Lu TW, Lin XS, Guo QA, Tu CC, Liu SB et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1, 220020 (2022). doi: 10.29026/oes.2022.220020
Citation: Lu TW, Lin XS, Guo QA, Tu CC, Liu SB et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1, 220020 (2022). doi: 10.29026/oes.2022.220020

Review Open Access

High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication

More Information
  • The evolution of next-generation cellular networks is aimed at creating faster, more reliable solutions. Both the next-generation 6G network and the metaverse require high transmission speeds. Visible light communication (VLC) is deemed an important ancillary technology to wireless communication. It has shown potential for a wide range of applications in next-generation communication. Micro light-emitting diodes (μLEDs) are ideal light sources for high-speed VLC, owing to their high modulation bandwidths. In this review, an overview of μLEDs for VLC is presented. Methods to improve the modulation bandwidth are discussed in terms of epitaxy optimization, crystal orientation, and active region structure. Moreover, electroluminescent white LEDs, photoluminescent white LEDs based on phosphor or quantum-dot color conversion, and μLED-based detectors for VLC are introduced. Finally, the latest high-speed VLC applications and the application prospects of VLC in 6G are introduced, including underwater VLC and artificial intelligence-based VLC systems.
  • 加载中
  • [1] Chow CW, Kuo FM, Shi JW, Yeh CH, Wu YF et al. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks. Opt Express 18, 473–478 (2010). doi: 10.1364/OE.18.000473

    CrossRef Google Scholar

    [2] Karunatilaka D, Zafar F, Kalavally V, Parthiban R. LED based indoor visible light communications: state of the art. IEEE Commun Surv Tutor 17, 1649–1678 (2015). doi: 10.1109/COMST.2015.2417576

    CrossRef Google Scholar

    [3] Hussain B, Li XB, Che FY, Yue CP, Wu L. Visible light communication system design and link budget analysis. J Lightwave Technol 33, 5201–5209 (2015). doi: 10.1109/JLT.2015.2499204

    CrossRef Google Scholar

    [4] Zhang CY, Zhou W, Geng D, Bai C, Li WD et al. Laser direct writing and characterizations of flexible piezoresistive sensors with microstructures. Opto-Electron Adv 4, 200061 (2021). doi: 10.29026/oea.2021.200061

    CrossRef Google Scholar

    [5] Yu KP, Tan L, Yang CX, Choo KKR, Bashir AK et al. A blockchain-based shamir's threshold cryptography scheme for data protection in industrial internet of things settings. IEEE Internet Things J 9, 8154–8167 (2022). doi: 10.1109/JIOT.2021.3125190

    CrossRef Google Scholar

    [6] Zhang JM, Harman M, Ma L, Liu Y. Machine learning testing: survey, landscapes and horizons. IEEE Trans Softw Eng 48, 1–36 (2022).

    Google Scholar

    [7] Ahn SJ, Kim J, Kim J. The bifold triadic relationships framework: a theoretical primer for advertising research in the metaverse. J Advert 51, 592–607 (2022). doi: 10.1080/00913367.2022.2111729

    CrossRef Google Scholar

    [8] Kwon HJ, El Azzaoui A, Park JH. MetaQ: a quantum approach for secure and qptimized metaverse environment. Human-Centric Comput Inf Sci 12, 42 (2022).

    Google Scholar

    [9] Khan LU. Visible light communication: applications, architecture, standardization and research challenges. Digit Commun Netw 3, 78–88 (2017). doi: 10.1016/j.dcan.2016.07.004

    CrossRef Google Scholar

    [10] Xu B, Sanjurjo DA, Colombi D, Törnevik C. A monte carlo analysis of actual maximum exposure from a 5G millimeter-wave base station antenna for EMF compliance assessments. Front Public Health 9, 777759 (2022). doi: 10.3389/fpubh.2021.777759

    CrossRef Google Scholar

    [11] Li X, Tang H, Hu GB, Zhao B, Liang JR. ViPSN-Pluck: a transient-motion-powered motion detector. IEEE Internet Things J 9, 3372–3382 (2022). doi: 10.1109/JIOT.2021.3098238

    CrossRef Google Scholar

    [12] Lee JH, Islam ABMH, Kim TK, Cha YJ, Kwak JS. Impact of tin-oxide nanoparticles on improving the carrier transport in the Ag/p-GaN interface of InGaN/GaN micro-light-emitting diodes by originating inhomogeneous Schottky barrier height. Photonics Res 8, 1049–1058 (2020). doi: 10.1364/PRJ.385249

    CrossRef Google Scholar

    [13] Lee DH, Seong TY, Amano H. Stable electrical performance of AlGaInP-based red micro-light emitting diode by controlling interfacial morphologies of metal contacts. J Alloys Compd 872, 159629 (2021). doi: 10.1016/j.jallcom.2021.159629

    CrossRef Google Scholar

    [14] Haigh PA, Ghassemlooy Z, Rajbhandari S, Papakonstantinou I. Visible light communications using organic light emitting diodes. IEEE Commun Mag 51, 148–154 (2013).

    Google Scholar

    [15] Sajjad MT, Manousiadis PP, Chun H, Vithanage DA, Rajbhandari S et al. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS Photonics 2, 194–199 (2015). doi: 10.1021/ph500451y

    CrossRef Google Scholar

    [16] Zhang SY, Tsonev D, Videv S, Ghosh S, Turnbull GA et al. Organic solar cells as high-speed data detectors for visible light communication. Optica 2, 607–610 (2015). doi: 10.1364/OPTICA.2.000607

    CrossRef Google Scholar

    [17] Lu XY, Zhu SJ, Lin RZ, Sun D, Cui XG et al. Performance improvement of red InGaN micro-LEDs by transfer printing from Si substrate onto glass substrate. IEEE Electron Device Lett 43, 1491–1494 (2022). doi: 10.1109/LED.2022.3189443

    CrossRef Google Scholar

    [18] Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021). doi: 10.29026/oea.2021.210022

    CrossRef Google Scholar

    [19] Du CH, Jiang CY, Zuo P, Huang X, Pu X et al. Piezo-phototronic effect controlled dual-channel visible light communication (PVLC) using InGaN/GaN multiquantum well nanopillars. Small 11, 6071–6077 (2015). doi: 10.1002/smll.201502170

    CrossRef Google Scholar

    [20] Elgala H, Mesleh R, Haas H. Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun Mag 49, 56–62 (2011).

    Google Scholar

    [21] Pathak PH, Feng XT, Hu PF, Mohapatra P. Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun Surv Tutor 17, 2047–2077 (2015). doi: 10.1109/COMST.2015.2476474

    CrossRef Google Scholar

    [22] Parikh H, Chokshi J, Gala N, Biradar T. Wirelessly transmitting a grayscale image using visible light. In Proceedings of 2013 International Conference on Advances in Technology and Engineering (ICATE) 1–6 (IEEE, 2013);http://doi.org/10.1109/ICAdTE.2013.6524748

    Google Scholar

    [23] Dede G, Kamalakis T, Varoutas D. Evaluation of optical wireless technologies in home networking: an analytical hierarchy process approach. J Opt Commun Netw 3, 850–859 (2011). doi: 10.1364/JOCN.3.000850

    CrossRef Google Scholar

    [24] Zhang YL, Jiang MJ, Han T, Xiao XT, Chen WL et al. Aggregation-induced emission luminogens as color converters for visible-light communication. ACS Appl Mater Interfaces 10, 34418–34426 (2018). doi: 10.1021/acsami.8b05950

    CrossRef Google Scholar

    [25] Zhou ZJ, Tian PF, Liu XY, Mei SL, Zhou D et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication. Adv Sci 5, 1800369 (2018). doi: 10.1002/advs.201800369

    CrossRef Google Scholar

    [26] Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127

    CrossRef Google Scholar

    [27] Jovicic A, Li JY, Richardson T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun Mag 51, 26–32 (2013).

    Google Scholar

    [28] O'Brien DC. Visible light communications: challenges and potential. In Proceedings of the IEEE Photonic Society 24th Annual Meeting 365–366 (IEEE, 2011);http://doi.org/10.1109/PHO.2011.6110579.

    Google Scholar

    [29] McKendry JJD, Massoubre D, Zhang SL, Rae BR, Green RP et al. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J Lightwave Technol 30, 61–67 (2012). doi: 10.1109/JLT.2011.2175090

    CrossRef Google Scholar

    [30] Zhang SL, Watson S, McKendry JJD, Massoubre D, Cogman A et al. 1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs. J Lightwave Technol 31, 1211–1216 (2013). doi: 10.1109/JLT.2013.2246138

    CrossRef Google Scholar

    [31] Huang YM, Peng CY, Miao WC, Chiang H, Lee TY et al. High-efficiency InGaN red micro-LEDs for visible light communication. Photonics Res 10, 1978–1986 (2022). doi: 10.1364/PRJ.462050

    CrossRef Google Scholar

    [32] Biagi M, Borogovac T, Little TDC. Adaptive receiver for indoor visible light communications. J Lightwave Technol 31, 3676–3686 (2013). doi: 10.1109/JLT.2013.2287051

    CrossRef Google Scholar

    [33] Zhu SC, Yu ZG, Zhao LX, Wang JX, Li JM. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons. Opt Express 23, 13752–13760 (2015). doi: 10.1364/OE.23.013752

    CrossRef Google Scholar

    [34] Zhao L, Cai KY, Jiang M. Multiuser precoded MIMO visible light communication systems enabling spatial dimming. J Lightwave Technol 38, 5624–5634 (2020). doi: 10.1109/JLT.2020.3003857

    CrossRef Google Scholar

    [35] Wu HJ, Wang Q, Xiong J, Zuniga M. SmartVLC: co-designing smart lighting and communication for visible light networks. IEEE Trans Mob Comput 19, 1956–1970 (2020). doi: 10.1109/TMC.2019.2915220

    CrossRef Google Scholar

    [36] Dursun I, Shen C, Parida MR, Pan J, Sarmah SP et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics 3, 1150–1156 (2016). doi: 10.1021/acsphotonics.6b00187

    CrossRef Google Scholar

    [37] Gao H, Xie YY, Geng C, Xu S, Bi WG. Efficiency enhancement of quantum-dot-converted LEDs by 0D-2D hybrid scatterers. ACS Photonics 7, 3430–3439 (2020). doi: 10.1021/acsphotonics.0c01240

    CrossRef Google Scholar

    [38] Lai SQ, Li QX, Long H, Ying LY, Zheng ZW et al. Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer. Superlattices Microstruct 155, 106906 (2021). doi: 10.1016/j.spmi.2021.106906

    CrossRef Google Scholar

    [39] Yan DD, Zhao SY, Zhang YB, Wang HX, Zang ZG. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron Adv 5, 200075 (2022). doi: 10.29026/oea.2022.200075

    CrossRef Google Scholar

    [40] Su CY, Wu YC, Cheng CH, Wang WC, Wang HY et al. Color-converting violet laser diode with an ultrafast BEHP-PPV + MEH-PPV polymer blend for high-speed white lighting data link. ACS Appl Electron Mater 2, 3017–3027 (2020). doi: 10.1021/acsaelm.0c00619

    CrossRef Google Scholar

    [41] Shi JW, Sheu JK, Chen CH, Lin GR, Lai WC. High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures. IEEE Electron Device Lett 29, 158–160 (2008). doi: 10.1109/LED.2007.914070

    CrossRef Google Scholar

    [42] Ryou JH, Lee W, Limb J, Yoo D, Liu JP et al. Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes. Appl Phys Lett 92, 101113 (2008). doi: 10.1063/1.2894514

    CrossRef Google Scholar

    [43] Chen XW, Jin MY, Lin RZ, Zhou GF, Cui XG et al. Visible light communication based on computational temporal ghost imaging and micro-LED-based detector. Opt Lasers Eng 152, 106956 (2022). doi: 10.1016/j.optlaseng.2022.106956

    CrossRef Google Scholar

    [44] Wang YP, Chen HL, Jiang WJ, Li XY, Chen XW et al. Optical encryption for visible light communication based on temporal ghost imaging with a micro-LED. Opt Lasers Eng 134, 106290 (2020). doi: 10.1016/j.optlaseng.2020.106290

    CrossRef Google Scholar

    [45] Islim MS, Ferreira RX, He XY, Xie EY, Videv S et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res 5, A35–A43 (2017). doi: 10.1364/PRJ.5.000A35

    CrossRef Google Scholar

    [46] Zhu SJ, Qiu PJ, Shan XY, Lin RZ, Wang Z et al. High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing. Photonics Res 10, 1892–1899 (2022). doi: 10.1364/PRJ.459531

    CrossRef Google Scholar

    [47] Asad M, Li Q, Sachdev M, Wong WS. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates. Nano Energy 73, 104724 (2020). doi: 10.1016/j.nanoen.2020.104724

    CrossRef Google Scholar

    [48] Lai SQ, Lu TW, Lin SH, Lin Y, Lin GC et al. Improved modulation bandwidth of blue mini-LEDs by atomic-layer deposition sidewall passivation. IEEE Trans Electron Devices 69, 4936–4943 (2022). doi: 10.1109/TED.2022.3188738

    CrossRef Google Scholar

    [49] Zhou GF, Lin RZ, Qian ZY, Zhou XJ, Shan XY et al. GaN-based micro-LEDs and detectors defined by current spreading layer: size-dependent characteristics and their multifunctional applications. J Phys D Appl Phys 54, 335104 (2021). doi: 10.1088/1361-6463/abfef9

    CrossRef Google Scholar

    [50] Katz M, Ahmed I. Opportunities and challenges for visible light communications in 6G. In Proceedings of the 2nd 6G Wireless Summit (6G SUMMIT) 1–5 (IEEE, 2020);http://doi.org/10.1109/6GSUMMIT49458.2020.9083805.

    Google Scholar

    [51] Saud MS, Ahmed I, Kumpuniemi T, Katz M. Reconfigurable optical-radio wireless networks: meeting the most stringent requirements of future communication systems. Trans Emerg Telecommun Technol 30, e3562 (2019). doi: 10.1002/ett.3562

    CrossRef Google Scholar

    [52] Chi N, Haas H, Kavehrad M, Little TDC, Huang XL. Visible light communications: demand factors, benefits and opportunities [Guest Editorial]. IEEE Wirel Commun 22, 5–7 (2015).

    Google Scholar

    [53] Li JH, Wang FM, Zhao MM, Jiang FY, Chi N. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception. Appl Opt 58, 383–388 (2019). doi: 10.1364/AO.58.000383

    CrossRef Google Scholar

    [54] Chen M, Zou P, Zhang L, Chi N. Demonstration of a 2.34 Gbit/s real-time single silicon-substrate blue LED-based underwater VLC system. IEEE Photonics J 12, 7900211 (2020).

    Google Scholar

    [55] Zou P, Zhao YH, Hu FC, Chi N. Enhanced performance of MIMO multi-branch hybrid neural network in single receiver MIMO visible light communication system. Opt Express 28, 28017–28032 (2020). doi: 10.1364/OE.400825

    CrossRef Google Scholar

    [56] Wu SE, Wang HG, Youn CH. Visible light communications for 5G wireless networking systems: from fixed to mobile communications. IEEE Netw 28, 41–45 (2014). doi: 10.1109/MNET.2014.6963803

    CrossRef Google Scholar

    [57] Arfaoui MA, Soltani MD, Tavakkolnia I, Ghrayeb A, Assi CM et al. Measurements-based channel models for indoor lifi systems. IEEE Trans Wirel Commun 20, 827–842 (2021). doi: 10.1109/TWC.2020.3028456

    CrossRef Google Scholar

    [58] Haemmer M, Roycroft B, Akhter M, Dinh DV, Quan Z et al. Size-dependent bandwidth of semipolar ( $ 11 \overline{2} 2 $) light-emitting-diodes. IEEE Photonics Technol Lett 30, 439–442 (2018).

    CrossRef $ 11 \overline{2} 2 $) light-emitting-diodes" target="_blank">Google Scholar

    [59] Mickevičius J, Tamulaitis G, Kuokštis E, Liu K, Shur MS et al. Well-width-dependent carrier lifetime in AlGaN/AlGaN quantum wells. Appl Phys Lett 90, 131907 (2007). doi: 10.1063/1.2717145

    CrossRef Google Scholar

    [60] Li YL, Huang YR, Lai YH. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl Phys Lett 91, 181113 (2007). doi: 10.1063/1.2805197

    CrossRef Google Scholar

    [61] Tian PF, McKendry JJD, Gong Z, Guilhabert B, Watson IM et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl Phys Lett 101, 231110 (2012). doi: 10.1063/1.4769835

    CrossRef Google Scholar

    [62] Kim H, Cho J, Lee JW, Yoon S, Kim H et al. Measurements of current spreading length and design of GaN-based light emitting diodes. Appl Phys Lett 90, 063510 (2007). doi: 10.1063/1.2450670

    CrossRef Google Scholar

    [63] Ryu HY, Shim JI. Effect of current spreading on the efficiency droop of InGaN light-emitting diodes. Opt Express 19, 2886–2894 (2011). doi: 10.1364/OE.19.002886

    CrossRef Google Scholar

    [64] Gong Z, Jin SR, Chen YJ, McKendry J, Massoubre D et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J Appl Phys 107, 013103 (2010). doi: 10.1063/1.3276156

    CrossRef Google Scholar

    [65] Monavarian M, Rashidi A, Aragon AA, Oh SH, Rishinaramangalam AK et al. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes. Appl Phys Lett 112, 041104 (2018). doi: 10.1063/1.5019730

    CrossRef Google Scholar

    [66] Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solidi 207, 2217–2225 (2010).

    Google Scholar

    [67] Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys Rev B 56, R10024–R10027 (1997). doi: 10.1103/PhysRevB.56.R10024

    CrossRef Google Scholar

    [68] Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H et al. Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn J Appl Phys 36, L382–L385 (1997). doi: 10.1143/JJAP.36.L382

    CrossRef Google Scholar

    [69] Du CH, Huang X, Jiang CY, Pu X, Zhao ZF et al. Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Sci Rep 6, 37132 (2016). doi: 10.1038/srep37132

    CrossRef Google Scholar

    [70] Rajabi K, Wang JX, Jin J, Xing YC, Wang L et al. Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design. Opt Express 26, 24985–24991 (2018). doi: 10.1364/OE.26.024985

    CrossRef Google Scholar

    [71] Lin GB, Kim DY, Shan QF, Cho J, Schubert EF et al. Effect of quantum barrier thickness in the multiple-quantum-well active region of gainn/gan light-emitting diodes. IEEE Photonics J 5, 1600207 (2013). doi: 10.1109/JPHOT.2013.2276758

    CrossRef Google Scholar

    [72] Wang CK, Chiou YZ, Chang SJ, Chang CY, Chiang TH et al. On the effect of quantum barrier thickness in the active region of nitride-based light emitting diodes. Solid·State Electron 99, 11–15 (2014).

    Google Scholar

    [73] Hammersley S, Watson-Parris D, Dawson P, Godfrey MJ, Badcock TJ et al. The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures. J Appl Phys 111, 083512 (2012). doi: 10.1063/1.3703062

    CrossRef Google Scholar

    [74] Bochkareva NI, Rebane YT, Shreter YG. Efficiency droop and incomplete carrier localization in InGaN/GaN quantum well light-emitting diodes. Appl Phys Lett 103, 191101 (2013). doi: 10.1063/1.4828780

    CrossRef Google Scholar

    [75] Malinauskas T, Miasojedovas S, Aleksiejūnas R, Juršėnas S, Jarašiūnas K et al. Direct study of nonlinear carrier recombination in InGaN quantum well structures. Phys Status Solidi 8, 2381–2383 (2011).

    Google Scholar

    [76] Zhu SC, Lin S, Li J, Yu ZG, Cao HC et al. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs. Appl Phys Lett 111, 171105 (2017). doi: 10.1063/1.4993230

    CrossRef Google Scholar

    [77] Li Z, Kang JJ, Wang BW, Li HJ, Weng YH et al. Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells. J Appl Phys 115, 083112 (2014). doi: 10.1063/1.4866815

    CrossRef Google Scholar

    [78] Bai J, Cai YF, Feng P, Fletcher P, Zhao XM et al. A direct epitaxial approach to achieving ultrasmall and ultrabright InGaN micro light-emitting diodes (μLEDs). ACS Photonics 7, 411–415 (2020). doi: 10.1021/acsphotonics.9b01351

    CrossRef Google Scholar

    [79] Chung KC, Lee JJ, Huang JR, Lai YJ, Chen KH et al. A dynamic compensated and 95% high-efficiency supply buffer in RGB virtual pixel microLED display for reducing ghosting by 73% and achieving four times screen resolution. IEEE Trans Power Electron 36, 8291–8299 (2021). doi: 10.1109/TPEL.2020.3047372

    CrossRef Google Scholar

    [80] Bai J, Cai YF, Feng P, Fletcher P, Zhu CQ et al. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano 14, 6906–6911 (2020). doi: 10.1021/acsnano.0c01180

    CrossRef Google Scholar

    [81] Yang W, Zhang SL, McKendry JJD, Herrnsdorf J, Tian PF et al. Size-dependent capacitance study on InGaN-based micro-light-emitting diodes. J Appl Phys 116, 044512 (2014). doi: 10.1063/1.4891233

    CrossRef Google Scholar

    [82] Tang ZK, Jiang QM, Lu YY, Huang S, Yang S et al. 600-V normally off SiNx/AlGaN/GaN MIS-HEMT with large gate swing and low current collapse. IEEE Electron Device Lett 34, 1373–1375 (2013). doi: 10.1109/LED.2013.2279846

    CrossRef Google Scholar

    [83] Wong MS, Hwang D, Alhassan AI, Lee C, Ley R et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt Express 26, 21324–21331 (2018). doi: 10.1364/OE.26.021324

    CrossRef Google Scholar

    [84] Huang SC, Li H, Zhang ZH, Chen H, Wang SC et al. Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme. Appl Phys Lett 110, 021108 (2017). doi: 10.1063/1.4973966

    CrossRef Google Scholar

    [85] Smith JM, Ley R, Wong MS, Baek YH, Kang JH et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1μm in diameter. Appl Phys Lett 116, 071102 (2020). doi: 10.1063/1.5144819

    CrossRef Google Scholar

    [86] Lin RZ, Jin ZX, Qiu PJ, Liao Y, Hoo J et al. High bandwidth series-biased green micro-LED array toward 6 Gbps visible light communication. Opt Lett 47, 3343–3346 (2022). doi: 10.1364/OL.458495

    CrossRef Google Scholar

    [87] Chang YH, Huang YM, Liou FJ, Chow CW, Liu Y et al. 2.805 Gbit/s high-bandwidth phosphor white light visible light communication utilizing an InGaN/GaN semipolar blue micro-LED. Opt Express 30, 16938–16946 (2022). doi: 10.1364/OE.455312

    CrossRef Google Scholar

    [88] Zhang Y, Wei ZX, Wang ZM, Fu HY. Real-time receive-forward NLOS visible light communication system based on multiple blue micro-LED nodes. Photonics 9, 211 (2022). doi: 10.3390/photonics9040211

    CrossRef Google Scholar

    [89] Zhu SJ, Shan XY, Qiu PJ, Wang Z, Yuan ZX et al. Low-power high-bandwidth non-polar InGaN micro-LEDs at low current densities for energy-efficient visible light communication. IEEE Photonics J 14, 7351805 (2022).

    Google Scholar

    [90] Xu FF, Jin ZX, Tao T, Tian PF, Wang GB et al. C-plane blue micro-LED with 1.53 GHz bandwidth for high-speed visible light communication. IEEE Electron Device Lett 43, 910–913 (2022). doi: 10.1109/LED.2022.3168314

    CrossRef Google Scholar

    [91] Wei ZX, Wang L, Liu ZX, Zhang C, Chen CJ et al. Multigigabit visible light communication based on high-bandwidth InGaN quantum dot green micro-LED. ACS Photonics 9, 2354–2366 (2022). doi: 10.1021/acsphotonics.2c00380

    CrossRef Google Scholar

    [92] Chang YH, Huang YM, Gunawan WH, Chang GH, Liou FJ et al. 4.343-Gbit/s green semipolar (20–21) μ-LED for high speed visible light communication. IEEE Photonics J 13, 7300204 (2021).

    Google Scholar

    [93] Wang L, Wang L, Chen CJ, Chen KC, Hao ZB et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs. Laser Photon. Rev 15, 2000406 (2021). doi: 10.1002/lpor.202000406

    CrossRef Google Scholar

    [94] Lin RZ, Liu XY, Zhou GF, Qian ZY, Cui XG et al. InGaN micro-LED array enabled advanced underwater wireless optical communication and underwater charging. Adv Opt Mater 9, 2002211 (2021). doi: 10.1002/adom.202002211

    CrossRef Google Scholar

    [95] Wang L, Wei ZX, Chen CJ, Wang L, Fu HY et al. 1.3 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Res 9, 792–802 (2021). doi: 10.1364/PRJ.411863

    CrossRef Google Scholar

    [96] Chen SWH, Huang YM, Chang YH, Lin Y, Liou FJ et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 7, 2228–2235 (2020). doi: 10.1021/acsphotonics.0c00764

    CrossRef Google Scholar

    [97] Lan HY, Tseng IC, Kao HY, Lin YH, Lin GR et al. 752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes. IEEE J Quantum Electron 54, 3300106 (2018).

    Google Scholar

    [98] Ferreira RXG, Xie EY, McKendry JJD, Rajbhandari S, Chun H et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol Lett 28, 2023–2026 (2016). doi: 10.1109/LPT.2016.2581318

    CrossRef Google Scholar

    [99] Ma ZH, Cao HC, Lin S, Li XD, Xi X et al. Optical and frequency degradation behavior of GaN-based micro-LEDs for visible light communication. Opt Express 28, 12795–12804 (2020). doi: 10.1364/OE.383867

    CrossRef Google Scholar

    [100] Cai YF, Haggar JIH, Zhu CQ, Feng P, Bai J et al. Direct epitaxial approach to achieve a monolithic on-chip integration of a HEMT and a single micro-LED with a high-modulation bandwidth. ACS Appl Electron Mater 3, 445–450 (2021). doi: 10.1021/acsaelm.0c00985

    CrossRef Google Scholar

    [101] Zhao YJ, Fu HQ, Wang GT, Nakamura S. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv Opt Photon 10, 246–308 (2018). doi: 10.1364/AOP.10.000246

    CrossRef Google Scholar

    [102] Rosales D, Gil B, Bretagnon T, Guizal B, Zhang F et al. Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells. J Appl Phys 115, 073510 (2014). doi: 10.1063/1.4865959

    CrossRef Google Scholar

    [103] Rashidi A, Monavarian M, Aragon A, Rishinaramangalam A, Feezell D. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett 39, 520–523 (2018). doi: 10.1109/LED.2018.2803082

    CrossRef Google Scholar

    [104] Johar MA, Song HG, Waseem A, Kang JH, Ha JS et al. Ultrafast carrier dynamics of conformally grown semi-polar ( $ 11 {\bar {2}} 2 $) GaN/InGaN multiple quantum well co-axial nanowires on m-axial GaN core nanowires. Nanoscale 11, 10932–10943 (2019).

    CrossRef $ 11 {\bar {2}} 2 $) GaN/InGaN multiple quantum well co-axial nanowires on m-axial GaN core nanowires" target="_blank">Google Scholar

    [105] Fu HQ, Lu ZJ, Zhao XH, Zhang YH, DenBaars SP et al. Study of low-efficiency droop in semipolar ( $ 20 \overline{2} \overline{1} $) InGaN light-emitting diodes by time-resolved photoluminescence. J Disp Technol 12, 736–741 (2016).

    CrossRef $ 20 \overline{2} \overline{1} $) InGaN light-emitting diodes by time-resolved photoluminescence" target="_blank">Google Scholar

    [106] Chen SWH, Shen CC, Wu TZ, Liao ZY, Chen LF et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res 7, 416–422 (2019). doi: 10.1364/PRJ.7.000416

    CrossRef Google Scholar

    [107] Haggar JIH, Ghataora SS, Trinito V, Bai J, Wang T. Study of the luminescence decay of a semipolar green light-emitting diode for visible light communications by time-resolved electroluminescence. ACS Photonics 9, 2378–2384 (2022). doi: 10.1021/acsphotonics.2c00414

    CrossRef Google Scholar

    [108] Choi HW, Liu C, Gu E, McConnell G, Girkin JM et al. GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses. Appl Phys Lett 84, 2253–2255 (2004). doi: 10.1063/1.1690876

    CrossRef Google Scholar

    [109] Lin GR, Kuo HC, Cheng CH, Wu YC, Huang YM et al. Ultrafast 2x2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photonics Res 9, 2077–2087 (2021). doi: 10.1364/PRJ.437689

    CrossRef Google Scholar

    [110] Zhang HJ, Li PP, Li HJ, Song J, Nakamura S et al. High polarization and fast modulation speed of dual wavelengths electroluminescence from semipolar (20–21) micro light-emitting diodes with indium tin oxide surface grating. Appl Phys Lett 117, 181105 (2020). doi: 10.1063/5.0022412

    CrossRef Google Scholar

    [111] Gao HY, Yan FW, Zhang Y, Li JM, Zeng YP et al. Growth of nonpolar a-plane GaN on nano-patterned r-plane sapphire substrates. Appl Surf Sci 255, 3664–3668 (2009). doi: 10.1016/j.apsusc.2008.10.018

    CrossRef Google Scholar

    [112] Wang L, Wang L, Yu JD, Hao ZB, Luo Y et al. Abnormal stranski-krastanov mode growth of green InGaN quantum dots: morphology, optical properties, and applications in light-emitting devices. ACS Appl Mater Interfaces 11, 1228–1238 (2019). doi: 10.1021/acsami.8b16767

    CrossRef Google Scholar

    [113] Arita M, Le Roux F, Holmes MJ, Kako S, Arakawa Y. Ultraclean single photon emission from a GaN quantum dot. Nano Lett 17, 2902–2907 (2017). doi: 10.1021/acs.nanolett.7b00109

    CrossRef Google Scholar

    [114] Gačević Ž, Holmes M, Chernysheva E, Müeller M, Torres-Pardo A et al. Emission of linearly polarized single photons from quantum dots contained in nonpolar, semipolar, and polar sections of pencil-like InGaN/GaN nanowires. ACS Photonics 4, 657–664 (2017). doi: 10.1021/acsphotonics.6b01030

    CrossRef Google Scholar

    [115] Yang D, Wang L, Hao ZB, Luo Y, Sun CZ et al. Dislocation analysis of InGaN/GaN quantum dots grown by metal organic chemical vapor deposition. Superlattices Microstruct 99, 221–225 (2016). doi: 10.1016/j.spmi.2016.02.016

    CrossRef Google Scholar

    [116] Lv WB, Wang L, Wang JX, Xing YC, Zheng JY et al. Green and red light-emitting diodes based on multilayer InGaN/GaN dots grown by growth interruption method. Jpn J Appl Phys 52, 08JG13 (2013). doi: 10.7567/JJAP.52.08JG13

    CrossRef Google Scholar

    [117] Lv WB, Wang L, Wang L, Xing YC, Yang D et al. InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Appl Phys Express 7, 025203 (2014). doi: 10.7567/APEX.7.025203

    CrossRef Google Scholar

    [118] Wan RQ, Gao X, Wang LC, Zhang S, Chen XB et al. Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth. Photonics Res 8, 1110–1117 (2020). doi: 10.1364/PRJ.392046

    CrossRef Google Scholar

    [119] Zhuang Z, Dai JP, Liu B, Guo X, Li Y et al. Improvement of color conversion and efficiency droop in hybrid light-emitting diodes utilizing an efficient non-radiative resonant energy transfer. Appl Phys Lett 109, 141105 (2016). doi: 10.1063/1.4964403

    CrossRef Google Scholar

    [120] Zhuang Z, Guo X, Liu B, Hu FR, Li Y et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26, 36–43 (2016). doi: 10.1002/adfm.201502870

    CrossRef Google Scholar

    [121] Krishnan C, Brossard M, Lee KY, Huang JK, Lin CH et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3, 503–509 (2016). doi: 10.1364/OPTICA.3.000503

    CrossRef Google Scholar

    [122] Wan RQ, Li GQ, Gao X, Liu ZQ, Li JH et al. Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer. Photonics Res 9, 1213–1217 (2021). doi: 10.1364/PRJ.421366

    CrossRef Google Scholar

    [123] Rishinaramangalam AK, Ul Masabih SM, Fairchild MN, Wright JB, Shima DM et al. Controlled growth of ordered III-Nitride core-shell nanostructure arrays for visible optoelectronic devices. J Electron Mater 44, 1255–1262 (2015). doi: 10.1007/s11664-014-3456-z

    CrossRef Google Scholar

    [124] Tzou AJ, Hsieh DH, Hong KB, Lin DW, Huang JK et al. High-efficiency InGaN/GaN core-shell nanorod light-emitting diodes with low-peak blueshift and efficiency droop. IEEE Trans Nanotechnol 16, 355–358 (2017). doi: 10.1109/TNANO.2016.2642146

    CrossRef Google Scholar

    [125] Nami M, Rashidi A, Monavarian M, Mishkat-Ul-Masabih S, Rishinaramangalam AK et al. Electrically injected GHz-class GaN/InGaN core-nanowire-based μLEDs: carrier dynamics and nanoscale homogeneity. ACS Photonics 6, 1618–1625 (2019). doi: 10.1021/acsphotonics.9b00639

    CrossRef Google Scholar

    [126] Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T et al. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett 87, 071102 (2005). doi: 10.1063/1.2010602

    CrossRef Google Scholar

    [127] Gu XF, Qiu T, Zhang WJ, Chu PK. Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res Lett 6, 199 (2011). doi: 10.1186/1556-276X-6-199

    CrossRef Google Scholar

    [128] Baets RG, Delbeke DG, Bockstaele R, Bienstman P. Resonant-cavity light-emitting diodes: a review. Proc SPIE 4996, 74–86 (2003). doi: 10.1117/12.476588

    CrossRef Google Scholar

    [129] Ferrari L, Smalley JST, Qian HL, Tanaka A, Lu D et al. Design and analysis of blue InGaN/GaN plasmonic LED for high-speed, high-efficiency optical communications. ACS Photonics 5, 3557–3564 (2018). doi: 10.1021/acsphotonics.8b00321

    CrossRef Google Scholar

    [130] Xiao XT, Tang HD, Zhang TQ, Chen W, Chen WL et al. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication. Opt Express 24, 21577–21586 (2016). doi: 10.1364/OE.24.021577

    CrossRef Google Scholar

    [131] Laurand N, Guilhabert B, McKendry J, Kelly AE, Rae B et al. Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals. Opt Mater Express 2, 250–260 (2012). doi: 10.1364/OME.2.000250

    CrossRef Google Scholar

    [132] Li HL, Chen XB, Guo JQ, Chen HD. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. Opt Express 22, 27203–27213 (2014). doi: 10.1364/OE.22.027203

    CrossRef Google Scholar

    [133] Cho J, Park JH, Kim JK, Schubert EF. White light-emitting diodes: history, progress, and future. Laser Photon Rev 11, 1600147 (2017). doi: 10.1002/lpor.201600147

    CrossRef Google Scholar

    [134] Bulashevich KA, Karpov SY. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys Status Solidi (RRL)-Rapid Res Lett 10, 480–484 (2016).

    Google Scholar

    [135] Hwang D, Mughal A, Pynn CD, Nakamura S, DenBaars SP. Sustained high external quantum efficiency in ultrasmall blue III-nitride micro-LEDs. Appl Phys Express 10, 032101 (2017). doi: 10.7567/APEX.10.032101

    CrossRef Google Scholar

    [136] Le Minh H, O'Brien D, Faulkner G, Zeng LB, Lee K et al. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technol Lett 21, 1063–1065 (2009). doi: 10.1109/LPT.2009.2022413

    CrossRef Google Scholar

    [137] Hsu CW, Chen GH, Wei LY, Chow CW, Lu IC et al. Adaptive filtering for white-light LED visible light communication. Opt Eng 56, 016115 (2017). doi: 10.1117/1.OE.56.1.016115

    CrossRef Google Scholar

    [138] Hsu CW, Chow CW, Lu IC, Liu YL, Yeh CH et al. High speed imaging 3 x 3 MIMO phosphor white-light LED based visible light communication system. IEEE Photonics J 8, 7907406 (2016).

    Google Scholar

    [139] Wu TZ, Lin Y, Huang YM, Liu M, Singh KJ et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res 9, 2132–2143 (2021). doi: 10.1364/PRJ.431095

    CrossRef Google Scholar

    [140] Huang HM, Wu HC, Huang C, Chen ZL, Wang C et al. Characteristics of micro-size light-emitting diode for illumination and visible light communication. Phys Status Solidi 215, 1800484 (2018).

    Google Scholar

    [141] Xu YW, Chen J, Zhang H, Wei H, Zhou LJ et al. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG: Ce phosphors. J Mater Chem C 8, 247–252 (2020). doi: 10.1039/C9TC05311E

    CrossRef Google Scholar

    [142] Li PP, Lu Y, Duan YM, Xu SQ, Zhang JJ. Potential application of perovskite glass material in photocatalysis field. J Phys Chem C 125, 2382–2392 (2021). doi: 10.1021/acs.jpcc.0c11241

    CrossRef Google Scholar

    [143] Lin H, Wang B, Xu J, Zhang R, Chen H et al. Phosphor-in-glass for high-powered remote-type white AC-LED. ACS Appl Mater Interfaces 6, 21264–21269 (2014). doi: 10.1021/am506251z

    CrossRef Google Scholar

    [144] Huang YM, Singh KJ, Hsieh TH, Langpoklakpam C, Lee TY et al. Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale 14, 4042–4064 (2022). doi: 10.1039/D1NR05288H

    CrossRef Google Scholar

    [145] Sapsford KE, Pons T, Medintz IL, Mattoussi H. Biosensing with luminescent semiconductor quantum dots. Sensors 6, 925–953 (2006). doi: 10.3390/s6080925

    CrossRef Google Scholar

    [146] Chen SWH, Huang YM, Singh KJ, Hsu YC, Liou FY et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958

    CrossRef Google Scholar

    [147] Yang X, Lin Y, Wu TZ, Yan ZJ, Chen Z et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [148] Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 22, 47–52 (2004). doi: 10.1038/nbt927

    CrossRef Google Scholar

    [149] Ruan C, Zhang Y, Lu M, Ji CY, Sun C et al. White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication. Nanomaterials 6, 13 (2016). doi: 10.3390/nano6010013

    CrossRef Google Scholar

    [150] Cao HC, Lin S, Ma ZH, Li XD, Li J et al. Color converted white light-emitting diodes with 637.6 MHz modulation bandwidth. IEEE Electron Device Lett 40, 267–270 (2019). doi: 10.1109/LED.2018.2884934

    CrossRef Google Scholar

    [151] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [152] Mei SL, Liu XY, Zhang WL, Liu R, Zheng LR et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl Mater Interfaces 10, 5641–5648 (2018). doi: 10.1021/acsami.7b17810

    CrossRef Google Scholar

    [153] Singh KJ, Fan XT, Sadhu AS, Lin CH, Liou FJ et al. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Res 9, 2341–2350 (2021). doi: 10.1364/PRJ.434270

    CrossRef Google Scholar

    [154] Wang ZM, Wei ZX, Cai YT, Wang L, Li MT et al. Encapsulation-enabled perovskite-PMMA films combining a micro-LED for high-speed white-light communication. ACS Appl Mater Interfaces 13, 54143–54151 (2021). doi: 10.1021/acsami.1c15873

    CrossRef Google Scholar

    [155] Soheyli E, Ghaemi B, Sahraei R, Sabzevari Z, Kharrazi S et al. Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging. Mater. Sci. Eng. C 111, 110807 (2020). doi: 10.1016/j.msec.2020.110807

    CrossRef Google Scholar

    [156] Li HJ, Li PP, Kang JJ, Li Z, Li ZC et al. Phosphor-free, color-tunable monolithic InGaN light-emitting diodes. Appl Phys Express 6, 102103 (2013). doi: 10.7567/APEX.6.102103

    CrossRef Google Scholar

    [157] Lim SH, Ko YH, Rodriguez C, Gong SH, Cho YH. Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures. Light Sci Appl 5, e16030 (2016). doi: 10.1038/lsa.2016.30

    CrossRef Google Scholar

    [158] Khoury M, Li HJ, Li PP, Chow YC, Bonef B et al. Polarized monolithic white semipolar (20–21) InGaN light-emitting diodes grown on high quality (20–21) GaN/sapphire templates and its application to visible light communication. Nano Energy 67, 104236 (2020). doi: 10.1016/j.nanoen.2019.104236

    CrossRef Google Scholar

    [159] Chung RB, Lin YD, Koslow I, Pfaff N, Ohta H et al. Electroluminescence characterization of (2021) InGaN/GaN light emitting diodes with various wavelengths. Jpn J Appl Phys 49, 070203 (2010). doi: 10.1143/JJAP.49.070203

    CrossRef Google Scholar

    [160] Kowsz SJ, Young EC, Yonkee BP, Pynn CD, Farrell RM et al. Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells. Opt Express 25, 3841–3849 (2017). doi: 10.1364/OE.25.003841

    CrossRef Google Scholar

    [161] Li HJ, Li PP, Zhang HJ, Chow YC, Wong MS et al. Electrically driven, polarized, phosphor-free white semipolar (20–21) InGaN light-emitting diodes grown on semipolar bulk GaN substrate. Opt Express 28, 13569–13575 (2020). doi: 10.1364/OE.384139

    CrossRef Google Scholar

    [162] Haggar JIH, Cai YF, Bai J, Ghataora S, Wang T. Long-wavelength semipolar (11–22) InGaN/GaN LEDs with Multi-Gb/s data transmission rates for VLC. ACS Appl Electron Mater 3, 4236–4242 (2021). doi: 10.1021/acsaelm.1c00677

    CrossRef Google Scholar

    [163] Chun H, Rajbhandari S, Faulkner G, Tsonev D, Haas H et al. Demonstration of a Bi-directional visible light communication with an overall sum-rate of 110 Mb/s using LEDs as Emitter and Detector. In Proceedings of 2014 IEEE Photonics Conference 132–133 (IEEE, 2014);http://doi.org/10.1109/IPCon.2014.6995247

    Google Scholar

    [164] Stepniak G, Kowalczyk M, Maksymiuk L, Siuzdak J. Transmission beyond 100 Mbit/s using LED both as a transmitter and receiver. IEEE Photonics Technol Lett 27, 2067–2070 (2015). doi: 10.1109/LPT.2015.2451006

    CrossRef Google Scholar

    [165] Liu XY, Lin RZ, Chen HL, Zhang SL, Qian ZY et al. High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays. ACS Photonics 6, 3186–3195 (2019). doi: 10.1021/acsphotonics.9b00799

    CrossRef Google Scholar

    [166] Chang YH, Hsu TC, Liou FJ, Chow CW, Liu Y et al. High-bandwidth InGaN/GaN semipolar micro-LED acting as a fast photodetector for visible light communications. Opt Express 29, 37245–37252 (2021). doi: 10.1364/OE.439990

    CrossRef Google Scholar

    [167] Chowdhury MZ, Shahjalal M, Hasan MK, Jang YM. The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl Sci 9, 4367 (2019). doi: 10.3390/app9204367

    CrossRef Google Scholar

    [168] Zhang ZQ, Xiao Y, Ma Z, Xiao M, Ding ZG et al. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag 14, 28–41 (2019).

    Google Scholar

    [169] Yuan YF, Zhao YJ, Zong BQ, Parolari S. Potential key technologies for 6G mobile communications. Sci China Inf Sci 63, 183301 (2020). doi: 10.1007/s11432-019-2789-y

    CrossRef Google Scholar

    [170] Sozer EM, Stojanovic M, Proakis JG. Underwater acoustic networks. IEEE J Ocean Eng 25, 72–83 (2000). doi: 10.1109/48.820738

    CrossRef Google Scholar

    [171] Che XH, Wells I, Dickers G, Kear P, Gong XC. Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun Mag 48, 143–151 (2010). doi: 10.1109/MCOM.2010.5673085

    CrossRef Google Scholar

    [172] Zhu SJ, Chen XW, Liu XY, Zhang GQ, Tian PF. Recent progress in and perspectives of underwater wireless optical communication. Prog Quantum Electron 73, 100274 (2020). doi: 10.1016/j.pquantelec.2020.100274

    CrossRef Google Scholar

    [173] Chi N, Zhou YJ, Wei YR, Hu FC. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh Technol Mag 15, 93–102 (2020). doi: 10.1109/MVT.2020.3017153

    CrossRef Google Scholar

    [174] Fan ZY, Lin JY, Jiang HX. III-nitride micro-emitter arrays: development and applications. J Phys D Appl Phys 41, 094001 (2008). doi: 10.1088/0022-3727/41/9/094001

    CrossRef Google Scholar

    [175] Wei ZX, Zhang L, Wang L, Chen CJ, Pepe A et al. 2 Gbps/3 m air-underwater optical wireless communication based on a single-layer quantum dot blue micro-LED. Opt Lett 45, 2616–2619 (2020). doi: 10.1364/OL.393664

    CrossRef Google Scholar

    [176] Kim TK, Islam ABMH, Cha YJ, Kwak JS. 32 x 32 pixelated high-power flip-chip blue micro-LED-on-HFET arrays for submarine optical communication. Nanomaterials 11, 3045 (2021). doi: 10.3390/nano11113045

    CrossRef Google Scholar

    [177] Lu XY, Wang KH, Qiao L, Zhou W, Wang YG et al. Nonlinear compensation of multi-CAP VLC system employing clustering algorithm based perception decision. IEEE Photonics J 9, 7906509 (2017).

    Google Scholar

    [178] Wen H, Luo KP, Chen QH, Geng K, Chen M et al. A novel sampling frequency offset mitigation scheme based on rotated K-means clustering for OFDM-VLC system. Opt Commun 513, 128103 (2022). doi: 10.1016/j.optcom.2022.128103

    CrossRef Google Scholar

    [179] Chi N, Zhao YH, Shi M, Zou P, Lu XY. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system. Opt Express 26, 26700–26712 (2018). doi: 10.1364/OE.26.026700

    CrossRef Google Scholar

    [180] Chen H, Jia JL, Niu WQ, Zhao YH, Chi N. Hybrid frequency domain aided temporal convolutional neural network with low network complexity utilized in UVLC system. Opt Express 29, 3296–3308 (2021). doi: 10.1364/OE.417888

    CrossRef Google Scholar

    [181] Ye H, Li GY, Juang BH. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel Commun Lett 7, 114–117 (2018). doi: 10.1109/LWC.2017.2757490

    CrossRef Google Scholar

    [182] Farsad N, Goldsmith A. Neural network detection of data sequences in communication systems. IEEE Trans Signal Process 66, 5663–5678 (2018). doi: 10.1109/TSP.2018.2868322

    CrossRef Google Scholar

    [183] Haigh PA, Ghassemlooy Z, Le Minh H, Rajbhandari S, Arca F et al. Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications. J Lightwave Technol 30, 3081–3088 (2012). doi: 10.1109/JLT.2012.2210028

    CrossRef Google Scholar

    [184] Wei ZX, Liu ZX, Liu X, Wang L, Wang L et al. 8.75 Gbps visible light communication link using an artificial neural network equalizer and a single-pixel blue micro-LED. Opt Lett 46, 4670–4673 (2021). doi: 10.1364/OL.437632

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(21686) PDF downloads(1692) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint