Min JH, Lee K, Chung TH, Min JW, Li KH et al. Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers. Opto-Electron Sci 1, 220016 (2022). doi: 10.29026/oes.2022.220016
Citation: Min JH, Lee K, Chung TH, Min JW, Li KH et al. Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers. Opto-Electron Sci 1, 220016 (2022). doi: 10.29026/oes.2022.220016

Original Article Open Access

Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers

More Information
  • Epitaxially grown III-nitride alloys are tightly bonded materials with mixed covalent-ionic bonds. This tight bonding presents tremendous challenges in developing III-nitride membranes, even though semiconductor membranes can provide numerous advantages by removing thick, inflexible, and costly substrates. Herein, cavities with various sizes were introduced by overgrowing target layers, such as undoped GaN and green LEDs, on nanoporous templates prepared by electrochemical etching of n-type GaN. The large primary interfacial toughness was effectively reduced according to the design of the cavity density, and the overgrown target layers were then conveniently exfoliated by engineering tensile-stressed Ni layers. The resulting III-nitride membranes maintained high crystal quality even after exfoliation due to the use of GaN-based nanoporous templates with the same lattice constant. The microcavity-assisted crack propagation process developed for the current III-nitride membranes forms a universal process for developing various kinds of large-scale and high-quality semiconductor membranes.
  • 加载中
  • [1] Nakamura S, Mukai T, Senoh M. Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Appl Phys Lett 64, 1687–1689 (1994). doi: 10.1063/1.111832

    CrossRef Google Scholar

    [2] Kneissl M, Seong TY, Han J, Amano H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics 13, 233–244 (2019). doi: 10.1038/s41566-019-0359-9

    CrossRef Google Scholar

    [3] Chowdhury S, Mishra UK. Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans Electron Devices 60, 3060–3066 (2013). doi: 10.1109/TED.2013.2277893

    CrossRef Google Scholar

    [4] Kang CH, Liu GY, Lee C, Alkhazragi O, Wagstaff JM et al. Semipolar (2021) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Appl Phys Express 13, 014001 (2020). doi: 10.7567/1882-0786/ab58eb

    CrossRef Google Scholar

    [5] Dreyer CE, Janotti A, Van De Walle CG. Brittle fracture toughnesses of GaN and AlN from first-principles surface-energy calculations. Appl Phys Lett 106, 212103 (2015). doi: 10.1063/1.4921855

    CrossRef Google Scholar

    [6] Park J, Song KM, Jeon SR, Baek JH, Ryu SW. Doping selective lateral electrochemical etching of GaN for chemical lift-off. Appl Phys Lett 94, 221907 (2009). doi: 10.1063/1.3153116

    CrossRef Google Scholar

    [7] Ueda T, Ishida M, Yuri M. Separation of thin GaN from sapphire by laser lift-off technique. Jpn J Appl Phys 50, 041001 (2011). doi: 10.1143/JJAP.50.041001

    CrossRef Google Scholar

    [8] Park SH, Yuan G, Chen DT, Xiong KL, Song J et al. Wide bandgap III-nitride nanomembranes for optoelectronic applications. Nano Lett 14, 4293–4298 (2014). doi: 10.1021/nl5009629

    CrossRef Google Scholar

    [9] Jang LW, Jeon DW, Chung TH, Polyakov AY, Cho HS et al. Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings. ACS Appl Mater Interfaces 6, 985–989 (2014). doi: 10.1021/am404285s

    CrossRef Google Scholar

    [10] Zhang Y, Leung B, Han J. A liftoff process of GaN layers and devices through nanoporous transformation. Appl Phys Lett 100, 181908 (2012). doi: 10.1063/1.4711218

    CrossRef Google Scholar

    [11] Kobayashi Y, Kumakura K, Akasaka T, Makimoto T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012). doi: 10.1038/nature10970

    CrossRef Google Scholar

    [12] Kim Y, Cruz SS, Lee K, Alawode BO, Choi C et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). doi: 10.1038/nature22053

    CrossRef Google Scholar

    [13] Park JH, Lee JY, Park MD, Min JH, Lee JS et al. Influence of temperature‐dependent substrate decomposition on graphene for separable GaN growth. Adv Mater Interfaces 6, 1900821 (2019). doi: 10.1002/admi.201900821

    CrossRef Google Scholar

    [14] Lee JY, Min JH, Bae SY, Park MD, Jeong WL et al. Multiple epitaxial lateral overgrowth of GaN thin films using a patterned graphene mask by metal organic chemical vapor deposition. J Appl Cryst 53, 1502–1508 (2020). doi: 10.1107/S1600576720012856

    CrossRef Google Scholar

    [15] Kong W, Li HS, Qiao K, Kim Y, Lee K et al. Polarity governs atomic interaction through two-dimensional materials. Nat Mater 17, 999–1004 (2018). doi: 10.1038/s41563-018-0176-4

    CrossRef Google Scholar

    [16] Jia YQ, Ning J, Zhang JC, Yan CC, Wang BY et al. Transferable GaN enabled by selective nucleation of AlN on graphene for high‐brightness violet light‐emitting diodes. Adv Opt Mater 8, 1901632 (2019).

    Google Scholar

    [17] Ke WC, Liang ZY, Tesfay ST, Chiang CY, Yang CY et al. Epitaxial growth and characterization of GaN thin films on graphene/sapphire substrate by embedding a hybrid-AlN buffer layer. Appl Surf Sci 494, 644–650 (2019). doi: 10.1016/j.apsusc.2019.07.211

    CrossRef Google Scholar

    [18] Wang N, Wang P, Wang FZ, He HP, Huang JY et al. Improved epitaxy of ZnO films by regulating the layers of graphene. Appl Surf Sci 585, 152709 (2022). doi: 10.1016/j.apsusc.2022.152709

    CrossRef Google Scholar

    [19] Bedell SW, Shahrjerdi D, Hekmatshoar B, Fogel K, Lauro PA et al. Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. IEEE J Photovolt 2, 141–147 (2012). doi: 10.1109/JPHOTOV.2012.2184267

    CrossRef Google Scholar

    [20] Lee YH, Kim YJ, Han SMJ, Song HE, Oh J. Sub-5μm-thick spalled single crystal Si foils by decoupling crack initiation and propagation. Appl Phys Lett 109, 132101 (2016). doi: 10.1063/1.4963292

    CrossRef Google Scholar

    [21] Kim J, Park H, Hannon JB, Bedell SW, Fogel K et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013). doi: 10.1126/science.1242988

    CrossRef Google Scholar

    [22] Shim J, Bae SH, Kong W, Lee D, Qiao K et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018). doi: 10.1126/science.aat8126

    CrossRef Google Scholar

    [23] Min JH, Li KH, Kim YH, Min JW, Kang CH et al. Toward large-scale Ga2O3 membranes via quasi-van der waals epitaxy on epitaxial graphene layers. ACS Appl Mater Interfaces 13, 13410–13418 (2021). doi: 10.1021/acsami.1c01042

    CrossRef Google Scholar

    [24] Zhang C, Park SH, Chen DT, Lin DW, Xiong W et al. Mesoporous GaN for photonic engineering—highly reflective GaN mirrors as an example. ACS Photonics 2, 980–986 (2015). doi: 10.1021/acsphotonics.5b00216

    CrossRef Google Scholar

    [25] Lee KJ, Min JW, Turedi B, Alsalloum AY, Min JH et al. Nanoporous GaN/n-type GaN: a cathode structure for ITO-free perovskite solar cells. ACS Energy Lett 5, 3295–3303 (2020). doi: 10.1021/acsenergylett.0c01621

    CrossRef Google Scholar

    [26] Griffin PH, Oliver RA. Porous nitride semiconductors reviewed. J Phys D Appl Phys 53, 383002 (2020). doi: 10.1088/1361-6463/ab9570

    CrossRef Google Scholar

    [27] Koleske DD, Wickenden AE, Henry RL, Culbertson JC, Twigg ME. GaN decomposition in H2 and N2 at MOVPE temperatures and pressures. J Cryst Growth 223, 466–483 (2001). doi: 10.1016/S0022-0248(01)00617-0

    CrossRef Google Scholar

    [28] Ghannam MY, Alomar AS, Poortmans J, Mertens RP. Interpretation of macropore shape transformation in crystalline silicon upon high temperature processing. J Appl Phys 108, 074902 (2010). doi: 10.1063/1.3462448

    CrossRef Google Scholar

    [29] Yerino CD, Zhang Y, Leung B, Lee ML, Hsu TC et al. Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes. Appl Phys Lett 98, 251910 (2011). doi: 10.1063/1.3601861

    CrossRef Google Scholar

    [30] Polyakov AY, Shin M, Freitas JA, Skowronski M, Greve DW et al. On the origin of electrically active defects in AlGaN alloys grown by organometallic vapor phase epitaxy. J Appl Phys 80, 6349–6354 (1996). doi: 10.1063/1.363653

    CrossRef Google Scholar

    [31] Reshchikov MA, Shahedipour F, Korotkov RY, Wessels BW, Ulmer MP. Photoluminescence band near 2.9 eV in undoped GaN epitaxial layers. J Appl Phys 87, 3351–3354 (2000). doi: 10.1063/1.372348

    CrossRef Google Scholar

    [32] Reshchikov MA, Huang D, Yun F, Visconti P, He L et al. Unusual luminescence lines in GaN. J Appl Phys 94, 5623–5632 (2003). doi: 10.1063/1.1609632

    CrossRef Google Scholar

    [33] Ren FZ, Liu P, Jia SG, Tian BH, Su JH. Adhesion strength of Ni film on Ti substrate characterized by three-point bend test, peel test and theoretic calculation. Mater Sci Eng A 419, 233–237 (2006). doi: 10.1016/j.msea.2005.12.024

    CrossRef Google Scholar

  • Supporting_video_1
    Supporting_video_2
    Supplementary information for Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(10549) PDF downloads(747) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint