficiency InGaN/GaN dot-in-a-wire red light-emitting diodes. IEEE Photonics Technol Lett 24, 321–323 (2012). doi: 10.1109/LPT.2011.2178091

    CrossRef Google Scholar

    [41] Wong MS, Lee C, Myers DJ, Hwang D, Kearns JA et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl Phys Express 12, 097004 (2019). doi: 10.7567/1882-0786/ab3949

    CrossRef Google Scholar

    [42] Ley RT, Smith JM, Wong MS, Margalith T, Nakamura S et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl Phys Lett 116, 251104 (2020). doi: 10.1063/5.0011651

    CrossRef Google Scholar

    [43] Smith JM, Ley R, Wong MS, Baek YH, Kang JH et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl Phys Lett 116, 071102 (2020). doi: 10.1063/1.5144819

    CrossRef Google Scholar

    [44] Templier F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems. J Soc Inf Disp 24, 669–675 (2016). doi: 10.1002/jsid.516

    CrossRef Google Scholar

    [45] Zhanghu M, Hyun BR, Jiang FL, Liu ZJ. Ultra-bright green InGaN micro-LEDs with brightness over 10M nits. Opt Express 30, 10119–10125 (2022). doi: 10.1364/OE.451509

    CrossRef Google Scholar

    [46] Wang L, Wang L, Chen CJ, Chen KC, Hao ZB et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs. Laser Photonics Rev 15, 2000406 (2021). doi: 10.1002/lpor.202000406

    CrossRef Google Scholar

    [47] Hashimoto R, Hwang J, Saito S, Nunoue S. High‐efficiency green‐yellow light‐emitting diodes grown on sapphire (0001) substrates. Phys Status Solidi C 10, 1529–1532 (2013). doi: 10.1002/pssc.201300238

    CrossRef Google Scholar

    [48] Fan KL, Tao J, Zhao YZ, Li PY, Sun WC et al. Size effects of AlGaInP red vertical micro-LEDs on silicon substrate. Results Phys 36, 105449 (2022). doi: 10.1016/j.rinp.2022.105449

    CrossRef Google Scholar

  • Supplementary information for Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(9281) PDF downloads(768) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint