Citation: | Fu R, Chen KX, Li ZL, Yu SH, Zheng GX. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011 |
[1] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[2] | Chen XZ, Huang LL, Mühlenbernd H, Li GX, Bai BF et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 3, 1198 (2012). doi: 10.1038/ncomms2207 |
[3] | Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069 (2015). doi: 10.1038/ncomms8069 |
[4] | Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682 (2016). doi: 10.1038/ncomms13682 |
[5] | Chen K, Feng YJ, Monticone F, Zhao JM, Zhu B et al. A reconfigurable active huygens’ metalens. Adv Mater 29, 1606422 (2017). doi: 10.1002/adma.201606422 |
[6] | Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi ZJ et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 13, 220–226 (2018). doi: 10.1038/s41565-017-0034-6 |
[7] | Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). |
[8] | Tseng E, Colburn S, Whitehead J, Huang LC, Baek SH et al. Neural nano-optics for high-quality thin lens imaging. Nat Commun 12, 6493 (2021). doi: 10.1038/s41467-021-26443-0 |
[9] | Huang LL, Chen XZ, Mühlenbernd H, Zhang H, Chen SM et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). doi: 10.1038/ncomms3808 |
[10] | Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2 |
[11] | Ye WM, Zeuner F, Li X, Reineke B, He S et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930 |
[12] | Wan WW, Gao J, Yang XD. Metasurface holograms for holographic imaging. Adv Opt Mater 5, 1700541 (2017). doi: 10.1002/adom.201700541 |
[13] | Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x |
[14] | Yang YM, Wang WY, Moitra P, Kravchenko II, Briggs DP et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14, 1394–1399 (2014). doi: 10.1021/nl4044482 |
[15] | Shalaev MI, Sun JB, Tsukernik A, Pandey A, Nikolskiy K et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 15, 6261–6266 (2015). doi: 10.1021/acs.nanolett.5b02926 |
[16] | Mehmood MQ, Mei ST, Hussain S, Huang K, Siew SY et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater 28, 2533–2539 (2016). doi: 10.1002/adma.201504532 |
[17] | Ren HR, Briere G, Fang XY, Ni PN, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1 |
[18] | Bao YJ, Ni JC, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater 32, 1905659 (2020). doi: 10.1002/adma.201905659 |
[19] | Yue FY, Zhang CM, Zang XF, Wen DD, Gerardot BD et al. High-resolution grayscale image hidden in a laser beam. Light Sci Appl 7, 17129 (2018). doi: 10.1038/lsa.2017.129 |
[20] | Dai Q, Deng LG, Deng J, Tao J, Yang Y et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces. Opt Express 27, 27927–27935 (2019). doi: 10.1364/OE.27.027927 |
[21] | Zhao RZ, Huang LL, Tang CC, Li JJ, Li XW et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces. Adv Opt Mater 6, 1800490 (2018). doi: 10.1002/adom.201800490 |
[22] | Zhang YL, Cheng Y, Chen M, Xu RH, Yuan LB. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface. Appl Phys Lett 117, 021105 (2020). doi: 10.1063/5.0014987 |
[23] | Deng J, Li ZL, Li JX, Zhou Z, Gao F et al. Metasurface-assisted optical encryption carrying camouflaged information. Adv Opt Mater 10, 2200949 (2022). doi: 10.1002/adom.202200949 |
[24] | Xue JC, Zhou ZK, Lin LM, Guo C, Sun S et al. Perturbative countersurveillance metaoptics with compound nanosieves. Light Sci Appl 8, 101 (2019). doi: 10.1038/s41377-019-0212-4 |
[25] | Zhang CM, Dong FL, Intaravanne Y, Zang XF, Xu LH et al. Multichannel metasurfaces for anticounterfeiting. Phys Rev Appl 12, 034028 (2019). doi: 10.1103/PhysRevApplied.12.034028 |
[26] | Walter F, Li GX, Meier C, Zhang S, Zentgraf T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett 17, 3171–3175 (2017). doi: 10.1021/acs.nanolett.7b00676 |
[27] | Tang YT, Intaravanne Y, Deng JH, Li KF, Chen XZ et al. Nonlinear vectorial metasurface for optical encryption. Phys Rev Appl 12, 024028 (2019). doi: 10.1103/PhysRevApplied.12.024028 |
[28] | Fan YB, Wang YH, Zhang N, Sun WZ, Gao YS et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat Commun 10, 2085 (2019). doi: 10.1038/s41467-019-10090-7 |
[29] | Gu YH, Zhang L, Yang JKW, Yeo SP, Qiu CW. Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015). doi: 10.1039/C5NR00578G |
[30] | Keshavarz Hedayati M, Elbahri M. Review of metasurface plasmonic structural color. Plasmonics 12, 1463–1479 (2017). doi: 10.1007/s11468-016-0407-y |
[31] | Zhao YQ, Zhao Y, Hu S, Lv JT, Ying Y et al. Artificial structural color pixels: a review. Materials 10, 944 (2017). |
[32] | Lee T, Jang J, Jeong H, Rho J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg 5, 1 (2018). doi: 10.1186/s40580-017-0133-y |
[33] | Song MW, Wang D, Peana S, Choudhury S, Nyga P et al. Colors with plasmonic nanostructures: a full-spectrum review. Appl Phys Rev 6, 041308 (2019). doi: 10.1063/1.5110051 |
[34] | Yang B, Cheng H, Chen SQ, Tian JG. Structural colors in metasurfaces: principle, design and applications. Mater Chem Front 3, 750–761 (2019). doi: 10.1039/C9QM00043G |
[35] | Baek K, Kim Y, Mohd-Noor S, Hyun JK. Mie resonant structural colors. ACS Appl Mater Interfaces 12, 5300–5318 (2020). doi: 10.1021/acsami.9b16683 |
[36] | Daqiqeh Rezaei S, Dong ZG, You En Chan J, Trisno J, Ng RJH et al. Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021). |
[37] | Shaukat A, Noble F, Arif KM. Nanostructured color filters: a review of recent developments. Nanomaterials 10, 1554 (2020). |
[38] | Chen Q, Nan XH, Chen MJ, Pan DH, Yang XG et al. Nanophotonic color routing. Adv Mater 33, 2103815 (2021). doi: 10.1002/adma.202103815 |
[39] | Wu YK, Chen YM, Song QH, Xiao SM. Dynamic structural colors based on all-dielectric Mie resonators. Adv Opt Mater 9, 2002126 (2021). doi: 10.1002/adom.202002126 |
[40] | Xuan ZY, Li JY, Liu QQ, Yi F, Wang SW et al. Artificial structural colors and applications. Innovation 2, 100081 (2021). |
[41] | Butt H, Montelongo Y, Butler T, Rajesekharan R, Dai Q et al. Carbon nanotube based high resolution holograms. Adv Mater 24, OP331–OP336 (2012). |
[42] | Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk'yanchuk B et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059 |
[43] | Montelongo Y, Tenorio-Pearl JO, Milne WI, Wilkinson TD. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett 14, 294–298 (2014). doi: 10.1021/nl4039967 |
[44] | Xu ZT, Huang LL, Li XW, Tang CC, Wei QS et al. Quantitatively correlated amplitude holography based on photon sieves. Adv Opt Mater 8, 1901169 (2020). doi: 10.1002/adom.201901169 |
[45] | Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 13, 4269–4274 (2013). doi: 10.1021/nl402039y |
[46] | Min CJ, Liu JP, Lei T, Si GY, Xie ZW et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev 10, 978–985 (2016). doi: 10.1002/lpor.201600101 |
[47] | Xie ZW, Lei T, Si GY, Wang XY, Lin J et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158–2164 (2017). doi: 10.1021/acsphotonics.7b00710 |
[48] | Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807 |
[49] | Wang Q, Zhang XQ, Xu YH, Gu JQ, Li YF et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6, 32867 (2016). doi: 10.1038/srep32867 |
[50] | Jia SL, Wan X, Su P, Zhao YJ, Cui TJ. Broadband metasurface for independent control of reflected amplitude and phase. AIP Adv 6, 045024 (2016). doi: 10.1063/1.4948513 |
[51] | Song X, Huang LL, Tang CC, Li JJ, Li XW et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces. Adv Opt Mater 6, 1701181 (2018). doi: 10.1002/adom.201701181 |
[52] | Jang J, Badloe T, Yang Y, Lee T, Mun J et al. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano 14, 15317–15326 (2020). doi: 10.1021/acsnano.0c05656 |
[53] | Lee T, Kim J, Koirala I, Yang Y, Badloe T et al. Nearly perfect transmissive subtractive coloration through the spectral amplification of Mie scattering and lattice resonance. ACS Appl Mater Interfaces 13, 26299–26307 (2021). doi: 10.1021/acsami.1c03427 |
[54] | Kim SJ, Choi HK, Lee H, Hong SH. Solution-processable nanocrystal-based broadband Fabry–Perot absorber for reflective vivid color generation. ACS Appl Mater Interfaces 11, 7280–7287 (2019). doi: 10.1021/acsami.8b19157 |
[55] | Yang ZM, Ji CG, Liu D, Guo J. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers. Adv Opt Mater 7, 1900739 (2019). doi: 10.1002/adom.201900739 |
[56] | Hu YQ, Luo XH, Chen YQ, Liu Q, Li X et al. 3D-Integrated metasurfaces for full-colour holography. Light Sci Appl 8, 86 (2019). doi: 10.1038/s41377-019-0198-y |
[57] | Zang XF, Dong FL, Yue FY, Zhang CM, Xu LH et al. Polarization encoded color image embedded in a dielectric metasurface. Adv Mater 30, 1707499 (2018). doi: 10.1002/adma.201707499 |
[58] | Cao Y, Tang LL, Li JQ, Wang J, Dong ZG. Dual-wavelength complementary grayscale imaging by an ultrathin metasurface. Opt Lett 45, 5181–5184 (2020). doi: 10.1364/OL.403229 |
[59] | Li JX, Li ZL, Deng LG, Dai Q, Fu R et al. Dichroic polarizing metasurfaces for color control and pseudo-color encoding. IEEE Photonic Technol Lett 33, 77–80 (2021). doi: 10.1109/LPT.2020.3045298 |
[60] | Wang XY, Dai CJ, Yao XL, Qiao T, Chen ML et al. Asymmetric angular dependence for multicolor display based on plasmonic inclined-nanopillar array. Nanoscale 13, 7273–7278 (2021). doi: 10.1039/D1NR00473E |
[61] | Tang J, Li Z, Wan S, Wang ZJ, Wan CW et al. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces. ACS Appl Mater Interfaces 13, 38623–38628 (2021). doi: 10.1021/acsami.1c10881 |
[62] | Deng J, Yang Y, Tao J, Deng LG, Liu DQ et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting. ACS Nano 13, 9237–9246 (2019). doi: 10.1021/acsnano.9b03738 |
[63] | Deng J, Gao F, Yuan PC, Li Y, Yan B. Bidirectional nanoprinting based on bilayer metasurfaces. Opt Express 30, 377–388 (2022). doi: 10.1364/OE.448136 |
[64] | Wang L, Li T, Guo RY, Xia W, Xu XG et al. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode. Sci Rep 3, 2603 (2013). doi: 10.1038/srep02603 |
[65] | Bao YJ, Yu Y, Xu HF, Lin QL, Wang Y et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv Funct Mater 28, 1805306 (2018). doi: 10.1002/adfm.201805306 |
[66] | Chen Y, Gao J, Yang XD. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures. Adv Opt Mater 7, 1801467 (2019). doi: 10.1002/adom.201801467 |
[67] | Li ZC, Liu WW, Cheng H, Choi DY, Chen SQ et al. Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces. Adv Opt Mater 7, 1900260 (2019). doi: doi.org/10.1002/adom.201900260 |
[68] | Hu S, Du S, Li JJ, Gu CZ. Multidimensional image and beam splitter based on hyperbolic metamaterials. Nano Lett 21, 1792–1799 (2021). doi: 10.1021/acs.nanolett.0c04795 |
[69] | Chen Y, Yang XD, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl 8, 45 (2019). doi: 10.1038/s41377-019-0156-8 |
[70] | Deng J, Deng LG, Guan ZQ, Tao J, Li GF et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Lett 20, 1830–1838 (2020). doi: 10.1021/acs.nanolett.9b05053 |
[71] | Dai Q, Zhou N, Deng LG, Deng J, Li ZL et al. Dual-channel binary gray-image display enabled with Malus-assisted metasurfaces. Phys Rev Appl 14, 034002 (2020). |
[72] | Dai Q, Li ZL, Deng LG, Zhou N, Deng J et al. Single-size nanostructured metasurface for dual-channel vortex beam generation. Opt Lett 45, 3773–3776 (2020). doi: 10.1364/OL.398286 |
[73] | Li ZL, Ren RY, Deng J, Deng LG, Li GF et al. Non-orthogonal-polarization multiplexed metasurfaces for tri-channel gray-imaging. Opt Express 29, 134–144 (2021). doi: 10.1364/OE.415403 |
[74] | Li ZL, Deng LG, Deng J, He ZX, Tao J et al. Metasurface-enabled three-in-one nanoprints by multifunctional manipulations of light. iScience 24, 103510 (2021). doi: 10.1016/j.isci.2021.103510 |
[75] | Deng ZL, Tu QA, Wang YJ, Wang ZQ, Shi T et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater 33, 2103472 (2021). doi: 10.1002/adma.202103472 |
[76] | Zheng PX, Dai Q, Li ZL, Ye ZY, Xiong J et al. Metasurface-based key for computational imaging encryption. Sci Adv 7, eabg0363 (2021). doi: 10.1126/sciadv.abg0363 |
[77] | Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). |
[78] | Fan QB, Liu MZ, Zhang C, Zhu WQ, Wang YL et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys Rev Lett 125, 267402 (2020). doi: 10.1103/PhysRevLett.125.267402 |
[79] | Li ZY, Butun S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015). doi: 10.1021/ph500410u |
[80] | Yang ZM, Zhou YM, Chen YQ, Wang YS, Dai P et al. Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber. Adv Opt Mater 4, 1196–1202 (2016). doi: 10.1002/adom.201600110 |
[81] | ElKabbash M, Iram S, Letsou T, Hinczewski M, Strangi G. Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates. Adv Opt Mater 6, 1800672 (2018). doi: 10.1002/adom.201800672 |
[82] | Ghobadi A, Hajian H, Soydan MC, Butun B, Ozbay E. Lithography-free planar band-pass reflective color filter using a series connection of cavities. Sci Rep 9, 290 (2019). doi: 10.1038/s41598-018-36540-8 |
[83] | Pan H, Wen ZJ, Tang ZH, Xu GY, Pan XH et al. Wide gamut, angle-insensitive structural colors based on deep-subwavelength bilayer media. Nanophotonics 9, 3385–3392 (2020). doi: 10.1515/nanoph-2020-0106 |
[84] | Kats MA, Blanchard R, Genevet P, Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat Mater 12, 20–24 (2013). doi: 10.1038/nmat3443 |
[85] | Ravishankar AP, van Tilburg MAJ, Vennberg F, Visser D, Anand S. Color generation from self-organized metalo-dielectric nanopillar arrays. Nanophotonics 8, 1771–1781 (2019). doi: 10.1515/nanoph-2019-0171 |
[86] | Wang YX, Ren F, Ding T. Generation of high quality, uniform and stable plasmonic colorants via laser direct writing. Adv Opt Mater 8, 2000164 (2020). doi: 10.1002/adom.202000164 |
[87] | Wu B, Liu ZQ, Liu XS, Liu GQ, Tang P et al. Large-scale reflective optical Janus color materials. Nanotechnology 31, 225301 (2020). doi: 10.1088/1361-6528/ab7649 |
[88] | Wang LC, Ng RJH, Dinachali SS, Jalali M, Yu Y et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016). doi: 10.1021/acsphotonics.5b00725 |
[89] | James TD, Mulvaney P, Roberts A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett 16, 3817–3823 (2016). doi: 10.1021/acs.nanolett.6b01250 |
[90] | Jalali M, Yu Y, Xu KC, Ng RJH, Dong ZG et al. Stacking of colors in exfoliable plasmonic superlattices. Nanoscale 8, 18228–18234 (2016). doi: 10.1039/C6NR03466G |
[91] | Xu T, Wu YK, Luo XG, Guo LJ. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1, 59 (2010). doi: 10.1038/ncomms1058 |
[92] | Cai WS, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV et al. Metamagnetics with rainbow colors. Opt Express 15, 3333–3341 (2007). doi: 10.1364/OE.15.003333 |
[93] | Duempelmann L, Casari D, Luu-Dinh A, Gallinet B, Novotny L. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383–12391 (2015). doi: 10.1021/acsnano.5b05710 |
[94] | Gao BF, Ren MX, Wu W, Hu H, Cai W et al. Lithium niobate metasurfaces. Laser Photonics Rev 13, 1800312 (2019). doi: 10.1002/lpor.201800312 |
[95] | Uddin MJ, Magnusson R. Highly efficient color filter array using resonant Si3N4 gratings. Opt Express 21, 12495–12506 (2013). doi: 10.1364/OE.21.012495 |
[96] | Kaplan A, Xu T, Guo LJ. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99, 143111 (2011). doi: 10.1063/1.3647633 |
[97] | Wang CT, Hou HH, Chang PC, Li CC, Jau HC et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating. Opt Express 24, 22892–22898 (2016). doi: 10.1364/OE.24.022892 |
[98] | Song MW, Li X, Pu MB, Guo YH, Liu KP et al. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics 7, 323–331 (2018). doi: 10.1515/nanoph-2017-0062 |
[99] | Wang JX, Fan QB, Zhang S, Zhang ZJ, Zhang H et al. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency. Appl Phys Lett 110, 031110 (2017). doi: 10.1063/1.4974455 |
[100] | Zeng BB, Gao YK, Bartoli FJ. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci Rep 3, 2840 (2013). doi: 10.1038/srep02840 |
[101] | Duempelmann L, Luu-Dinh A, Gallinet B, Novotny L. Four-fold color filter based on plasmonic phase retarder. ACS Photonics 3, 190–196 (2016). doi: 10.1021/acsphotonics.5b00604 |
[102] | Qian LY, Zhang DW, Tao CX, Hong RJ, Zhuang SL. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching. Opt Lett 41, 982–985 (2016). doi: 10.1364/OL.41.000982 |
[103] | Uddin MJ, Khaleque T, Magnusson R. Guided-mode resonant polarization-controlled tunable color filters. Opt Express 22, 12307–12315 (2014). doi: 10.1364/OE.22.012307 |
[104] | Wang Q, Zhang DW, Xu BL, Huang YS, Tao CX et al. Colored image produced with guided-mode resonance filter array. Opt Lett 36, 4698–4700 (2011). doi: 10.1364/OL.36.004698 |
[105] | Lochbihler H. Reflective colored image based on metal-dielectric-metal-coated gratings. Opt Lett 38, 1398–1400 (2013). doi: 10.1364/OL.38.001398 |
[106] | Shaltout AM, Kim J, Boltasseva A, Shalaev VM, Kildishev AV. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat Commun 9, 2673 (2018). doi: 10.1038/s41467-018-05034-6 |
[107] | Nguyen-Huu N, Lo YL, Chen YB. Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating. Opt Commun 284, 2473–2479 (2011). doi: 10.1016/j.optcom.2011.01.035 |
[108] | Lochbihler H. Colored images generated by metallic sub-wavelength gratings. Opt Express 17, 12189–12196 (2009). doi: 10.1364/OE.17.012189 |
[109] | Lee HS, Yoon YT, Lee SS, Kim SH, Lee KD. Color filter based on a subwavelength patterned metal grating. Opt Express 15, 15457–15463 (2007). doi: 10.1364/OE.15.015457 |
[110] | Chen Q, Cumming DRS. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18, 14256–14062 (2010). |
[111] | Yokogawa S, Burgos SP, Atwater HA. Plasmonic color filters for CMOS image sensor applications. Nano Lett 12, 4349–4354 (2012). doi: 10.1021/nl302110z |
[112] | Si GY, Zhao YH, Liu H, Teo S, Zhang MS et al. Annular aperture array based color filter. Appl Phys Lett 99, 033105 (2011). doi: 10.1063/1.3608147 |
[113] | Li W, Guler U, Kinsey N, Naik GV, Boltasseva A et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv Mater 26, 7959–7965 (2014). doi: 10.1002/adma.201401874 |
[114] | Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58 |
[115] | Xue JC, Zhou ZK, Wei ZQ, Su RB, Lai J et al. Scalable, full-colour and controllable chromotropic plasmonic printing. Nat Commun 6, 8906 (2015). doi: 10.1038/ncomms9906 |
[116] | Cheng F, Gao J, Stan L, Rosenmann D, Czaplewaki D et al. Aluminum plasmonic metamaterials for structural color printing. Opt Express 23, 14552–14560 (2015). doi: 10.1364/OE.23.014552 |
[117] | Roberts AS, Pors A, Albrektsen O, Bozhevolnyi SI. Subwavelength plasmonic color printing protected for ambient use. Nano Lett 14, 783–787 (2014). doi: 10.1021/nl404129n |
[118] | Shah YD, Connolly PWR, Grant JP, Hao DN, Accarino C et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters. Optica 7, 632–639 (2020). doi: 10.1364/OPTICA.389905 |
[119] | Si GY, Zhao YH, Lv JT, Lu MQ, Wang FW et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013). doi: 10.1039/c3nr01419c |
[120] | Burgos S, Yokogawa S, Atwater HA. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano 7, 10038–10047 (2013). doi: 10.1021/nn403991d |
[121] | Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86, 1114–1117 (2001). doi: 10.1103/PhysRevLett.86.1114 |
[122] | Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570 |
[123] | Genet C, Ebbesen T. Light in tiny holes. Nature 445, 39–46 (2007). doi: 10.1038/nature05350 |
[124] | Sun LB, Hu XL, Xu Y, Wu QJ, Shi B et al. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films. Opt Commun 333, 16–21 (2014). doi: 10.1016/j.optcom.2014.06.072 |
[125] | Cheng F, Gao J, Luk TS, Yang XD. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci Rep 5, 11045 (2015). doi: 10.1038/srep11045 |
[126] | Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011). doi: 10.1126/science.1198258 |
[127] | Inoue D, Miura A, Nomura T, Fujikawa H, Sato K et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl Phys Lett 98, 093113 (2011). doi: 10.1063/1.3560467 |
[128] | Li ZB, Clark AW, Cooper JM. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016). doi: 10.1021/acsnano.5b05411 |
[129] | Falcone F, Lopetegi T, Laso MAG, Baena JD, Bonache J et al. Babinet principle applied to the design of metasurfaces and metamaterials. Phys Rev Lett 93, 197401 (2004). doi: 10.1103/PhysRevLett.93.197401 |
[130] | Ellenbogen T, Seo K, Crozier KB. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12, 1026–1031 (2012). doi: 10.1021/nl204257g |
[131] | Shrestha VR, Park CS, Lee SS. Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response. Opt Express 22, 3691–3704 (2014). doi: 10.1364/OE.22.003691 |
[132] | Goh XM, Ng RJH, Wang SH, Tan SJ, Yang JKW. Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photonics 3, 1000–1009 (2016). doi: 10.1021/acsphotonics.6b00099 |
[133] | Miyata M, Hatada H, Takahara J. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett 16, 3166–3172 (2016). doi: 10.1021/acs.nanolett.6b00500 |
[134] | Rezaei SD, Ng RJH, Dong ZG, Ho J, Koay EHH et al. Wide-gamut plasmonic color palettes with constant subwavelength resolution. ACS Nano 13, 3580–3588 (2019). doi: 10.1021/acsnano.9b00139 |
[135] | Tan SJ, Zhang L, Zhu D, Goh XM, Wang YM et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14, 4023–4029 (2014). doi: 10.1021/nl501460x |
[136] | King NS, Liu LF, Yang X, Cerjan B, Everitt HO et al. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9, 10628–10636 (2015). doi: 10.1021/acsnano.5b04864 |
[137] | Song HY, Ma YG, Han YB, Shen WD, Zhang WY et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments. Adv Theory Simul 4, 2000299 (2021). doi: 10.1002/adts.202000299 |
[138] | Shrestha VR, Lee SS, Kim ES, Choi DY. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett 14, 6672–6678 (2014). doi: 10.1021/nl503353z |
[139] | Chow TH, Lai YH, Lu WZ, Li NN, Wang JF. Substrate-enabled plasmonic color switching with colloidal gold nanorings. ACS Materials Lett 2, 744–753 (2020). doi: 10.1021/acsmaterialslett.0c00182 |
[140] | Cao LY, Fan PY, Barnard ES, Brown AM, Brongersma ML. Tuning the color of silicon nanostructures. Nano Lett 10, 2649–2654 (2010). doi: 10.1021/nl1013794 |
[141] | Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 12, 3749–3755 (2012). doi: 10.1021/nl301594s |
[142] | Luk’yanchuk BS, Voshchinnikov NV, Paniagua-Domínguez R, Kuznetsov AI. Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photonics 2, 993–999 (2015). doi: 10.1021/acsphotonics.5b00261 |
[143] | Yang SC, Richter K, Fischer WJ. Multicolor generation using silicon nanodisk absorber. Appl Phys Lett 106, 081112 (2015). doi: 10.1063/1.4913847 |
[144] | Jang J, Jeong H, Hu GW, Qiu CW, Nam KT et al. Kerker-conditioned dynamic cryptographic nanoprints. Adv Opt Mater 7, 1801070 (2019). |
[145] | Ee HS, Kang JH, Brongersma ML, Seo MK. Shape-dependent light scattering properties of subwavelength silicon nanoblocks. Nano Lett 15, 1759–1765 (2015). doi: 10.1021/nl504442v |
[146] | Proust J, Bedu F, Gallas B, Ozerov I, Bonod N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016). doi: 10.1021/acsnano.6b03207 |
[147] | Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472 |
[148] | Sun S, Zhou ZX, Zhang C, Gao YS, Duan ZH et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445–4452 (2017). doi: 10.1021/acsnano.7b00415 |
[149] | Zhu XL, Yan W, Levy U, Mortensen NA, Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv 3, e1602487 (2017). doi: 10.1126/sciadv.1602487 |
[150] | Dong ZG, Ho J, Yu YF, Fu YH, Paniagua-Dominguez R et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett 17, 7620–7628 (2017). doi: 10.1021/acs.nanolett.7b03613 |
[151] | Nagasaki Y, Suzuki M, Takahara J. All-dielectric dual-color pixel with subwavelength resolution. Nano Lett 17, 7500–7506 (2017). doi: 10.1021/acs.nanolett.7b03421 |
[152] | Vashistha V, Vaidya G, Hegde RS, Serebryannikov AE, Bonod N et al. All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut. ACS Photonics 4, 1076–1082 (2017). doi: 10.1021/acsphotonics.6b00853 |
[153] | Park CS, Shrestha VR, Yue WJ, Gao S, Lee SS et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci Rep 7, 2556 (2017). doi: 10.1038/s41598-017-02911-w |
[154] | Li SQ, Song WZ, Ye M, Crozier KB. Generalized method of images and reflective color generation from ultrathin multipole resonators. ACS Photonics 5, 2374–2383 (2018). doi: 10.1021/acsphotonics.8b00161 |
[155] | Nagasaki Y, Suzuki M, Hotta I, Takahara J. Control of Si-based all-dielectric printing color through oxidation. ACS Photonics 5, 1460–1466 (2018). doi: 10.1021/acsphotonics.7b01467 |
[156] | Xiang J, Li JT, Zhou ZP, Jiang S, Chen JD et al. Manipulating the orientations of the electric and magnetic dipoles induced in silicon nanoparticles for multicolor display. Laser Photonics Rev 12, 1800032 (2018). doi: 10.1002/lpor.201800032 |
[157] | Berzinš J, Fasold S, Pertsch T, Bäumer SMB, Setzpfandt F. Submicrometer nanostructure-based RGB filters for CMOS image sensors. ACS Photonics 6, 1018–1025 (2019). doi: 10.1021/acsphotonics.9b00021 |
[158] | Sugimoto H, Okazaki T, Fujii M. Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles. Adv Opt Mater 8, 2000033 (2020). doi: 10.1002/adom.202000033 |
[159] | Todisco F, Mlureanu R, Wolff C, Gonçalves PAD, Roberts AS et al. Magnetic and electric Mie-exciton polaritons in silicon nanodisks. Nanophotonics 9, 803–814 (2020). doi: 10.1515/nanoph-2019-0444 |
[160] | Yang WH, Xiao SM, Song QH, Liu YL, Wu YK et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0 |
[161] | Shamkhi HK, Baryshnikova KV, Sayanskiy A, Kapitanova P, Terekhov PD et al. Transverse scattering and generalized Kerker effects in all-dielectric Mie-resonant metaoptics. Phys Rev Lett 122, 193905 (2019). doi: 10.1103/PhysRevLett.122.193905 |
[162] | Wood T, Naffouti M, Berthelot J, David T, Claude JB et al. All-dielectric color filters using SiGe-based Mie resonator arrays. ACS Photonics 4, 873–883 (2017). doi: 10.1021/acsphotonics.6b00944 |
[163] | Yang B, Liu WW, Li ZC, Cheng H, Chen SQ et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels. Adv Opt Mater 6, 1701009 (2018). doi: 10.1002/adom.201701009 |
[164] | Koirala I, Lee SS, Choi DY. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars. Opt Express 26, 18320–18330 (2018). doi: 10.1364/OE.26.018320 |
[165] | Huo PC, Song MW, Zhu WQ, Zhang C, Chen L et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171–1172 (2020). doi: 10.1364/OPTICA.403092 |
[166] | Flauraud V, Reyes M, Paniagua-Domínguez R, Kuznetsov AI, Brugger J. Silicon nanostructures for bright field full color prints. ACS Photonics 4, 1913–1919 (2017). doi: 10.1021/acsphotonics.6b01021 |
[167] | Yang JH, Babicheva VE, Yu MW, Lu TC, Lin TR et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020). doi: 10.1021/acsnano.0c00185 |
[168] | Kumar K, Duan HG, Hegde RS, Koh SCW, Wei JN et al. Printing colour at the optical diffraction limit. Nat Nanotech 7, 557–561 (2012). doi: 10.1038/nnano.2012.128 |
[169] | Feng R, Wang H, Cao YY, Zhang YX, Ng RJH et al. A modular design of continuously tunable full color plasmonic pixels with broken rotational symmetry. Adv Funct Mater 32, 2108437 (2022). doi: 10.1002/adfm.202108437 |
[170] | Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14, 4499–4504 (2014). doi: 10.1021/nl5014986 |
[171] | Goh XM, Zheng YH, Tan SJ, Zhang L, Kumar K et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5, 5361 (2014). doi: 10.1038/ncomms6361 |
[172] | Yue WJ, Gao S, Lee SS, Kim ES, Choi DY. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci Rep 6, 29756 (2016). doi: 10.1038/srep29756 |
[173] | Højlund-Nielsen E, Clausen J, Mäkela T, Thamdrup LH, Zalkovskij M et al. Plasmonic colors: toward mass production of metasurfaces. Adv Mater Technol 1, 1600054 (2016). doi: 10.1002/admt.201600054 |
[174] | Wang H, Wang XL, Yan C, Zhao H, Zhang JW et al. Full color generation using silver tandem nanodisks. ACS Nano 11, 4419–4427 (2017). doi: 10.1021/acsnano.6b08465 |
[175] | Yang ZM, Chen YQ, Zhou YM, Wang YS, Dai P et al. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities. Adv Opt Mater 5, 1700029 (2017). doi: 10.1002/adom.201700029 |
[176] | Yue WJ, Gao S, Lee SS, Kim ES, Choi DY. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photonics Rev 11, 1600285 (2017). doi: 10.1002/lpor.201600285 |
[177] | Nagasaki Y, Hotta I, Suzuki M, Takahara J. Metal-masked Mie-resonant full-color printing for achieving free-space resolution limit. ACS Photonics 5, 3849–3855 (2018). doi: 10.1021/acsphotonics.8b00895 |
[178] | Yang B, Liu WW, Li ZC, Cheng H, Choi DY et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett 19, 4221–4228 (2019). doi: 10.1021/acs.nanolett.8b04923 |
[179] | Xiong KL, Emilsson G, Maziz A, Yang XX, Shao L et al. Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color. Adv Mater 28, 9956–9960 (2016). doi: 10.1002/adma.201603358 |
[180] | Wen Y, Zhou QW, Su XL, Hu DH, Xu M et al. Wide-range time-dependent color-tunable light-response afterglow materials via absorption compensation for advanced information encryption. ACS Appl Mater Interfaces 14, 11681–11689 (2022). doi: 10.1021/acsami.2c00683 |
[181] | Eaves-Rathert J, Kovalik E, Ugwu CF, Rogers BR, Pint CL et al. Dynamic color tuning with electrochemically actuated TiO2 metasurfaces. Nano Lett 22, 1626–1632 (2022). doi: 10.1021/acs.nanolett.1c04613 |
[182] | Moriwaki H, Kamine T, Kawabe Y, Okada Y. Structural color on pencil lead formed by plasma etching. Adv Opt Mater 10, 2102127 (2022). doi: 10.1002/adom.202102127 |
[183] | Mirshafieyan SS, Gregory DA. Electrically tunable perfect light absorbers as color filters and modulators. Sci Rep 8, 2635 (2018). doi: 10.1038/s41598-018-20879-z |
[184] | Greybush NJ, Charipar K, Geldmeier JA, Bauman SJ, Johns P et al. Dynamic plasmonic pixels. ACS Nano 13, 3875–3883 (2019). doi: 10.1021/acsnano.9b00905 |
[185] | Li N, Wei PP, Yu LN, Ji JY, Zhao JP et al. Dynamically switchable multicolor electrochromic films. Small 15, 1804974 (2019). doi: 10.1002/smll.201804974 |
[186] | Yan ZY, Zhang Z, Wu WK, Ji XL, Sun S et al. Floating solid-state thin films with dynamic structural colour. Nat Nanotech 16, 795–801 (2021). doi: 10.1038/s41565-021-00883-7 |
[187] | Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7, 10479 (2016). doi: 10.1038/ncomms10479 |
[188] | Liu HL, Xu JH, Wang H, Liu YJ, Ruan QF et al. Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security. Adv Mater 31, 1807900 (2019). doi: 10.1002/adma.201807900 |
[189] | Chen SZ, Rossi S, Shanker R, Cincotti G, Gamage S et al. Tunable structural color images by UV-patterned conducting polymer nanofilms on metal surfaces. Adv Mater 33, 2102451 (2021). doi: 10.1002/adma.202102451 |
[190] | Kim H, Ge JP, Kim J, Choi SE, Lee H et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3, 534–540 (2009). doi: 10.1038/nphoton.2009.141 |
[191] | Zhang YL, Wang Y, Wang H, Yu Y, Zhong QF et al. Super-elastic magnetic structural color hydrogels. Small 15, 1902198 (2019). doi: 10.1002/smll.201902198 |
[192] | Olson J, Manjavacas A, Basu T, Huang D, Schlather AE et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10, 1108–1117 (2016). doi: 10.1021/acsnano.5b06415 |
[193] | Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun 6, 7337 (2015). doi: 10.1038/ncomms8337 |
[194] | Lee Y, Park MK, Kim S, Shin JH, Moon C et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics 4, 1954–1966 (2017). doi: 10.1021/acsphotonics.7b00249 |
[195] | Sharma M, Hendler N, Ellenbogen T. Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform. Adv Opt Mater 8, 1901182 (2020). doi: 10.1002/adom.201901182 |
[196] | Li D, Yang J, Fang MM, Tang BZ, Li Z. Stimulus-responsive room temperature phosphorescence materials with full-color tenability from pure organic amorphous polymers. Adv Sci 8, eabl8392 (2022). doi: 10.1126/sciadv.abl8392 |
[197] | Shu FZ, Yu FF, Peng RW, Zhu YY, Xiong B et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater 6, 1700939 (2018). doi: 10.1002/adom.201700939 |
[198] | Duan XY, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun 8, 14606 (2017). doi: 10.1038/ncomms14606 |
[199] | Chen YQ, Duan XY, Matuschek M, Zhou YM, Neubrech F et al. Dynamic color displays using stepwise cavity resonators. Nano Lett 17, 5555–5560 (2017). doi: 10.1021/acs.nanolett.7b02336 |
[200] | Song SC, Ma XL, Pu MB, Li X, Liu KP et al. Actively tunable structural color rendering with tensile substrate. Adv Opt Mater 5, 1600829 (2017). doi: 10.1002/adom.201600829 |
[201] | Tseng ML, Yang J, Semmlinger M, Zhang C, Nordlander P et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett 17, 6034–6039 (2017). doi: 10.1021/acs.nanolett.7b02350 |
[202] | Ruan QF, Zhang W, Wang H, Chan JYE, Wang HT et al. Reconfiguring colors of single relief structures by directional stretching. Adv Mater 34, 2108128 (2022). doi: 10.1002/adma.202108128 |
[203] | Yoon G, Lee D, Nam KT, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano 12, 6421–6428 (2018). doi: 10.1021/acsnano.8b01344 |
[204] | Zhang YN, Shi L, Hu DJ, Chen SR, Xie SY et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz 4, 601–609 (2019). doi: 10.1039/C9NH00003H |
[205] | Liang CL, Deng LG, Dai Q, Li ZL, Zheng GX et al. Single-celled multifunctional metasurfaces merging structural-color nanoprinting and holography. Opt Express 29, 10737–10748 (2021). doi: 10.1364/OE.420831 |
[206] | Overvig AC, Shrestha S, Malek SC, Lu M, Stein A et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7 |
[207] | Wen DD, Cadusch JJ, Meng JJ, Crozier KB. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv Funct Mater 30, 1906415 (2020). doi: 10.1002/adfm.201906415 |
[208] | Wei QS, Sain B, Wang YT, Reineke B, Li XW et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett 19, 8964–8971 (2019). doi: 10.1021/acs.nanolett.9b03957 |
[209] | Lim KTP, Liu HL, Liu YJ, Yang JKW. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun 10, 25 (2019). doi: 10.1038/s41467-018-07808-4 |
[210] | Bao YJ, Yu Y, Xu HF, Guo C, Li JT et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl 8, 95 (2019). doi: 10.1038/s41377-019-0206-2 |
[211] | Zhang F, Pu MB, Gao P, Jin JJ, Li X et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces. Adv Sci 7, 1903156 (2020). doi: 10.1002/advs.201903156 |
[212] | Yang WH, Qu GY, Lai FX, Liu YL, Ji ZH et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater 33, 2101258 (2021). doi: 10.1002/adma.202101258 |
[213] | Liu MZ, Zhu WQ, Huo PC, Feng L, Song MW et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl 10, 107 (2021). doi: 10.1038/s41377-021-00552-3 |
[214] | Bao YJ, Wen L, Chen Q, Qiu CW, Li BJ. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv 7, eabh0365 (2021). doi: 10.1126/sciadv.abh0365 |
[215] | Kim I, Jang J, Kim G, Lee J, Badloe T et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5 |
[216] | Wan S, Wan CW, Dai CJ, Li Z, Tang J et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination. Adv Opt Mater 9, 2101547 (2021). doi: 10.1002/adom.202101547 |
[217] | Wan CW, Li Z, Wan S, Dai CJ, Tang J et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display. Adv Funct Mater 32, 2110592 (2022). doi: 10.1002/adfm.202110592 |
[218] | Wan S, Tang J, Wan CW, Li Z, Li ZY. Angular-encrypted quad-fold display of nanoprinting and meta-holography for optical information storage. Adv Opt Mater 10, 2102820 (2022). doi: 10.1002/adom.202102820 |
[219] | Luo XH, Hu YQ, Li X, Jiang YT, Wang YS et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv Opt Mater 8, 1902020 (2020). doi: 10.1002/adom.201902020 |
[220] | Li JX, Chen YQ, Hu YQ, Duan HG, Liu N. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano 14, 7892–7898 (2020). doi: 10.1021/acsnano.0c01469 |
[221] | Wang ZJ, Dai CJ, Zhang J, Wang DD, Shi YY et al. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv Funct Mater 32, 2110022 (2022). doi: 10.1002/adfm.202110022 |
[222] | Dai CJ, Wan CW, Li Z, Wang ZJ, Yang R et al. Stepwise dual-Fabry-Pérot nanocavity for grayscale imaging encryption/concealment with holographic multiplexing. Adv Opt Mater 9, 2100950 (2021). doi: 10.1002/adom.202100950 |
[223] | Shan X, Deng LG, Dai Q, Zhou Z, Liang CL et al. Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls. Opt Express 28, 26359–26369 (2020). doi: 10.1364/OE.402064 |
[224] | Deng LG, Deng J, Guan ZQ, Tao J, Chen Y et al. Malus-metasurface-assisted polarization multiplexing. Light Sci Appl 9, 101 (2020). doi: 10.1038/s41377-020-0327-7 |
[225] | Li ZL, Chen C, Guan ZQ, Tao J, Chang S et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev 14, 2000032 (2020). doi: 10.1002/lpor.202000032 |
[226] | Dai Q, Guan ZQ, Chang S, Deng LG, Tao J et al. A single-celled tri-functional metasurface enabled with triple manipulations of light. Adv Funct Mater 30, 2003990 (2020). doi: 10.1002/adfm.202003990 |
[227] | Ren RY, Li ZL, Deng LG, Shan X, Dai Q et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics 10, 2903–2914 (2021). doi: 10.1515/nanoph-2021-0259 |
[228] | Chen KX, Xu CT, Zhou Z, Li ZL, Chen P et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591 |
[229] | Zhou Z, Wang YQ, Chen C, Fu R, Guan ZQ et al. Multifold integration of printed and holographic meta-image displays enabled by dual-degeneracy. Small 18, 2106148 (2022). doi: 10.1002/smll.202106148 |
[230] | Chen R, Zhou Y, Chen WJ, Chen RP, Iqbal N et al. Multifunctional metasurface: coplanar embedded design for metalens and nanoprinted display. ACS Photonics 7, 1171–1177 (2020). doi: 10.1021/acsphotonics.9b01795 |
[231] | Li JX, Wang YQ, Chen C, Fu R, Zhou Z et al. From lingering to rift: metasurface decoupling for near- and far-field functionalization. Adv Mater 33, 2007507 (2021). doi: 10.1002/adma.202007507 |
[232] | Gao S, Zhou CY, Yue WJ, Li Y, Zhang CW et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-bit phase control. ACS Appl Mater Interfaces 13, 14497–14506 (2021). doi: 10.1021/acsami.1c00967 |
[233] | Nemati A, Wang Q, Hong MH, Teng JH. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). |
[234] | Cui T, Bai BF, Sun HB. Tunable metasurfaces based on active materials. Adv Funct Mater 29, 1806692 (2019). doi: 10.1002/adfm.201806692 |
[235] | He Q, Sun SL, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications. Research 2019, 1849272 (2019). |
[236] | Badloe T, Lee J, Seong J, Rho J. Tunable metasurfaces: the path to fully active nanophotonics. Adv Photonics Res 2, 2000205 (2021). doi: 10.1002/adpr.202000205 |
[237] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[238] | Li SQ, Xu XW, Veetil RM, Valuckas V, Paniagua-Domínguez R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019). doi: 10.1126/science.aaw6747 |
[239] | Park J, Jeong BG, Kim SI, Lee D, Kim J et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol 16, 69–76 (2021). doi: 10.1038/s41565-020-00787-y |
[240] | Dong ZG, Jin L, Rezaei SD, Wang H, Chen Y et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci Adv 8, eabm4512 (2022). doi: 10.1126/sciadv.abm4512 |
[241] | Tao J, You Q, Li ZL, Luo M, Liu ZC et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv Mater 34, 2106080 (2022). doi: 10.1002/adma.202106080 |
[242] | Kim Y, Kim C, Lee M. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser Photonics Rev 16, 2100545 (2022). doi: 10.1002/lpor.202100545 |
[243] | Dalloz N, Le VD, Hebert M, Eles B, Flores Figueroa MA et al. Anti-counterfeiting white light printed image multiplexing by fast nanosecond laser processing. Adv Mater 34, 2104054 (2022). doi: 10.1002/adma.202104054 |
Overview of metasurface-based nanoprinting and its typical applications.
Metasurface-based intensity manipulation based on Malus law. (a) Diagram of the unit-cell of a metasurface. (b) Illustration of arbitrary amplitude/intensity manipulation based on metasurface.
Three main physical resonances for generating structural-colors. (a) A metallic sphere supporting LSPR. (b) A high-refractive-index dielectric sphere supporting Mie resonance. (c) Schematic of constructive interference in F-P cavity.
Advanced applications empowered by single-channel meta-nanoprinting. (a, b) Continuous grayscale image display with high resolution. (c) Information encryption/concealing. Figure reproduced with permission from: (a) ref.19, under the terms of the Creative Commons CC BY license; (b) ref. 20, under the terms of the OSA Open Access Publishing Agreement; (c) ref.21, John Wiley and Sons.
Metasurface-based nanoprinting explored in nonlinear optical regime for optical encoding/encryption. (a) A nonlinear photonic metasurface composed of meta-atoms with threefold rotational symmetry. (b) A Malus metasurface composed of gold nanostructures with threefold rotational symmetry. (c) A methyl ammonium lead tri-bromide perovskite metasurface with enhancing three-photon luminescence through nonlinear resonance. Figure reproduced with permission from: (a) ref.26, American Chemical Society; (b) ref.27, American Physical Society; (c) ref. 28, under the terms of the Creative Commons CC BY license.
Orthogonal-polarization multiplexed multi-channel grayscale nanoprinting. (a) Coherent pixel strategy used to realize multiple nanoprinting-image switching based on multidimensional control of arbitrary optical parameters. (b) A chiral Malus metasurface composed of two stepped V-shaped chiral nanoaperture enantiomers used for chiral grayscale nanoprinting-image display. (c) An alignment-free bilayer metasurface designed for polarization-encoded imaging. (d) Hyperbolic metamaterials (HMMs) employed to realize 2-bit intensity coding. Figure reproduced with permission from: (a) ref.65, John Wiley and Sons; (b) ref.66, John Wiley and Sons; (c) ref.67, John Wiley and Sons; (d) ref.68, American Chemical Society.
Non-orthogonal polarization-multiplexed multi-channel grayscale nanoprinting. (a) A 3D Janus metasurface used for non-orthogonal polarization-encrypted data storage. (b) A dual-channel anti-counterfeiting metasurface based on orientation degeneracy of nanostructures. (c) Vectorial compound metapixels for image multiplexing and hiding with arbitrary non-orthogonal polarization. (d) A dual-channel Malus metasurface with single-pixel imaging (SPI) encryption. Figure reproduced from: (a) ref.69, under the terms of the Creative Commons CC BY license; (b) ref.70, American Chemical Society; (c) ref.75, John Wiley and Sons; (d) ref.76, American Association for the Advancement of Science.
One-dimensional subwavelength metallic gratings for color filtering. (a) Schematic diagram of the subwavelength Al-ZnSe-Al nano-resonator. Scale bar, 1 μm. (b) Measured transmission spectral response (blue, green and red) of the nanostructure shown in (a). (c) Schematic of the metallic grating structure with a buffer layer and a waveguide layer. (d) Simulated transmission spectra (blue, green and red) generated from the structure shown in (c). (e) Schematic of the high-performance color filters based on plasmonic metamirror. (f) Measured reflective spectra of the structure shown in (e). (g) Schematic diagram of the silver-grating color filters with varied periodicities. (h) Measured transmission spectral response (yellow, magenta and cyan) of the structure shown in (g). (i) Schematic of the metasurface- embedded nanocavity. (j) Comparison between the F-P resonator (utilizing two parallel mirrors) and the resonator with a reflective metasurface placed in two mirrors. Figure reproduced with permission from: (a, b) ref.91, Springer Nature; (c, d) ref.96, American Institute of Physics; (e, f) ref.98, De Gruyter; (g, h) ref.100, Springer Nature; (i, j) ref.106, under the terms of the Creative Commons CC BY license.
Two-dimensional plasmonic nanohole arrays for color filtering. (a) Schematic of the nanohole array structure arranged in square. (b) Optical microscopic images and scanning electron microscope (SEM) images of (a) with varied periodicities. (c) Schematic of the nanohole array structure arranged in triangle and the corresponding optical microscopic images and SEM images with varied periodicities. (d) Optical microscopic images and SEM images of the nanohole arrays with different shapes and lattices. (e) Schematic of the cross-shaped nanoaperture and the microscopic images of a butterfly with switchable colors under different LP light. Figure reproduced with permission from: (a, b) ref.124, Elsevier BV; (c) ref.125, under the terms of the Creative Commons CC BY license; (d) ref.127, American Institute of Physics; (e) ref.128, American Chemical Society.
Two-dimensional plasmonic nanorod arrays for color filtering. (a) Schematic of the cross-shaped nanorod. (b) Simulated transmission spectral response of the nanorods shown in (a), illuminated by LP light with polarization angles ranging from 0° to 90°. (c) Schematic illustration of the plasmonic pixels consisting of nanorods with different sizes and spacings. (d) Color palettes of merely size variations, and the mixing of size variations and spacing variations. (e) The realistic reproduction of artwork employing the expanded palette of colors. Scale bar, 50 μm. (f) Measured scattering spectra of the Fano-resonance-based nanocluster with varied diameters ranging from 110 nm to 40 nm. (g) Color detection of refractive index utilizing the localized surface plasmon resonance shift. Figure reproduced permission from: (a, b) ref.130, (c–e) ref.135, (f, g) ref.136, American Chemical Society.
Two-dimensional silicon nanorod arrays for color filtering. (a) Schematic of all-dielectric color filters based on silicon nanodisks. (b) Schematic of the silicon nanobrick arrays, and the optical microscopic image of the fabricated nanobricks with different widths irradiated with LP light. (c) Schematic illustration of meta-nanoprinting to brighten structural-color by introducing dimethyl sulfoxide (DMSO). (d) Two different spectral responses and nanoprinting-images when the surrounding materials of the metasurface are air and DMSO, respectively. Figure reproduced with permission from: (a) ref.146, (b) ref.151, American Chemical Society; (c, d) ref.160, under the terms of the Creative Commons CC BY license.
Two-dimensional nanorod arrays based on other high-refractive-index dielectric materials for color filtering. (a) Schematic illustration, SEM image, and optical microscopic images of nanostructures with different geometries. (b) Schematic setup of the resonant laser printing. Nanostructures (i to ix) are generated by increasing the laser powers. (c) Schematic of the full-color nanopainting setup and the experimental color printing. Scale bar, 50 μm. (d) Color filtering based on the Si3N4 metasurface. Figure reproduced with permission from: (a, b) ref.149, under a Creative Commons AttributionNonCommercial License 4.0; (c) ref.165, Optical Society of America; (d) ref.167, American Chemical Society.
Two-dimensional multi-layer hybrid nanostructure arrays for color filtering. (a) Configuration of the hybrid nanodisks for subtractive color filtering (cyan, magenta and yellow). (b) Measured reflection spectrum and optical microscopic images of hybrid nanodisks with varied diameters. (c) SEM images of the fabricated samples with different diameters. Scale bar, 250 nm. (d) Structural design of the multi-dielectric metasurface. (e) Measured reflection spectra and optical microscopic images of the multi-dielectric metasurface with varied periodicities and gaps. Figure reproduced with permission from: (a–c) ref.176, John Wiley and Sons; (d, e) ref.178, American Chemical Society.
Dynamically tunable colors with external stimulus. (a) Schematic of the plasmonic-LC pixel with/without applied voltages. (b) Measured optical microscopic images of the plasmonic-LC pixels with varied periodicities and electric fields. (c) Experimentally captured images of a singular Afghan Girl image with different electric fields. Scale bar, 100 μm. (d) Schematic of the electrically tunable color filter. (e) Model of the composite nanostructure, and the measured optical microscopic images at 20 °C and 80 °C, respectively. (f) Schematic of the plasmonic metasurface composed of hydrogen-responsive magnesium (Mg) nanobricks. (g) Optical microscopic images of the Minerva logo during hydrogenation and dehydrogenation for color erasing and restoring. Scale bar, 20 μm. (h) Schematic of polydimethylsiloxane relief with multiple states of color images revealed by directional strains and capillary force. Figure reproduced with permission from: (a–c) ref.193, under the terms of the Creative Commons CC BY license; (d) ref.194, American Chemical Society; (e) ref.197, John Wiley and Sons; (f, g) ref.198, under the terms of the Creative Commons CC BY license; (h) ref.202, John Wiley and Sons.
Multifunctional metasurfaces integrating color nanoprinting and monochromatic holography. (a) A dual-mode metasurface by simultaneously controlling the spectral response and geometric phase. (b) A multifunctional metasurface (for color image and holographic image display) with the control of spectral response and propagation phase. (c) Left panel: schematic diagram of a unit-cell and the simulated reflective spectra of silicon nanobricks with varied dimensions. Right panel: multifunctional metasurface merging rich structural-color nanoprinting and holography. Figure reproduced with permission from: (a) ref.203, American Chemical Society; (b) ref.204, The Royal Society of Chemistry; (c) ref.205, Optical Society of America.
Multifunctional metasurfaces integrating color nanoprinting and color holography. (a) The detour phase used to encode color holographic images into color nanoprint. Inset (bottom right) shows three cone arrays with different cones’ dimensions to generate the desired reflection spectra. And the detour phase is employed to manipulate the phase. (b) Bicolor nanoprinting and holography within a single-layer dielectric metasurface by simultaneously modulating spectral and spatial responses. (c) Holographic color prints implemented by combining structural-color filters with phase plates. (d) Left panel: a supercell made of R, G and B double-nanoblock cells to control the amplitude and phase of incident R, G and B light separately. Right panel: Full-color nanoprint-hologram-integrated metasurface with arbitrary HSB control. (e) Simultaneous full-color nanoprinting and holography enabled by a plasmonic shallow grating (PSG) metasurface. (f) Left panel: dynamic bifunctional metasurface for switchable color nanoprinting and color holography. Right panel: schematic of Si nanopillar (top) and SEM image of the metasurface (bottom). Figure reproduced with permission from: (a) ref.207, John Wiley and Sons; (b) ref.208, American Chemical Society; (c) ref.209, (d) ref.210, (e) ref.211, (f) ref. 212, under the terms of the Creative Commons CC BY license.
Multifunctional metasurfaces integrating multi-nanoprinting and multi-holography. (a) Multifunctional metasurfaces enabled by independent controlling optical phase and amplitude in two orthogonally-polarized states. Inset: one super-pixel of the metasurface. (b) Top panel: triple sets of printing-hologram integrated into a single-layer metasurface with six DOFs. Bottom panel: the unit cell consists of four identical c-silicon nanoblocks with different x coordinate positions and orientation angles. (c) Top panel: a bifunctional metasurface combining structural-color nanoprinting and vectorial holography with eight polarization channels. Bottom panel: optical microscopic and SEM images of the fabricated metasurface. (d) Top panel: angular-multiplexing metasurface by building up independent-encoded amplitude/phase dictionary for angular illumination. Bottom panel: side view of the angle-multiplexing metasurface (left) and schematic diagram of an array structure (right). (e) Top panel: electric-driven dynamical near-/far-field multiplexing display. Bottom panel: schematic of the rectangular nanopillars with varied dimensions and SEM images of the sample. Figure reproduced from: (a) ref.213, under the terms of the Creative Commons CC BY license; (b) ref.214, under a Creative Commons Attribution NonCommercial License 4.0; (c) ref.215, under the terms of the Creative Commons CC BY license; (d) ref.216, (e) ref.217, John Wiley and Sons.
Multifunctional metasurfaces integrating nanoprinting and holography based on nanocavity. (a) Integrated metasurface with tricolor nanoprinting and helicity-multiplexed holograms for real-time optical encryption. (b) Mg-based metasurface for dual-function switching between color display and holography. (c) Stepwise nanocavities for nanoprint-hologram displays. (d) Stepwise dual-Fabry-Pérot (DF-P) nanocavity for grayscale imaging encryption/concealment with holographic multiplexing. Figure reproduced with permission from: (a) ref.219, John Wiley and Sons; (b) ref.220, American Chemical Society; (c) ref.221, (d) ref.222, John Wiley and Sons.
Multifunctional metasurfaces integrating nanoprinting and holography based on orientation degeneracy of anisotropic nanostructures. (a) Schematic of the bifunctional metasurface consisting of single-sized nanostructures. (b) Tri-channel metasurface for simultaneous meta-holography and meta-nanoprinting with a single-cell design approach. (c) Tri-functional metasurface enabled by triple manipulations of light. (d) Tri-channel metasurface for dual-channel polychromatic nanoprinting-image displays and single-channel polychromatic holographic image display. (e) Multifold integration of nanoprinting and holography enabled by dual-degeneracy of nanostructures. Figure reproduced from: (a) ref. 224, The Author(s); (b) ref. 225, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c) ref. 226, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (d) ref. 227, Renyuan Ren et al., published by De Gruyter under the Creative Commons Attribution 4.0 Public License; (e) ref. 229,Wiley-VCH GmbH.
Multifunctional metasurfaces integrating nanoprinting and metalens. (a) Left panel: diagrams of a transmission unit (top) and a reflection unit (bottom). Right panel: coplanar metalens embedded into nanoprinted display. (b) Left panel: schematic illustration of a unit-cell (top) and the principle of intensity and phase manipulation. Right panel: metasurface decoupling for near- and far-field functionalizations of nanoprinting and metalens. Figure reproduced with permission from: (a) ref.230, American Chemical Society; (b) ref.231, John Wiley and Sons.