Fu R, Chen KX, Li ZL, Yu SH, Zheng GX. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011
Citation: Fu R, Chen KX, Li ZL, Yu SH, Zheng GX. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011

Review Open Access

Metasurface-based nanoprinting: principle, design and advances

More Information
  • Metasurface-based nanoprinting (meta-nanoprinting) has fully demonstrated its advantages in ultrahigh-density grayscale/color image recording and display. A typical meta-nanoprinting device usually has image resolutions reaching 80 k dots per inch (dpi), far exceeding conventional technology such as gravure printing (typ. 5 k dpi). Besides, by fully exploiting the design degrees of freedom of nanostructured metasurfaces, meta-nanoprinting has been developed from previous single-channel to multiple-channels, to current multifunctional integration or even dynamic display. In this review, we overview the development of meta-nanoprinting, including the physics of nanoprinting to manipulate optical amplitude and spectrum, single-functional meta-nanoprinting, multichannel meta-nanoprinting, dynamic meta-nanoprinting and multifunctional metasurface integrating nanoprinting with holography or metalens, etc. Applications of meta-nanoprinting such as image display, vortex beam generation, information decoding and hiding, information encryption, high-density optical storage and optical anti-counterfeiting have also been discussed. Finally, we conclude the opportunities and challenges/perspectives in this rapidly developing research field of meta-nanoprinting.
  • 加载中
  • [1] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [2] Chen XZ, Huang LL, Mühlenbernd H, Li GX, Bai BF et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 3, 1198 (2012). doi: 10.1038/ncomms2207

    CrossRef Google Scholar

    [3] Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069 (2015). doi: 10.1038/ncomms8069

    CrossRef Google Scholar

    [4] Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [5] Chen K, Feng YJ, Monticone F, Zhao JM, Zhu B et al. A reconfigurable active huygens’ metalens. Adv Mater 29, 1606422 (2017). doi: 10.1002/adma.201606422

    CrossRef Google Scholar

    [6] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6

    CrossRef Google Scholar

    [7] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021).

    Google Scholar

    [8] Tseng E, Colburn S, Whitehead J, Huang LC, Baek SH et al. Neural nano-optics for high-quality thin lens imaging. Nat Commun 12, 6493 (2021). doi: 10.1038/s41467-021-26443-0

    CrossRef Google Scholar

    [9] Huang LL, Chen XZ, Mühlenbernd H, Zhang H, Chen SM et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [10] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [11] Ye WM, Zeuner F, Li X, Reineke B, He S et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [12] Wan WW, Gao J, Yang XD. Metasurface holograms for holographic imaging. Adv Opt Mater 5, 1700541 (2017). doi: 10.1002/adom.201700541

    CrossRef Google Scholar

    [13] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [14] Yang YM, Wang WY, Moitra P, Kravchenko II, Briggs DP et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14, 1394–1399 (2014). doi: 10.1021/nl4044482

    CrossRef Google Scholar

    [15] Shalaev MI, Sun JB, Tsukernik A, Pandey A, Nikolskiy K et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 15, 6261–6266 (2015). doi: 10.1021/acs.nanolett.5b02926

    CrossRef Google Scholar

    [16] Mehmood MQ, Mei ST, Hussain S, Huang K, Siew SY et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater 28, 2533–2539 (2016). doi: 10.1002/adma.201504532

    CrossRef Google Scholar

    [17] Ren HR, Briere G, Fang XY, Ni PN, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [18] Bao YJ, Ni JC, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater 32, 1905659 (2020). doi: 10.1002/adma.201905659

    CrossRef Google Scholar

    [19] Yue FY, Zhang CM, Zang XF, Wen DD, Gerardot BD et al. High-resolution grayscale image hidden in a laser beam. Light Sci Appl 7, 17129 (2018). doi: 10.1038/lsa.2017.129

    CrossRef Google Scholar

    [20] Dai Q, Deng LG, Deng J, Tao J, Yang Y et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces. Opt Express 27, 27927–27935 (2019). doi: 10.1364/OE.27.027927

    CrossRef Google Scholar

    [21] Zhao RZ, Huang LL, Tang CC, Li JJ, Li XW et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces. Adv Opt Mater 6, 1800490 (2018). doi: 10.1002/adom.201800490

    CrossRef Google Scholar

    [22] Zhang YL, Cheng Y, Chen M, Xu RH, Yuan LB. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface. Appl Phys Lett 117, 021105 (2020). doi: 10.1063/5.0014987

    CrossRef Google Scholar

    [23] Deng J, Li ZL, Li JX, Zhou Z, Gao F et al. Metasurface-assisted optical encryption carrying camouflaged information. Adv Opt Mater 10, 2200949 (2022). doi: 10.1002/adom.202200949

    CrossRef Google Scholar

    [24] Xue JC, Zhou ZK, Lin LM, Guo C, Sun S et al. Perturbative countersurveillance metaoptics with compound nanosieves. Light Sci Appl 8, 101 (2019). doi: 10.1038/s41377-019-0212-4

    CrossRef Google Scholar

    [25] Zhang CM, Dong FL, Intaravanne Y, Zang XF, Xu LH et al. Multichannel metasurfaces for anticounterfeiting. Phys Rev Appl 12, 034028 (2019). doi: 10.1103/PhysRevApplied.12.034028

    CrossRef Google Scholar

    [26] Walter F, Li GX, Meier C, Zhang S, Zentgraf T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett 17, 3171–3175 (2017). doi: 10.1021/acs.nanolett.7b00676

    CrossRef Google Scholar

    [27] Tang YT, Intaravanne Y, Deng JH, Li KF, Chen XZ et al. Nonlinear vectorial metasurface for optical encryption. Phys Rev Appl 12, 024028 (2019). doi: 10.1103/PhysRevApplied.12.024028

    CrossRef Google Scholar

    [28] Fan YB, Wang YH, Zhang N, Sun WZ, Gao YS et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat Commun 10, 2085 (2019). doi: 10.1038/s41467-019-10090-7

    CrossRef Google Scholar

    [29] Gu YH, Zhang L, Yang JKW, Yeo SP, Qiu CW. Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015). doi: 10.1039/C5NR00578G

    CrossRef Google Scholar

    [30] Keshavarz Hedayati M, Elbahri M. Review of metasurface plasmonic structural color. Plasmonics 12, 1463–1479 (2017). doi: 10.1007/s11468-016-0407-y

    CrossRef Google Scholar

    [31] Zhao YQ, Zhao Y, Hu S, Lv JT, Ying Y et al. Artificial structural color pixels: a review. Materials 10, 944 (2017).

    Google Scholar

    [32] Lee T, Jang J, Jeong H, Rho J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg 5, 1 (2018). doi: 10.1186/s40580-017-0133-y

    CrossRef Google Scholar

    [33] Song MW, Wang D, Peana S, Choudhury S, Nyga P et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl Phys Rev 6, 041308 (2019). doi: 10.1063/1.5110051

    CrossRef Google Scholar

    [34] Yang B, Cheng H, Chen SQ, Tian JG. Structural colors in metasurfaces: principle, design and applications. Mater Chem Front 3, 750–761 (2019). doi: 10.1039/C9QM00043G

    CrossRef Google Scholar

    [35] Baek K, Kim Y, Mohd-Noor S, Hyun JK. Mie resonant structural colors. ACS Appl Mater Interfaces 12, 5300–5318 (2020). doi: 10.1021/acsami.9b16683

    CrossRef Google Scholar

    [36] Daqiqeh Rezaei S, Dong ZG, You En Chan J, Trisno J, Ng RJH et al. Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021).

    Google Scholar

    [37] Shaukat A, Noble F, Arif KM. Nanostructured color filters: a review of recent developments. Nanomaterials 10, 1554 (2020).

    Google Scholar

    [38] Chen Q, Nan XH, Chen MJ, Pan DH, Yang XG et al. Nanophotonic color routing. Adv Mater 33, 2103815 (2021). doi: 10.1002/adma.202103815

    CrossRef Google Scholar

    [39] Wu YK, Chen YM, Song QH, Xiao SM. Dynamic structural colors based on all-dielectric Mie resonators. Adv Opt Mater 9, 2002126 (2021). doi: 10.1002/adom.202002126

    CrossRef Google Scholar

    [40] Xuan ZY, Li JY, Liu QQ, Yi F, Wang SW et al. Artificial structural colors and applications. Innovation 2, 100081 (2021).

    Google Scholar

    [41] Butt H, Montelongo Y, Butler T, Rajesekharan R, Dai Q et al. Carbon nanotube based high resolution holograms. Adv Mater 24, OP331–OP336 (2012).

    Google Scholar

    [42] Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk'yanchuk B et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [43] Montelongo Y, Tenorio-Pearl JO, Milne WI, Wilkinson TD. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett 14, 294–298 (2014). doi: 10.1021/nl4039967

    CrossRef Google Scholar

    [44] Xu ZT, Huang LL, Li XW, Tang CC, Wei QS et al. Quantitatively correlated amplitude holography based on photon sieves. Adv Opt Mater 8, 1901169 (2020). doi: 10.1002/adom.201901169

    CrossRef Google Scholar

    [45] Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 13, 4269–4274 (2013). doi: 10.1021/nl402039y

    CrossRef Google Scholar

    [46] Min CJ, Liu JP, Lei T, Si GY, Xie ZW et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev 10, 978–985 (2016). doi: 10.1002/lpor.201600101

    CrossRef Google Scholar

    [47] Xie ZW, Lei T, Si GY, Wang XY, Lin J et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158–2164 (2017). doi: 10.1021/acsphotonics.7b00710

    CrossRef Google Scholar

    [48] Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [49] Wang Q, Zhang XQ, Xu YH, Gu JQ, Li YF et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6, 32867 (2016). doi: 10.1038/srep32867

    CrossRef Google Scholar

    [50] Jia SL, Wan X, Su P, Zhao YJ, Cui TJ. Broadband metasurface for independent control of reflected amplitude and phase. AIP Adv 6, 045024 (2016). doi: 10.1063/1.4948513

    CrossRef Google Scholar

    [51] Song X, Huang LL, Tang CC, Li JJ, Li XW et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces. Adv Opt Mater 6, 1701181 (2018). doi: 10.1002/adom.201701181

    CrossRef Google Scholar

    [52] Jang J, Badloe T, Yang Y, Lee T, Mun J et al. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano 14, 15317–15326 (2020). doi: 10.1021/acsnano.0c05656

    CrossRef Google Scholar

    [53] Lee T, Kim J, Koirala I, Yang Y, Badloe T et al. Nearly perfect transmissive subtractive coloration through the spectral amplification of Mie scattering and lattice resonance. ACS Appl Mater Interfaces 13, 26299–26307 (2021). doi: 10.1021/acsami.1c03427

    CrossRef Google Scholar

    [54] Kim SJ, Choi HK, Lee H, Hong SH. Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation. ACS Appl Mater Interfaces 11, 7280–7287 (2019). doi: 10.1021/acsami.8b19157

    CrossRef Google Scholar

    [55] Yang ZM, Ji CG, Liu D, Guo J. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers. Adv Opt Mater 7, 1900739 (2019). doi: 10.1002/adom.201900739

    CrossRef Google Scholar

    [56] Hu YQ, Luo XH, Chen YQ, Liu Q, Li X et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci Appl 8, 86 (2019). doi: 10.1038/s41377-019-0198-y

    CrossRef Google Scholar

    [57] Zang XF, Dong FL, Yue FY, Zhang CM, Xu LH et al. Polarization encoded color image embedded in a dielectric metasurface. Adv Mater 30, 1707499 (2018). doi: 10.1002/adma.201707499

    CrossRef Google Scholar

    [58] Cao Y, Tang LL, Li JQ, Wang J, Dong ZG. Dual-wavelength complementary grayscale imaging by an ultrathin metasurface. Opt Lett 45, 5181–5184 (2020). doi: 10.1364/OL.403229

    CrossRef Google Scholar

    [59] Li JX, Li ZL, Deng LG, Dai Q, Fu R et al. Dichroic polarizing metasurfaces for color control and pseudo-color encoding. IEEE Photonic Technol Lett 33, 77–80 (2021). doi: 10.1109/LPT.2020.3045298

    CrossRef Google Scholar

    [60] Wang XY, Dai CJ, Yao XL, Qiao T, Chen ML et al. Asymmetric angular dependence for multicolor display based on plasmonic inclined-nanopillar array. Nanoscale 13, 7273–7278 (2021). doi: 10.1039/D1NR00473E

    CrossRef Google Scholar

    [61] Tang J, Li Z, Wan S, Wang ZJ, Wan CW et al. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces. ACS Appl Mater Interfaces 13, 38623–38628 (2021). doi: 10.1021/acsami.1c10881

    CrossRef Google Scholar

    [62] Deng J, Yang Y, Tao J, Deng LG, Liu DQ et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting. ACS Nano 13, 9237–9246 (2019). doi: 10.1021/acsnano.9b03738

    CrossRef Google Scholar

    [63] Deng J, Gao F, Yuan PC, Li Y, Yan B. Bidirectional nanoprinting based on bilayer metasurfaces. Opt Express 30, 377–388 (2022). doi: 10.1364/OE.448136

    CrossRef Google Scholar

    [64] Wang L, Li T, Guo RY, Xia W, Xu XG et al. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode. Sci Rep 3, 2603 (2013). doi: 10.1038/srep02603

    CrossRef Google Scholar

    [65] Bao YJ, Yu Y, Xu HF, Lin QL, Wang Y et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv Funct Mater 28, 1805306 (2018). doi: 10.1002/adfm.201805306

    CrossRef Google Scholar

    [66] Chen Y, Gao J, Yang XD. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures. Adv Opt Mater 7, 1801467 (2019). doi: 10.1002/adom.201801467

    CrossRef Google Scholar

    [67] Li ZC, Liu WW, Cheng H, Choi DY, Chen SQ et al. Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces. Adv Opt Mater 7, 1900260 (2019). doi: doi.org/10.1002/adom.201900260

    CrossRef Google Scholar

    [68] Hu S, Du S, Li JJ, Gu CZ. Multidimensional image and beam splitter based on hyperbolic metamaterials. Nano Lett 21, 1792–1799 (2021). doi: 10.1021/acs.nanolett.0c04795

    CrossRef Google Scholar

    [69] Chen Y, Yang XD, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl 8, 45 (2019). doi: 10.1038/s41377-019-0156-8

    CrossRef Google Scholar

    [70] Deng J, Deng LG, Guan ZQ, Tao J, Li GF et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Lett 20, 1830–1838 (2020). doi: 10.1021/acs.nanolett.9b05053

    CrossRef Google Scholar

    [71] Dai Q, Zhou N, Deng LG, Deng J, Li ZL et al. Dual-channel binary gray-image display enabled with Malus-assisted metasurfaces. Phys Rev Appl 14, 034002 (2020).

    Google Scholar

    [72] Dai Q, Li ZL, Deng LG, Zhou N, Deng J et al. Single-size nanostructured metasurface for dual-channel vortex beam generation. Opt Lett 45, 3773–3776 (2020). doi: 10.1364/OL.398286

    CrossRef Google Scholar

    [73] Li ZL, Ren RY, Deng J, Deng LG, Li GF et al. Non-orthogonal-polarization multiplexed metasurfaces for tri-channel gray-imaging. Opt Express 29, 134–144 (2021). doi: 10.1364/OE.415403

    CrossRef Google Scholar

    [74] Li ZL, Deng LG, Deng J, He ZX, Tao J et al. Metasurface-enabled three-in-one nanoprints by multifunctional manipulations of light. iScience 24, 103510 (2021). doi: 10.1016/j.isci.2021.103510

    CrossRef Google Scholar

    [75] Deng ZL, Tu QA, Wang YJ, Wang ZQ, Shi T et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater 33, 2103472 (2021). doi: 10.1002/adma.202103472

    CrossRef Google Scholar

    [76] Zheng PX, Dai Q, Li ZL, Ye ZY, Xiong J et al. Metasurface-based key for computational imaging encryption. Sci Adv 7, eabg0363 (2021). doi: 10.1126/sciadv.abg0363

    CrossRef Google Scholar

    [77] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019).

    Google Scholar

    [78] Fan QB, Liu MZ, Zhang C, Zhu WQ, Wang YL et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys Rev Lett 125, 267402 (2020). doi: 10.1103/PhysRevLett.125.267402

    CrossRef Google Scholar

    [79] Li ZY, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015). doi: 10.1021/ph500410u

    CrossRef Google Scholar

    [80] Yang ZM, Zhou YM, Chen YQ, Wang YS, Dai P et al. Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber. Adv Opt Mater 4, 1196–1202 (2016). doi: 10.1002/adom.201600110

    CrossRef Google Scholar

    [81] ElKabbash M, Iram S, Letsou T, Hinczewski M, Strangi G. Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates. Adv Opt Mater 6, 1800672 (2018). doi: 10.1002/adom.201800672

    CrossRef Google Scholar

    [82] Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E. Lithography-free planar band-pass reflective color filter using a series connection of cavities. Sci Rep 9, 290 (2019). doi: 10.1038/s41598-018-36540-8

    CrossRef Google Scholar

    [83] Pan H, Wen ZJ, Tang ZH, Xu GY, Pan XH et al. Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media. Nanophotonics 9, 3385–3392 (2020). doi: 10.1515/nanoph-2020-0106

    CrossRef Google Scholar

    [84] Kats MA, Blanchard R, Genevet P, Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12, 20–24 (2013). doi: 10.1038/nmat3443

    CrossRef Google Scholar

    [85] Ravishankar AP, van Tilburg MAJ, Vennberg F, Visser D, Anand S. Color generation from self-organized metalo-dielectric nanopillar arrays. Nanophotonics 8, 1771–1781 (2019). doi: 10.1515/nanoph-2019-0171

    CrossRef Google Scholar

    [86] Wang YX, Ren F, Ding T. Generation of high quality, uniform and stable plasmonic colorants via laser direct writing. Adv Opt Mater 8, 2000164 (2020). doi: 10.1002/adom.202000164

    CrossRef Google Scholar

    [87] Wu B, Liu ZQ, Liu XS, Liu GQ, Tang P et al. Large-scale reflective optical Janus color materials. Nanotechnology 31, 225301 (2020). doi: 10.1088/1361-6528/ab7649

    CrossRef Google Scholar

    [88] Wang LC, Ng RJH, Dinachali SS, Jalali M, Yu Y et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016). doi: 10.1021/acsphotonics.5b00725

    CrossRef Google Scholar

    [89] James TD, Mulvaney P, Roberts A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16, 3817–3823 (2016). doi: 10.1021/acs.nanolett.6b01250

    CrossRef Google Scholar

    [90] Jalali M, Yu Y, Xu KC, Ng RJH, Dong ZG et al. Stacking of colors in exfoliable plasmonic superlattices. Nanoscale 8, 18228–18234 (2016). doi: 10.1039/C6NR03466G

    CrossRef Google Scholar

    [91] Xu T, Wu YK, Luo XG, Guo LJ. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1, 59 (2010). doi: 10.1038/ncomms1058

    CrossRef Google Scholar

    [92] Cai WS, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV et al. Metamagnetics with rainbow colors. Opt Express 15, 3333–3341 (2007). doi: 10.1364/OE.15.003333

    CrossRef Google Scholar

    [93] Duempelmann L, Casari D, Luu-Dinh A, Gallinet B, Novotny L. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383–12391 (2015). doi: 10.1021/acsnano.5b05710

    CrossRef Google Scholar

    [94] Gao BF, Ren MX, Wu W, Hu H, Cai W et al. Lithium niobate metasurfaces. Laser Photonics Rev 13, 1800312 (2019). doi: 10.1002/lpor.201800312

    CrossRef Google Scholar

    [95] Uddin MJ, Magnusson R. Highly efficient color filter array using resonant Si3N4 gratings. Opt Express 21, 12495–12506 (2013). doi: 10.1364/OE.21.012495

    CrossRef Google Scholar

    [96] Kaplan A, Xu T, Guo LJ. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99, 143111 (2011). doi: 10.1063/1.3647633

    CrossRef Google Scholar

    [97] Wang CT, Hou HH, Chang PC, Li CC, Jau HC et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating. Opt Express 24, 22892–22898 (2016). doi: 10.1364/OE.24.022892

    CrossRef Google Scholar

    [98] Song MW, Li X, Pu MB, Guo YH, Liu KP et al. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics 7, 323–331 (2018). doi: 10.1515/nanoph-2017-0062

    CrossRef Google Scholar

    [99] Wang JX, Fan QB, Zhang S, Zhang ZJ, Zhang H et al. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency. Appl Phys Lett 110, 031110 (2017). doi: 10.1063/1.4974455

    CrossRef Google Scholar

    [100] Zeng BB, Gao YK, Bartoli FJ. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci Rep 3, 2840 (2013). doi: 10.1038/srep02840

    CrossRef Google Scholar

    [101] Duempelmann L, Luu-Dinh A, Gallinet B, Novotny L. Four-fold color filter based on plasmonic phase retarder. ACS Photonics 3, 190–196 (2016). doi: 10.1021/acsphotonics.5b00604

    CrossRef Google Scholar

    [102] Qian LY, Zhang DW, Tao CX, Hong RJ, Zhuang SL. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching. Opt Lett 41, 982–985 (2016). doi: 10.1364/OL.41.000982

    CrossRef Google Scholar

    [103] Uddin MJ, Khaleque T, Magnusson R. Guided-mode resonant polarization-controlled tunable color filters. Opt Express 22, 12307–12315 (2014). doi: 10.1364/OE.22.012307

    CrossRef Google Scholar

    [104] Wang Q, Zhang DW, Xu BL, Huang YS, Tao CX et al. Colored image produced with guided-mode resonance filter array. Opt Lett 36, 4698–4700 (2011). doi: 10.1364/OL.36.004698

    CrossRef Google Scholar

    [105] Lochbihler H. Reflective colored image based on metal-dielectric-metal-coated gratings. Opt Lett 38, 1398–1400 (2013). doi: 10.1364/OL.38.001398

    CrossRef Google Scholar

    [106] Shaltout AM, Kim J, Boltasseva A, Shalaev VM, Kildishev AV. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat Commun 9, 2673 (2018). doi: 10.1038/s41467-018-05034-6

    CrossRef Google Scholar

    [107] Nguyen-Huu N, Lo YL, Chen YB. Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating. Opt Commun 284, 2473–2479 (2011). doi: 10.1016/j.optcom.2011.01.035

    CrossRef Google Scholar

    [108] Lochbihler H. Colored images generated by metallic sub-wavelength gratings. Opt Express 17, 12189–12196 (2009). doi: 10.1364/OE.17.012189

    CrossRef Google Scholar

    [109] Lee HS, Yoon YT, Lee SS, Kim SH, Lee KD. Color filter based on a subwavelength patterned metal grating. Opt Express 15, 15457–15463 (2007). doi: 10.1364/OE.15.015457

    CrossRef Google Scholar

    [110] Chen Q, Cumming DRS. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18, 14256–14062 (2010).

    Google Scholar

    [111] Yokogawa S, Burgos SP, Atwater HA. Plasmonic color filters for CMOS image sensor applications. Nano Lett 12, 4349–4354 (2012). doi: 10.1021/nl302110z

    CrossRef Google Scholar

    [112] Si GY, Zhao YH, Liu H, Teo S, Zhang MS et al. Annular aperture array based color filter. Appl Phys Lett 99, 033105 (2011). doi: 10.1063/1.3608147

    CrossRef Google Scholar

    [113] Li W, Guler U, Kinsey N, Naik GV, Boltasseva A et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv Mater 26, 7959–7965 (2014). doi: 10.1002/adma.201401874

    CrossRef Google Scholar

    [114] Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58

    CrossRef Google Scholar

    [115] Xue JC, Zhou ZK, Wei ZQ, Su RB, Lai J et al. Scalable, full-colour and controllable chromotropic plasmonic printing. Nat Commun 6, 8906 (2015). doi: 10.1038/ncomms9906

    CrossRef Google Scholar

    [116] Cheng F, Gao J, Stan L, Rosenmann D, Czaplewaki D et al. Aluminum plasmonic metamaterials for structural color printing. Opt Express 23, 14552–14560 (2015). doi: 10.1364/OE.23.014552

    CrossRef Google Scholar

    [117] Roberts AS, Pors A, Albrektsen O, Bozhevolnyi SI. Subwavelength plasmonic color printing protected for ambient use. Nano Lett 14, 783–787 (2014). doi: 10.1021/nl404129n

    CrossRef Google Scholar

    [118] Shah YD, Connolly PWR, Grant JP, Hao DN, Accarino C et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters. Optica 7, 632–639 (2020). doi: 10.1364/OPTICA.389905

    CrossRef Google Scholar

    [119] Si GY, Zhao YH, Lv JT, Lu MQ, Wang FW et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013). doi: 10.1039/c3nr01419c

    CrossRef Google Scholar

    [120] Burgos S, Yokogawa S, Atwater HA. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano 7, 10038–10047 (2013). doi: 10.1021/nn403991d

    CrossRef Google Scholar

    [121] Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86, 1114–1117 (2001). doi: 10.1103/PhysRevLett.86.1114

    CrossRef Google Scholar

    [122] Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570

    CrossRef Google Scholar

    [123] Genet C, Ebbesen T. Light in tiny holes. Nature 445, 39–46 (2007). doi: 10.1038/nature05350

    CrossRef Google Scholar

    [124] Sun LB, Hu XL, Xu Y, Wu QJ, Shi B et al. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films. Opt Commun 333, 16–21 (2014). doi: 10.1016/j.optcom.2014.06.072

    CrossRef Google Scholar

    [125] Cheng F, Gao J, Luk TS, Yang XD. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci Rep 5, 11045 (2015). doi: 10.1038/srep11045

    CrossRef Google Scholar

    [126] Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011). doi: 10.1126/science.1198258

    CrossRef Google Scholar

    [127] Inoue D, Miura A, Nomura T, Fujikawa H, Sato K et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl Phys Lett 98, 093113 (2011). doi: 10.1063/1.3560467

    CrossRef Google Scholar

    [128] Li ZB, Clark AW, Cooper JM. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016). doi: 10.1021/acsnano.5b05411

    CrossRef Google Scholar

    [129] Falcone F, Lopetegi T, Laso MAG, Baena JD, Bonache J et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93, 197401 (2004). doi: 10.1103/PhysRevLett.93.197401

    CrossRef Google Scholar

    [130] Ellenbogen T, Seo K, Crozier KB. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12, 1026–1031 (2012). doi: 10.1021/nl204257g

    CrossRef Google Scholar

    [131] Shrestha VR, Park CS, Lee SS. Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response. Opt Express 22, 3691–3704 (2014). doi: 10.1364/OE.22.003691

    CrossRef Google Scholar

    [132] Goh XM, Ng RJH, Wang SH, Tan SJ, Yang JKW. Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photonics 3, 1000–1009 (2016). doi: 10.1021/acsphotonics.6b00099

    CrossRef Google Scholar

    [133] Miyata M, Hatada H, Takahara J. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett 16, 3166–3172 (2016). doi: 10.1021/acs.nanolett.6b00500

    CrossRef Google Scholar

    [134] Rezaei SD, Ng RJH, Dong ZG, Ho J, Koay EHH et al. Wide-gamut plasmonic color palettes with constant subwavelength resolution. ACS Nano 13, 3580–3588 (2019). doi: 10.1021/acsnano.9b00139

    CrossRef Google Scholar

    [135] Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14, 4023–4029 (2014). doi: 10.1021/nl501460x

    CrossRef Google Scholar

    [136] King NS, Liu LF, Yang X, Cerjan B, Everitt HO et al. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9, 10628–10636 (2015). doi: 10.1021/acsnano.5b04864

    CrossRef Google Scholar

    [137] Song HY, Ma YG, Han YB, Shen WD, Zhang WY et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments. Adv Theory Simul 4, 2000299 (2021). doi: 10.1002/adts.202000299

    CrossRef Google Scholar

    [138] Shrestha VR, Lee SS, Kim ES, Choi DY. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett 14, 6672–6678 (2014). doi: 10.1021/nl503353z

    CrossRef Google Scholar

    [139] Chow TH, Lai YH, Lu WZ, Li NN, Wang JF. Substrate-enabled plasmonic color switching with colloidal gold nanorings. ACS Materials Lett 2, 744–753 (2020). doi: 10.1021/acsmaterialslett.0c00182

    CrossRef Google Scholar

    [140] Cao LY, Fan PY, Barnard ES, Brown AM, Brongersma ML. Tuning the color of silicon nanostructures. Nano Lett 10, 2649–2654 (2010). doi: 10.1021/nl1013794

    CrossRef Google Scholar

    [141] Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 12, 3749–3755 (2012). doi: 10.1021/nl301594s

    CrossRef Google Scholar

    [142] Luk’yanchuk BS, Voshchinnikov NV, Paniagua-Domínguez R, Kuznetsov AI. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photonics 2, 993–999 (2015). doi: 10.1021/acsphotonics.5b00261

    CrossRef Google Scholar

    [143] Yang SC, Richter K, Fischer WJ. Multicolor generation using silicon nanodisk absorber. Appl Phys Lett 106, 081112 (2015). doi: 10.1063/1.4913847

    CrossRef Google Scholar

    [144] Jang J, Jeong H, Hu GW, Qiu CW, Nam KT et al. Kerker-conditioned dynamic cryptographic nanoprints. Adv Opt Mater 7, 1801070 (2019).

    Google Scholar

    [145] Ee HS, Kang JH, Brongersma ML, Seo MK. Shape-dependent light scattering properties of subwavelength silicon nanoblocks. Nano Lett 15, 1759–1765 (2015). doi: 10.1021/nl504442v

    CrossRef Google Scholar

    [146] Proust J, Bedu F, Gallas B, Ozerov I, Bonod N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016). doi: 10.1021/acsnano.6b03207

    CrossRef Google Scholar

    [147] Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472

    CrossRef Google Scholar

    [148] Sun S, Zhou ZX, Zhang C, Gao YS, Duan ZH et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445–4452 (2017). doi: 10.1021/acsnano.7b00415

    CrossRef Google Scholar

    [149] Zhu XL, Yan W, Levy U, Mortensen NA, Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv 3, e1602487 (2017). doi: 10.1126/sciadv.1602487

    CrossRef Google Scholar

    [150] Dong ZG, Ho J, Yu YF, Fu YH, Paniagua-Dominguez R et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett 17, 7620–7628 (2017). doi: 10.1021/acs.nanolett.7b03613

    CrossRef Google Scholar

    [151] Nagasaki Y, Suzuki M, Takahara J. All-dielectric dual-color pixel with subwavelength resolution. Nano Lett 17, 7500–7506 (2017). doi: 10.1021/acs.nanolett.7b03421

    CrossRef Google Scholar

    [152] Vashistha V, Vaidya G, Hegde RS, Serebryannikov AE, Bonod N et al. All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut. ACS Photonics 4, 1076–1082 (2017). doi: 10.1021/acsphotonics.6b00853

    CrossRef Google Scholar

    [153] Park CS, Shrestha VR, Yue WJ, Gao S, Lee SS et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci Rep 7, 2556 (2017). doi: 10.1038/s41598-017-02911-w

    CrossRef Google Scholar

    [154] Li SQ, Song WZ, Ye M, Crozier KB. Generalized method of images and reflective color generation from ultrathin multipole resonators. ACS Photonics 5, 2374–2383 (2018). doi: 10.1021/acsphotonics.8b00161

    CrossRef Google Scholar

    [155] Nagasaki Y, Suzuki M, Hotta I, Takahara J. Control of Si-based all-dielectric printing color through oxidation. ACS Photonics 5, 1460–1466 (2018). doi: 10.1021/acsphotonics.7b01467

    CrossRef Google Scholar

    [156] Xiang J, Li JT, Zhou ZP, Jiang S, Chen JD et al. Manipulating the orientations of the electric and magnetic dipoles induced in silicon nanoparticles for multicolor display. Laser Photonics Rev 12, 1800032 (2018). doi: 10.1002/lpor.201800032

    CrossRef Google Scholar

    [157] Berzinš J, Fasold S, Pertsch T, Bäumer SMB, Setzpfandt F. Submicrometer nanostructure-based RGB filters for CMOS image sensors. ACS Photonics 6, 1018–1025 (2019). doi: 10.1021/acsphotonics.9b00021

    CrossRef Google Scholar

    [158] Sugimoto H, Okazaki T, Fujii M. Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles. Adv Opt Mater 8, 2000033 (2020). doi: 10.1002/adom.202000033

    CrossRef Google Scholar

    [159] Todisco F, Mlureanu R, Wolff C, Gonçalves PAD, Roberts AS et al. Magnetic and electric Mie-exciton polaritons in silicon nanodisks. Nanophotonics 9, 803–814 (2020). doi: 10.1515/nanoph-2019-0444

    CrossRef Google Scholar

    [160] Yang WH, Xiao SM, Song QH, Liu YL, Wu YK et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0

    CrossRef Google Scholar

    [161] Shamkhi HK, Baryshnikova KV, Sayanskiy A, Kapitanova P, Terekhov PD et al. Transverse scattering and generalized Kerker effects in all-dielectric Mie-resonant metaoptics. Phys Rev Lett 122, 193905 (2019). doi: 10.1103/PhysRevLett.122.193905

    CrossRef Google Scholar

    [162] Wood T, Naffouti M, Berthelot J, David T, Claude JB et al. All-dielectric color filters using SiGe-based Mie resonator arrays. ACS Photonics 4, 873–883 (2017). doi: 10.1021/acsphotonics.6b00944

    CrossRef Google Scholar

    [163] Yang B, Liu WW, Li ZC, Cheng H, Chen SQ et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv Opt Mater 6, 1701009 (2018). doi: 10.1002/adom.201701009

    CrossRef Google Scholar

    [164] Koirala I, Lee SS, Choi DY. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars. Opt Express 26, 18320–18330 (2018). doi: 10.1364/OE.26.018320

    CrossRef Google Scholar

    [165] Huo PC, Song MW, Zhu WQ, Zhang C, Chen L et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171–1172 (2020). doi: 10.1364/OPTICA.403092

    CrossRef Google Scholar

    [166] Flauraud V, Reyes M, Paniagua-Domínguez R, Kuznetsov AI, Brugger J. Silicon nanostructures for bright field full color prints. ACS Photonics 4, 1913–1919 (2017). doi: 10.1021/acsphotonics.6b01021

    CrossRef Google Scholar

    [167] Yang JH, Babicheva VE, Yu MW, Lu TC, Lin TR et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020). doi: 10.1021/acsnano.0c00185

    CrossRef Google Scholar

    [168] Kumar K, Duan HG, Hegde RS, Koh SCW, Wei JN et al. Printing colour at the optical diffraction limit. Nat Nanotech 7, 557–561 (2012). doi: 10.1038/nnano.2012.128

    CrossRef Google Scholar

    [169] Feng R, Wang H, Cao YY, Zhang YX, Ng RJH et al. A modular design of continuously tunable full color plasmonic pixels with broken rotational symmetry. Adv Funct Mater 32, 2108437 (2022). doi: 10.1002/adfm.202108437

    CrossRef Google Scholar

    [170] Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14, 4499–4504 (2014). doi: 10.1021/nl5014986

    CrossRef Google Scholar

    [171] Goh XM, Zheng YH, Tan SJ, Zhang L, Kumar K et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5, 5361 (2014). doi: 10.1038/ncomms6361

    CrossRef Google Scholar

    [172] Yue WJ, Gao S, Lee SS, Kim ES, Choi DY. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci Rep 6, 29756 (2016). doi: 10.1038/srep29756

    CrossRef Google Scholar

    [173] Højlund-Nielsen E, Clausen J, Mäkela T, Thamdrup LH, Zalkovskij M et al. Plasmonic colors: toward mass production of metasurfaces. Adv Mater Technol 1, 1600054 (2016). doi: 10.1002/admt.201600054

    CrossRef Google Scholar

    [174] Wang H, Wang XL, Yan C, Zhao H, Zhang JW et al. Full color generation using silver tandem nanodisks. ACS Nano 11, 4419–4427 (2017). doi: 10.1021/acsnano.6b08465

    CrossRef Google Scholar

    [175] Yang ZM, Chen YQ, Zhou YM, Wang YS, Dai P et al. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities. Adv Opt Mater 5, 1700029 (2017). doi: 10.1002/adom.201700029

    CrossRef Google Scholar

    [176] Yue WJ, Gao S, Lee SS, Kim ES, Choi DY. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photonics Rev 11, 1600285 (2017). doi: 10.1002/lpor.201600285

    CrossRef Google Scholar

    [177] Nagasaki Y, Hotta I, Suzuki M, Takahara J. Metal-masked Mie-resonant full-color printing for achieving free-space resolution limit. ACS Photonics 5, 3849–3855 (2018). doi: 10.1021/acsphotonics.8b00895

    CrossRef Google Scholar

    [178] Yang B, Liu WW, Li ZC, Cheng H, Choi DY et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett 19, 4221–4228 (2019). doi: 10.1021/acs.nanolett.8b04923

    CrossRef Google Scholar

    [179] Xiong KL, Emilsson G, Maziz A, Yang XX, Shao L et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color. Adv Mater 28, 9956–9960 (2016). doi: 10.1002/adma.201603358

    CrossRef Google Scholar

    [180] Wen Y, Zhou QW, Su XL, Hu DH, Xu M et al. Wide-range time-dependent color-tunable light-response afterglow materials via absorption compensation for advanced information encryption. ACS Appl Mater Interfaces 14, 11681–11689 (2022). doi: 10.1021/acsami.2c00683

    CrossRef Google Scholar

    [181] Eaves-Rathert J, Kovalik E, Ugwu CF, Rogers BR, Pint CL et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett 22, 1626–1632 (2022). doi: 10.1021/acs.nanolett.1c04613

    CrossRef Google Scholar

    [182] Moriwaki H, Kamine T, Kawabe Y, Okada Y. Structural color on pencil lead formed by plasma etching. Adv Opt Mater 10, 2102127 (2022). doi: 10.1002/adom.202102127

    CrossRef Google Scholar

    [183] Mirshafieyan SS, Gregory DA. Electrically tunable perfect light absorbers as color filters and modulators. Sci Rep 8, 2635 (2018). doi: 10.1038/s41598-018-20879-z

    CrossRef Google Scholar

    [184] Greybush NJ, Charipar K, Geldmeier JA, Bauman SJ, Johns P et al. Dynamic plasmonic pixels. ACS Nano 13, 3875–3883 (2019). doi: 10.1021/acsnano.9b00905

    CrossRef Google Scholar

    [185] Li N, Wei PP, Yu LN, Ji JY, Zhao JP et al. Dynamically switchable multicolor electrochromic films. Small 15, 1804974 (2019). doi: 10.1002/smll.201804974

    CrossRef Google Scholar

    [186] Yan ZY, Zhang Z, Wu WK, Ji XL, Sun S et al. Floating solid-state thin films with dynamic structural colour. Nat Nanotech 16, 795–801 (2021). doi: 10.1038/s41565-021-00883-7

    CrossRef Google Scholar

    [187] Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7, 10479 (2016). doi: 10.1038/ncomms10479

    CrossRef Google Scholar

    [188] Liu HL, Xu JH, Wang H, Liu YJ, Ruan QF et al. Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security. Adv Mater 31, 1807900 (2019). doi: 10.1002/adma.201807900

    CrossRef Google Scholar

    [189] Chen SZ, Rossi S, Shanker R, Cincotti G, Gamage S et al. Tunable structural color images by UV-patterned conducting polymer nanofilms on metal surfaces. Adv Mater 33, 2102451 (2021). doi: 10.1002/adma.202102451

    CrossRef Google Scholar

    [190] Kim H, Ge JP, Kim J, Choi SE, Lee H et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3, 534–540 (2009). doi: 10.1038/nphoton.2009.141

    CrossRef Google Scholar

    [191] Zhang YL, Wang Y, Wang H, Yu Y, Zhong QF et al. Super-elastic magnetic structural color hydrogels. Small 15, 1902198 (2019). doi: 10.1002/smll.201902198

    CrossRef Google Scholar

    [192] Olson J, Manjavacas A, Basu T, Huang D, Schlather AE et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10, 1108–1117 (2016). doi: 10.1021/acsnano.5b06415

    CrossRef Google Scholar

    [193] Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun 6, 7337 (2015). doi: 10.1038/ncomms8337

    CrossRef Google Scholar

    [194] Lee Y, Park MK, Kim S, Shin JH, Moon C et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics 4, 1954–1966 (2017). doi: 10.1021/acsphotonics.7b00249

    CrossRef Google Scholar

    [195] Sharma M, Hendler N, Ellenbogen T. Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform. Adv Opt Mater 8, 1901182 (2020). doi: 10.1002/adom.201901182

    CrossRef Google Scholar

    [196] Li D, Yang J, Fang MM, Tang BZ, Li Z. Stimulus-responsive room temperature phosphorescence materials with full-color tenability from pure organic amorphous polymers. Adv Sci 8, eabl8392 (2022). doi: 10.1126/sciadv.abl8392

    CrossRef Google Scholar

    [197] Shu FZ, Yu FF, Peng RW, Zhu YY, Xiong B et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater 6, 1700939 (2018). doi: 10.1002/adom.201700939

    CrossRef Google Scholar

    [198] Duan XY, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun 8, 14606 (2017). doi: 10.1038/ncomms14606

    CrossRef Google Scholar

    [199] Chen YQ, Duan XY, Matuschek M, Zhou YM, Neubrech F et al. Dynamic color displays using stepwise cavity resonators. Nano Lett 17, 5555–5560 (2017). doi: 10.1021/acs.nanolett.7b02336

    CrossRef Google Scholar

    [200] Song SC, Ma XL, Pu MB, Li X, Liu KP et al. Actively tunable structural color rendering with tensile substrate. Adv Opt Mater 5, 1600829 (2017). doi: 10.1002/adom.201600829

    CrossRef Google Scholar

    [201] Tseng ML, Yang J, Semmlinger M, Zhang C, Nordlander P et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett 17, 6034–6039 (2017). doi: 10.1021/acs.nanolett.7b02350

    CrossRef Google Scholar

    [202] Ruan QF, Zhang W, Wang H, Chan JYE, Wang HT et al. Reconfiguring colors of single relief structures by directional stretching. Adv Mater 34, 2108128 (2022). doi: 10.1002/adma.202108128

    CrossRef Google Scholar

    [203] Yoon G, Lee D, Nam KT, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 12, 6421–6428 (2018). doi: 10.1021/acsnano.8b01344

    CrossRef Google Scholar

    [204] Zhang YN, Shi L, Hu DJ, Chen SR, Xie SY et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz 4, 601–609 (2019). doi: 10.1039/C9NH00003H

    CrossRef Google Scholar

    [205] Liang CL, Deng LG, Dai Q, Li ZL, Zheng GX et al. Single-celled multifunctional metasurfaces merging structural-color nanoprinting and holography. Opt Express 29, 10737–10748 (2021). doi: 10.1364/OE.420831

    CrossRef Google Scholar

    [206] Overvig AC, Shrestha S, Malek SC, Lu M, Stein A et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7

    CrossRef Google Scholar

    [207] Wen DD, Cadusch JJ, Meng JJ, Crozier KB. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv Funct Mater 30, 1906415 (2020). doi: 10.1002/adfm.201906415

    CrossRef Google Scholar

    [208] Wei QS, Sain B, Wang YT, Reineke B, Li XW et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett 19, 8964–8971 (2019). doi: 10.1021/acs.nanolett.9b03957

    CrossRef Google Scholar

    [209] Lim KTP, Liu HL, Liu YJ, Yang JKW. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun 10, 25 (2019). doi: 10.1038/s41467-018-07808-4

    CrossRef Google Scholar

    [210] Bao YJ, Yu Y, Xu HF, Guo C, Li JT et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl 8, 95 (2019). doi: 10.1038/s41377-019-0206-2

    CrossRef Google Scholar

    [211] Zhang F, Pu MB, Gao P, Jin JJ, Li X et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv Sci 7, 1903156 (2020). doi: 10.1002/advs.201903156

    CrossRef Google Scholar

    [212] Yang WH, Qu GY, Lai FX, Liu YL, Ji ZH et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater 33, 2101258 (2021). doi: 10.1002/adma.202101258

    CrossRef Google Scholar

    [213] Liu MZ, Zhu WQ, Huo PC, Feng L, Song MW et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl 10, 107 (2021). doi: 10.1038/s41377-021-00552-3

    CrossRef Google Scholar

    [214] Bao YJ, Wen L, Chen Q, Qiu CW, Li BJ. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv 7, eabh0365 (2021). doi: 10.1126/sciadv.abh0365

    CrossRef Google Scholar

    [215] Kim I, Jang J, Kim G, Lee J, Badloe T et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5

    CrossRef Google Scholar

    [216] Wan S, Wan CW, Dai CJ, Li Z, Tang J et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination. Adv Opt Mater 9, 2101547 (2021). doi: 10.1002/adom.202101547

    CrossRef Google Scholar

    [217] Wan CW, Li Z, Wan S, Dai CJ, Tang J et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Adv Funct Mater 32, 2110592 (2022). doi: 10.1002/adfm.202110592

    CrossRef Google Scholar

    [218] Wan S, Tang J, Wan CW, Li Z, Li ZY. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage. Adv Opt Mater 10, 2102820 (2022). doi: 10.1002/adom.202102820

    CrossRef Google Scholar

    [219] Luo XH, Hu YQ, Li X, Jiang YT, Wang YS et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv Opt Mater 8, 1902020 (2020). doi: 10.1002/adom.201902020

    CrossRef Google Scholar

    [220] Li JX, Chen YQ, Hu YQ, Duan HG, Liu N. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano 14, 7892–7898 (2020). doi: 10.1021/acsnano.0c01469

    CrossRef Google Scholar

    [221] Wang ZJ, Dai CJ, Zhang J, Wang DD, Shi YY et al. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv Funct Mater 32, 2110022 (2022). doi: 10.1002/adfm.202110022

    CrossRef Google Scholar

    [222] Dai CJ, Wan CW, Li Z, Wang ZJ, Yang R et al. Stepwise dual-Fabry-Pérot nanocavity for grayscale imaging encryption/concealment with holographic multiplexing. Adv Opt Mater 9, 2100950 (2021). doi: 10.1002/adom.202100950

    CrossRef Google Scholar

    [223] Shan X, Deng LG, Dai Q, Zhou Z, Liang CL et al. Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls. Opt Express 28, 26359–26369 (2020). doi: 10.1364/OE.402064

    CrossRef Google Scholar

    [224] Deng LG, Deng J, Guan ZQ, Tao J, Chen Y et al. Malus-metasurface-assisted polarization multiplexing. Light Sci Appl 9, 101 (2020). doi: 10.1038/s41377-020-0327-7

    CrossRef Google Scholar

    [225] Li ZL, Chen C, Guan ZQ, Tao J, Chang S et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev 14, 2000032 (2020). doi: 10.1002/lpor.202000032

    CrossRef Google Scholar

    [226] Dai Q, Guan ZQ, Chang S, Deng LG, Tao J et al. A single-celled tri-functional metasurface enabled with triple manipulations of light. Adv Funct Mater 30, 2003990 (2020). doi: 10.1002/adfm.202003990

    CrossRef Google Scholar

    [227] Ren RY, Li ZL, Deng LG, Shan X, Dai Q et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics 10, 2903–2914 (2021). doi: 10.1515/nanoph-2021-0259

    CrossRef Google Scholar

    [228] Chen KX, Xu CT, Zhou Z, Li ZL, Chen P et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591

    CrossRef Google Scholar

    [229] Zhou Z, Wang YQ, Chen C, Fu R, Guan ZQ et al. Multifold integration of printed and holographic meta-image displays enabled by dual-degeneracy. Small 18, 2106148 (2022). doi: 10.1002/smll.202106148

    CrossRef Google Scholar

    [230] Chen R, Zhou Y, Chen WJ, Chen RP, Iqbal N et al. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display. ACS Photonics 7, 1171–1177 (2020). doi: 10.1021/acsphotonics.9b01795

    CrossRef Google Scholar

    [231] Li JX, Wang YQ, Chen C, Fu R, Zhou Z et al. From lingering to rift: metasurface decoupling for near- and far-field functionalization. Adv Mater 33, 2007507 (2021). doi: 10.1002/adma.202007507

    CrossRef Google Scholar

    [232] Gao S, Zhou CY, Yue WJ, Li Y, Zhang CW et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-bit phase control. ACS Appl Mater Interfaces 13, 14497–14506 (2021). doi: 10.1021/acsami.1c00967

    CrossRef Google Scholar

    [233] Nemati A, Wang Q, Hong MH, Teng JH. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018).

    Google Scholar

    [234] Cui T, Bai BF, Sun HB. Tunable metasurfaces based on active materials. Adv Funct Mater 29, 1806692 (2019). doi: 10.1002/adfm.201806692

    CrossRef Google Scholar

    [235] He Q, Sun SL, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications. Research 2019, 1849272 (2019).

    Google Scholar

    [236] Badloe T, Lee J, Seong J, Rho J. Tunable metasurfaces: the path to fully active nanophotonics. Adv Photonics Res 2, 2000205 (2021). doi: 10.1002/adpr.202000205

    CrossRef Google Scholar

    [237] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [238] Li SQ, Xu XW, Veetil RM, Valuckas V, Paniagua-Domínguez R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019). doi: 10.1126/science.aaw6747

    CrossRef Google Scholar

    [239] Park J, Jeong BG, Kim SI, Lee D, Kim J et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol 16, 69–76 (2021). doi: 10.1038/s41565-020-00787-y

    CrossRef Google Scholar

    [240] Dong ZG, Jin L, Rezaei SD, Wang H, Chen Y et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci Adv 8, eabm4512 (2022). doi: 10.1126/sciadv.abm4512

    CrossRef Google Scholar

    [241] Tao J, You Q, Li ZL, Luo M, Liu ZC et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv Mater 34, 2106080 (2022). doi: 10.1002/adma.202106080

    CrossRef Google Scholar

    [242] Kim Y, Kim C, Lee M. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser Photonics Rev 16, 2100545 (2022). doi: 10.1002/lpor.202100545

    CrossRef Google Scholar

    [243] Dalloz N, Le VD, Hebert M, Eles B, Flores Figueroa MA et al. Anti-counterfeiting white light printed image multiplexing by fast nanosecond laser processing. Adv Mater 34, 2104054 (2022). doi: 10.1002/adma.202104054

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(20)

Tables(1)

Article Metrics

Article views(14416) PDF downloads(1522) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint