Tan DZ, Sun K, Li ZL, Xu BB, Qiu JR. Photo-processing of perovskites: current research status and challenges. Opto-Electron Sci 1, 220014 (2022). doi: 10.29026/oes.2022.220014
Citation: Tan DZ, Sun K, Li ZL, Xu BB, Qiu JR. Photo-processing of perovskites: current research status and challenges. Opto-Electron Sci 1, 220014 (2022). doi: 10.29026/oes.2022.220014

Review Open Access

Photo-processing of perovskites: current research status and challenges

More Information
  • The past two decades have seen a drastic progress in the development of semiconducting metal-halide perovskites (MHPs) from both the fundamentally scientific and technological points of view. The excellent optoelectronic properties and device performance make perovskites very attractive to the researchers in materials, physics, chemistry and so on. To fully explore the potential of perovskites in the applications, various techniques have been demonstrated to synthesize perovskites, modify their structures, and create patterns and devices. Among them, photo-processing has been revealed to be a facile and general technique to achieve these aims. In this review, we discuss the mechanisms of photo-processing of perovskites and summarize the recent progress in the photo-processing of perovskites for synthesis, patterning, ion exchange, phase transition, assembly, and ion migration and redistribution. The applications of photo-processed perovskites in photovoltaic devices, lasers, photodetectors, light-emitting diodes (LEDs), and optical data storage and encryption are also discussed. Finally, we provide an outlook on photo-processing of perovskites and propose the promising directions for future researches. This review is of significance to the researches and applications of perovskites and also to uncover new views on the light-matter interactions.
  • 加载中
  • [1] Liu XK, Xu WD, Bai S, Jin YZ, Wang JP et al. Metal halide perovskites for light-emitting diodes. Nat Mater 20, 10–21 (2021). doi: 10.1038/s41563-020-0784-7

    CrossRef Google Scholar

    [2] Ni ZY, Bao CX, Liu Y, Jiang Q, Wu WQ et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020). doi: 10.1126/science.aba0893

    CrossRef Google Scholar

    [3] Tan S, Huang TY, Yavuz I, Wang R, Yoon TW et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022). doi: 10.1038/s41586-022-04604-5

    CrossRef Google Scholar

    [4] Dey A, Ye JZ, De A, Debroye E, Ha SK et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021). doi: 10.1021/acsnano.0c08903

    CrossRef Google Scholar

    [5] Cao ZL, Hu FR, Zhang CF, Zhu S, Xiao M et al. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Adv Photonics 2, 054001 (2020).

    Google Scholar

    [6] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [7] Rainò G, Yazdani N, Boehme SC, Kober-Czerny M, Zhu CL et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat Commun 13, 2587 (2022). doi: 10.1038/s41467-022-30016-0

    CrossRef Google Scholar

    [8] Xiao K, Lin YH, Zhang M, Oliver RDJ, Wang X et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022). doi: 10.1126/science.abn7696

    CrossRef Google Scholar

    [9] Peng J, Walter D, Ren YH, Tebyetekerwa M, Wu YL et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021). doi: 10.1126/science.abb8687

    CrossRef Google Scholar

    [10] Kim YH, Park J, Kim S, Kim JS, Xu HX et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat Nanotechnol 17, 590–597 (2022). doi: 10.1038/s41565-022-01113-4

    CrossRef Google Scholar

    [11] Deng YZ, Peng F, Lu Y, Zhu XT, Jin WX et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat Photonics 16, 505–511 (2022). doi: 10.1038/s41566-022-00999-9

    CrossRef Google Scholar

    [12] Chen QS, Wu J, Ou XY, Huang BL, Almutlaq J et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). doi: 10.1038/s41586-018-0451-1

    CrossRef Google Scholar

    [13] Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opt-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [14] Mo QH, Chen C, Cai WS, Zhao SY, Yan DD et al. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photonics Rev 15, 2100278 (2021). doi: 10.1002/lpor.202100278

    CrossRef Google Scholar

    [15] Prochowicz D, Saski M, Yadav P, Grätzel M, Lewiński J. Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication. Acc Chem Res 52, 3233–3243 (2019). doi: 10.1021/acs.accounts.9b00454

    CrossRef Google Scholar

    [16] Zhou Y, Wang Y. Perovskite Quantum Dots: Synthesis, Properties and Applications (Springer, Singapore, 2020).

    Google Scholar

    [17] Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006

    CrossRef Google Scholar

    [18] Wang YY, Fedin I, Zhang H, Talapin DV. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017). doi: 10.1126/science.aan2958

    CrossRef Google Scholar

    [19] Liu WZ, Shi JH, Zhang LP, Han AJ, Huang SL et al. Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nat Energy 7, 427–437 (2022). doi: 10.1038/s41560-022-01018-5

    CrossRef Google Scholar

    [20] Yang J, Hahm D, Kim K, Rhee S, Lee M et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat Commun 11, 2874 (2020). doi: 10.1038/s41467-020-16652-4

    CrossRef Google Scholar

    [21] Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007

    CrossRef Google Scholar

    [22] Zhang XW, Zhang DD, Tan DZ, Xian YH, Liu XF et al. Highly defective nanocrystals as ultrafast optical switches: nonequilibrium synthesis and efficient nonlinear optical response. Chem Mater 32, 10025–10034 (2020). doi: 10.1021/acs.chemmater.0c03235

    CrossRef Google Scholar

    [23] Pan D, Liu SL, Li JW, Ni JC, Xin C et al. Rapid fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary-force-assisted self-assembly. Adv Funct Mater 32, 2106917 (2022). doi: 10.1002/adfm.202106917

    CrossRef Google Scholar

    [24] Wang H, Zhang YL, Han DD, Wang W, Sun HB. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation. PhotoniX 2, 17 (2021). doi: 10.1186/s43074-021-00033-1

    CrossRef Google Scholar

    [25] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [26] Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013

    CrossRef Google Scholar

    [27] Yong JL, Yang Q, Hou X, Chen F. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci 2022, 9895418 (2022).

    Google Scholar

    [28] Wang ZY, Yang TS, Zhang YP, Ou QD, Lin H et al. Flat lenses based on 2D perovskite nanosheets. Adv Mater 32, 2001388 (2020). doi: 10.1002/adma.202001388

    CrossRef Google Scholar

    [29] Zhang B, Tan DZ, Wang Z, Liu XF, Xu BB et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light Sci Appl 10, 93 (2021). doi: 10.1038/s41377-021-00534-5

    CrossRef Google Scholar

    [30] Wang YT, Cavillon M, Ballato J, Hawkins T, Elsmann T et al. 3D laser engineering of molten core optical fibers: toward a new generation of harsh environment sensing devices. Adv Opt Mater 10, 2200379 (2022). doi: 10.1002/adom.202200379

    CrossRef Google Scholar

    [31] Tan DZ, Sun XY, Li ZL, Qiu JR. Effectively writing low propagation and bend loss waveguides in the silica glass by using a femtosecond laser. Opt Lett 47, 4766–4769 (2022). doi: 10.1364/OL.470670

    CrossRef Google Scholar

    [32] Andaji-Garmaroudi Z, Anaya M, Pearson AJ, Stranks SD. Photobrightening in lead halide perovskites: observations, mechanisms, and future potential. Adv Energy Mater 10, 1903109 (2020). doi: 10.1002/aenm.201903109

    CrossRef Google Scholar

    [33] Sun K, Tan DZ, Fang XY, Xia XT, Lin DJ et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022). doi: 10.1126/science.abj2691

    CrossRef Google Scholar

    [34] Mao WX, Hall CR, Bernardi S, Cheng YB, Widmer-Cooper A et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat Mater 20, 55–61 (2021). doi: 10.1038/s41563-020-00826-y

    CrossRef Google Scholar

    [35] Macpherson S, Doherty TAS, Winchester AJ, Kosar S, Johnstone DN et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022). doi: 10.1038/s41586-022-04872-1

    CrossRef Google Scholar

    [36] Kim GY, Senocrate A, Yang TY, Gregori G, Grätzel M et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater 17, 445–449 (2018). doi: 10.1038/s41563-018-0038-0

    CrossRef Google Scholar

    [37] Holovský J, Amalathas AP, Landová L, Dzurňák B, Conrad B et al. Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar Cells. ACS Energy Lett 4, 3011–3017 (2019). doi: 10.1021/acsenergylett.9b02080

    CrossRef Google Scholar

    [38] Ho K, Wei MY, Sargent EH, Walker GC. Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light. ACS Energy Lett 6, 934–940 (2021). doi: 10.1021/acsenergylett.0c02247

    CrossRef Google Scholar

    [39] Lin ZN, Folgueras MC, Le HKD, Gao MY, Yang PD. Laser-accelerated phase transformation in cesium lead iodide perovskite. Matter 5, 1455–1465 (2022). doi: 10.1016/j.matt.2022.04.002

    CrossRef Google Scholar

    [40] Chen WJ, Li W, Gan ZX, Cheng YB, Jia BH et al. Long-distance ionic diffusion in cesium lead mixed halide perovskite induced by focused illumination. Chem Mater 31, 9049–9056 (2019). doi: 10.1021/acs.chemmater.9b03320

    CrossRef Google Scholar

    [41] Ummadisingu A, Steier L, Seo JY, Matsui T, Abate A et al. The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017). doi: 10.1038/nature22072

    CrossRef Google Scholar

    [42] Liu D, Weng KK, Lu SY, Li F, Abudukeremu H et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci Adv 8, eabm8433 (2022). doi: 10.1126/sciadv.abm8433

    CrossRef Google Scholar

    [43] Wei JJ, Zheng W, Huang P, Gong ZL, Liu Y et al. Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today 39, 101179 (2021). doi: 10.1016/j.nantod.2021.101179

    CrossRef Google Scholar

    [44] Zhu XY, Dong H, Chen JB, Xu J, Li ZJ et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv Funct Mater 32, 2202408 (2022). doi: 10.1002/adfm.202202408

    CrossRef Google Scholar

    [45] Pan JA, Ondry JC, Talapin DV. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett 21, 7609–7616 (2021). doi: 10.1021/acs.nanolett.1c02249

    CrossRef Google Scholar

    [46] Kirschner MS, Diroll BT, Guo PJ, Harvey SM, Helweh W et al. Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nat Commun 10, 504 (2019). doi: 10.1038/s41467-019-08362-3

    CrossRef Google Scholar

    [47] You P, Li GJ, Tang GQ, Cao JP, Yan F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ Sci 13, 1187–1196 (2020). doi: 10.1039/C9EE02324K

    CrossRef Google Scholar

    [48] Wheeler LM, Moore DT, Ihly R, Stanton NJ, Miller EM et al. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nat Commun 8, 1722 (2017). doi: 10.1038/s41467-017-01842-4

    CrossRef Google Scholar

    [49] Tan DZ, Liu XF, Dai Y, Ma GH, Meunier M et al. A universal photochemical approach to ultra-small, well-dispersed nanoparticle/reduced graphene oxide hybrids with enhanced nonlinear optical properties. Adv Opt Mater 3, 836–841 (2015). doi: 10.1002/adom.201400560

    CrossRef Google Scholar

    [50] Tan DZ, Zhang B, Qiu JR. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev 15, 2000455 (2021). doi: 10.1002/lpor.202000455

    CrossRef Google Scholar

    [51] Zhizhchenko AY, Cherepakhin AB, Masharin MA, Pushkarev AP, Kulinich SA et al. Directional lasing from nanopatterned halide perovskite nanowire. Nano Lett 21, 10019–10025 (2021). doi: 10.1021/acs.nanolett.1c03656

    CrossRef Google Scholar

    [52] Tan DZ, Wang Z, Xu BB, Qiu JR. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photonics 3, 024002 (2021).

    Google Scholar

    [53] Zhizhchenko AY, Cherepakhin AB, Masharin MA, Pushkarev AP, Kulinich SA et al. Direct imprinting of laser field on halide perovskite single crystal for advanced photonic applications. Laser Photonics Rev 15, 2100094 (2021). doi: 10.1002/lpor.202100094

    CrossRef Google Scholar

    [54] Tan DZ, Zhou SF, Qiu JR, Khusro N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. J Photochem Photobiol C:Photochem Rev 17, 50–68 (2013). doi: 10.1016/j.jphotochemrev.2013.08.002

    CrossRef Google Scholar

    [55] Kong WC, Zhao C, Xing J, Zou YT, Huang T et al. Enhancing perovskite solar cell performance through femtosecond laser polishing. Solar RRL 4, 2000189 (2020). doi: 10.1002/solr.202000189

    CrossRef Google Scholar

    [56] deQuilettes DW, Zhang W, Burlakov VM, Graham DJ, Leijtens T et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat Commun 7, 11683 (2016). doi: 10.1038/ncomms11683

    CrossRef Google Scholar

    [57] Sheng YH, Chen WJ, Hu FR, Liu CH, Di YS et al. Mechanism of photoinduced phase segregation in mixed-halide perovskite microplatelets and its application in micropatterning. ACS Appl Mater Interfaces 14, 12412–12422 (2022). doi: 10.1021/acsami.2c00590

    CrossRef Google Scholar

    [58] Shirzadi E, Tappy N, Ansari F, Nazeeruddin MK, Hagfeldt A et al. Deconvolution of light-induced ion migration phenomena by statistical analysis of cathodoluminescence in lead halide-based perovskites. Adv Sci 9, 2103729 (2022). doi: 10.1002/advs.202103729

    CrossRef Google Scholar

    [59] Mosconi E, Meggiolaro D, Snaith HJ, Stranks SD, De Angelis F. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy Environ Sci 9, 3180–3187 (2016). doi: 10.1039/C6EE01504B

    CrossRef Google Scholar

    [60] Wang YT, Quintana X, Kim J, Guan XW, Hu L et al. Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res 8, A56–A71 (2020). doi: 10.1364/PRJ.402411

    CrossRef Google Scholar

    [61] Yang HR, Song CP, Xia TC, Li SF, Sun DY et al. Ultrafast transformation of PbI2 in two-step fabrication of halide perovskite films for long-term performance and stability via nanosecond laser shock annealing. J Mater Chem C 9, 12819–12827 (2021). doi: 10.1039/D1TC02475B

    CrossRef Google Scholar

    [62] Song CP, Yang HR, Liu F, Cheng GJ. Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2D halide perovskites for enhanced light response and stability. Nat Commun 12, 4879 (2021). doi: 10.1038/s41467-021-25140-2

    CrossRef Google Scholar

    [63] Song CP, Tong L, Liu F, Ye L, Cheng GJ. Addressing the reliability and electron transport kinetics in halide perovskite film via pulsed laser engineering. Adv Funct Mater 30, 1906781 (2020). doi: 10.1002/adfm.201906781

    CrossRef Google Scholar

    [64] Chou SS, Swartzentruber BS, Janish MT, Meyer KC, Biedermann LB et al. Laser direct write synthesis of lead halide perovskites. J Phys Chem Lett 7, 3736–3741 (2016). doi: 10.1021/acs.jpclett.6b01557

    CrossRef Google Scholar

    [65] Li FM, Zhu WD, Bao CX, Yu T, Wang YRQ et al. Laser-assisted crystallization of CH3NH3PbI3 films for efficient perovskite solar cells with a high open-circuit voltage. Chem Commun 52, 5394–5397 (2016). doi: 10.1039/C6CC00753H

    CrossRef Google Scholar

    [66] Konidakis I, Maksudov T, Serpetzoglou E, Kakavelakis G, Kymakis E et al. Improved charge carrier dynamics of CH3NH3PbI3 perovskite films synthesized by means of laser-assisted crystallization. ACS Appl Energy Mater 1, 5101–5111 (2018). doi: 10.1021/acsaem.8b01152

    CrossRef Google Scholar

    [67] Jeon T, Jin HM, Lee SH, Lee JM, Park HI et al. Laser crystallization of organic−inorganic hybrid perovskite solar cells. ACS Nano 10, 7907–7914 (2016). doi: 10.1021/acsnano.6b03815

    CrossRef Google Scholar

    [68] Zhan WJ, Meng LH, Shao CD, Wu XG, Shi KB et al. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8, 765–770 (2021). doi: 10.1021/acsphotonics.1c00118

    CrossRef Google Scholar

    [69] Song CP, Yang HR, Liu F, Ye L, Cheng GJ. Quantum dot enabled perovskite thin film with enhanced crystallization, stability, and carrier diffusion via pulsed laser nanoengineering. Adv Mater Interfaces 7, 2001021 (2020). doi: 10.1002/admi.202001021

    CrossRef Google Scholar

    [70] Arciniegas MP, Castelli A, Piazza S, Dogan S, Ceseracciu L et al. Laser-induced localized growth of methylammonium lead halide perovskite nano- and microcrystals on substrates. Adv Funct Mater 27, 1701613 (2017). doi: 10.1002/adfm.201701613

    CrossRef Google Scholar

    [71] Zhuang WJ, Li SL, Deng F, Li GC, Tie S et al. Laser writing of CsPbBr3 nanocrystals mediated by closely-packed Au nanoislands. Appl Surf Sci 538, 148143 (2021). doi: 10.1016/j.apsusc.2020.148143

    CrossRef Google Scholar

    [72] Sun K, Tan DZ, Song J, Xiang WD, Xu BB et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications. Adv Opt Mater 9, 2100094 (2021). doi: 10.1002/adom.202100094

    CrossRef Google Scholar

    [73] Musterman EJ, Dierolf V, Jain H. Curved lattices of crystals formed in glass. Int J Appl Glass Sci 13, 402–419 (2022). doi: 10.1111/ijag.16574

    CrossRef Google Scholar

    [74] Hu YZ, Zhang WC, Ye Y, Zhao ZY, Liu C. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion. ACS Appl Nano Mater 3, 850–857 (2020). doi: 10.1021/acsanm.9b02362

    CrossRef Google Scholar

    [75] Huang XJ, Guo QY, Yang DD, Xiao XD, Liu XF et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics 14, 82–88 (2020). doi: 10.1038/s41566-019-0538-8

    CrossRef Google Scholar

    [76] Huang XJ, Guo QY, Kang SL, Ouyang TC, Chen QP et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14, 3150–3158 (2020). doi: 10.1021/acsnano.9b08314

    CrossRef Google Scholar

    [77] Tan DZ, Sharafudeen KN, Yue YZ, Qiu JR. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002

    CrossRef Google Scholar

    [78] Jiao YJ, Qian J, Zhao QZ, Dai Y, Yu XH et al. One-step precipitation of stable perovskite CsPbBr3 quantum dots in silicate glass by picosecond laser pulses. Opt Mater Express 12, 2260–2269 (2022). doi: 10.1364/OME.457559

    CrossRef Google Scholar

    [79] Tian XY, Wang L, Li W, Lin QQ, Cao Q. Whispering gallery mode lasing from perovskite polygonal microcavities via femtosecond laser direct writing. ACS Appl Mater Interfaces 13, 16952–16958 (2021). doi: 10.1021/acsami.0c21824

    CrossRef Google Scholar

    [80] Zhou CH, Cao GY, Gan ZX, Ou QD, Chen WJ et al. Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl Mater Interfaces 11, 26017–26023 (2019). doi: 10.1021/acsami.9b07708

    CrossRef Google Scholar

    [81] Zhizhchenko AY, Tonkaev P, Gets D, Larin A, Zuev D et al. Makarov. Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small 16, 2000410 (2020). doi: 10.1002/smll.202000410

    CrossRef Google Scholar

    [82] Lin ZY, Hong MH. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci 2021, 9783514 (2021).

    Google Scholar

    [83] Chen J, Wu Y, Li XM, Cao F, Gu Y et al. Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv Mater Technol 2, 1700132 (2017). doi: 10.1002/admt.201700132

    CrossRef Google Scholar

    [84] Tan MJH, Chan Y. Pulsed laser photopatterning of cesium lead halide perovskite structures as robust solution-processed optical gain media. Adv Mater Technol 5, 2000104 (2020). doi: 10.1002/admt.202000104

    CrossRef Google Scholar

    [85] Liang SY, Liu YF, Wang SY, Xia H, Sun HB. High-resolution in situ patterning of perovskite quantum dots via femtosecond laser direct writing. Nanoscale 14, 1174–1178 (2022). doi: 10.1039/D1NR07516K

    CrossRef Google Scholar

    [86] Xing J, Zheng X, Yu Z, Lei YH, Hou L et al. Dramatically enhanced photoluminescence from femtosecond laser induced micro-/nanostructures on MAPbBr3 single crystal surface. Adv Opt Mater 6, 1800411 (2018). doi: 10.1002/adom.201800411

    CrossRef Google Scholar

    [87] Sheng YH, Liu CH, Yu LY, Yang YY, Hu FR et al. Microsteganography on all inorganic perovskite micro-platelets by direct laser writing. Nanoscale 13, 14450–14459 (2021). doi: 10.1039/D1NR02511B

    CrossRef Google Scholar

    [88] Wang SX, Zhu JW, Huang H, Lin JD, Yang CB et al. Erasable glass-stabilized perovskite quantum dots for NIR-laser-stimuli-responsive optical security. Cell Rep Phys Sci 3, 100794 (2022). doi: 10.1016/j.xcrp.2022.100794

    CrossRef Google Scholar

    [89] Li XM, Wu Y, Zhang SL, Cai B, Gu Y et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26, 2435–2445 (2016). doi: 10.1002/adfm.201600109

    CrossRef Google Scholar

    [90] McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). doi: 10.1126/science.aad5845

    CrossRef Google Scholar

    [91] Xu JX, Boyd CC, Yu ZJ, Palmstrom AF, Witter DJ et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020). doi: 10.1126/science.aaz5074

    CrossRef Google Scholar

    [92] Xu XB, Dong YH, Zhang YZ, Han ZY, Liu JX et al. High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Res 15, 5476–5482 (2022). doi: 10.1007/s12274-022-4163-3

    CrossRef Google Scholar

    [93] Wong YC, Wu WB, Wang T, Ng JDA, Khoo KH et al. Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes. Adv Mater 31, 1901247 (2019).

    Google Scholar

    [94] Parobek D, Dong YT, Qiao T, Rossi D, Son DH. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J Am Chem Soc 139, 4358–4361 (2017). doi: 10.1021/jacs.7b01480

    CrossRef Google Scholar

    [95] Zou C, Zheng JJ, Chang C, Majumdar A, Lin LY. Nonvolatile rewritable photomemory arrays based on reversible phase-change perovskite for optical information storage. Adv Opt Mater 7, 1900558 (2019). doi: 10.1002/adom.201900558

    CrossRef Google Scholar

    [96] Steele JA, Yuan HF, Tan CYX, Keshavarz M, Steuwe C et al. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072–8083 (2017). doi: 10.1021/acsnano.7b02777

    CrossRef Google Scholar

    [97] Liang TY, Liu WJ, Liu XY, Li YY, Fan JY. Fabry−Perot mode-limited high-Purcell-enhanced spontaneous emission from in situ laser-induced CsPbBr3 quantum dots in CsPb2Br5 microcavities. Nano Lett 22, 355–365 (2022). doi: 10.1021/acs.nanolett.1c04025

    CrossRef Google Scholar

    [98] Li MJ, Yang DD, Huang XJ, Zhang H, Zhao YF et al. Coupling localized laser writing and nonlocal recrystallization in perovskite crystals for reversible multidimensional optical encryption. Adv Mater 34, 2201413 (2022). doi: 10.1002/adma.202201413

    CrossRef Google Scholar

    [99] Klajn R, Bishop KJM, Grzybowski BA. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc Natl Acad Sci USA 104, 10305–10309 (2007). doi: 10.1073/pnas.0611371104

    CrossRef Google Scholar

    [100] Wang Y, Li XM, Sreejith S, Cao F, Wang Z et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv Mater 28, 10637–10643 (2016). doi: 10.1002/adma.201604110

    CrossRef Google Scholar

    [101] Shamsi J, Rastogi P, Caligiuri V, Abdelhady AL, Spirito D et al. Bright-emitting perovskite films by large-scale synthesis and photoinduced solid-state transformation of CsPbBr3 nanoplatelets. ACS Nano 11, 10206–10213 (2017). doi: 10.1021/acsnano.7b04761

    CrossRef Google Scholar

    [102] Liu JK, Song KP, Shin Y, Liu X, Chen J et al. Light-induced self-assembly of cubic CsPbBr3 perovskite nanocrystals into nanowires. Chem Mater 31, 6642–6649 (2019). doi: 10.1021/acs.chemmater.9b00680

    CrossRef Google Scholar

    [103] Dong YH, Hu H, Xu XB, Gu Y, Chueh CC et al. Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J Phys Chem Lett 10, 4149–4156 (2019). doi: 10.1021/acs.jpclett.9b01673

    CrossRef Google Scholar

    [104] Pan L, Ye T, Qin CD, Zhou B, Lei N et al. α-CsPbI3 nanocrystals by ultraviolet light-driven oriented attachment. J Phys Chem Lett 11, 913–919 (2020). doi: 10.1021/acs.jpclett.9b03367

    CrossRef Google Scholar

    [105] Li HB, Liu XD, Ying QF, Wang C, Jia W et al. Self-assembly of perovskite CsPbBr3 quantum dots driven by a photo-induced alkynyl homocoupling reaction. Angew Chem Int Ed 59, 17207–17213 (2020). doi: 10.1002/anie.202004947

    CrossRef Google Scholar

    [106] Brennan MC, Draguta S, Kamat PV, Kuno M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett 3, 204–213 (2018). doi: 10.1021/acsenergylett.7b01151

    CrossRef Google Scholar

    [107] Ghosh S, Shi Q, Pradhan B, Mushtaq A, Acharya S et al. Light-induced defect healing and strong many-body interactions in formamidinium lead bromide perovskite nanocrystals. J Phys Chem Lett 11, 1239–1246 (2020). doi: 10.1021/acs.jpclett.9b03818

    CrossRef Google Scholar

    [108] Wu X, Ma JJ, Qin MC, Guo XL, Li YH et al. Control over light soaking effect in all-inorganic perovskite solar cells. Adv Funct Mater 31, 2101287 (2021). doi: 10.1002/adfm.202101287

    CrossRef Google Scholar

    [109] Li B, Lin MS, Kan CX, Hang PJ, Yao YX et al. Revealing the correlation of light soaking effect with ion migration in perovskite solar cells. Solar RRL 6, 2200050 (2022). doi: 10.1002/solr.202200050

    CrossRef Google Scholar

    [110] Kobayashi E, Tsuji R, Martineau D, Hinsch A, Ito S. Light-induced performance increase of carbon-based perovskite solar module for 20-year stability. Cell Rep Phys Sci 2, 100648 (2021). doi: 10.1016/j.xcrp.2021.100648

    CrossRef Google Scholar

    [111] Tsai H, Asadpour R, Blancon JC, Stoumpos CC, Durand O et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018). doi: 10.1126/science.aap8671

    CrossRef Google Scholar

    [112] Rolston N, Bennett-Kennett R, Schelhas LT, Luther JM, Christians JA et al. Comment on “Light-induced lattice expansion leads to high-efficiency perovskite solar cells”. Science 368, eaay8691 (2020). doi: 10.1126/science.aay8691

    CrossRef Google Scholar

    [113] Lian XM, Zuo LJ, Chen BW, Li B, Wu HT et al. Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy Environ Sci 15, 2499–2507 (2022). doi: 10.1039/D2EE01097F

    CrossRef Google Scholar

    [114] Li YZ, Xu XM, Wang CC, Ecker B, Yang JL et al. Light−induced degradation of CH3NH3PbI3 hybrid perovskite Thin Film. J Phys Chem C 121, 3904–3910 (2017). doi: 10.1021/acs.jpcc.6b11853

    CrossRef Google Scholar

    [115] Misra RK, Aharon S, Li BL, Mogilyansky D, Visoly-Fisher I et al. Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J Phys Chem Lett 6, 326–330 (2015). doi: 10.1021/jz502642b

    CrossRef Google Scholar

    [116] Liu LG, Deng LG, Huang S, Zhang P, Linnros J et al. Photodegradation of organometal hybrid perovskite nanocrystals: clarifying the role of oxygen by single-dot photoluminescence. J Phys Chem Lett 10, 864–869 (2019). doi: 10.1021/acs.jpclett.9b00143

    CrossRef Google Scholar

    [117] Akbulatov AF, Frolova LA, Dremova NN, Zhidkov I, Martynenko VM et al. Light or heat: what is killing lead halide perovskites under solar cell operation conditions. J Phys Chem Lett 11, 333–339 (2020). doi: 10.1021/acs.jpclett.9b03308

    CrossRef Google Scholar

    [118] Barbé J, Newman M, Lilliu S, Kumar V, Lee HKH et al. Localized effect of PbI2 excess in perovskite solar cells probed by high-resolution chemical–optoelectronic mapping. J Mater Chem A 6, 23010–23018 (2018). doi: 10.1039/C8TA09536A

    CrossRef Google Scholar

    [119] Berhe TA, Cheng JH, Su WN, Pan CJ, Tsai MC et al. Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. J Mater Chem A 5, 21002–21015 (2017). doi: 10.1039/C7TA04615D

    CrossRef Google Scholar

    [120] Shan XY, Wang SM, Dong WW, Pan N, Shao JZ et al. Flash surface treatment of CH3NH3PbI3 films using 248 nm KrF excimer laser enhances the performance of perovskite solar cells. Solar RRL 3, 1900020 (2019). doi: 10.1002/solr.201900020

    CrossRef Google Scholar

    [121] Zhu YF, Liu YF, Miller KA, Zhu HY, Egap E. Lead halide perovskite nanocrystals as photocatalysts for PET-RAFT polymerization under visible and near-infrared irradiation. ACS Macro Lett 9, 725–730 (2020). doi: 10.1021/acsmacrolett.0c00232

    CrossRef Google Scholar

    [122] Jin XY, Ma KL, Chakkamalayath J, Morsby J, Gao HF. In situ photocatalyzed polymerization to stabilize perovskite nanocrystals in protic solvents. ACS Energy Lett 7, 610–616 (2022). doi: 10.1021/acsenergylett.1c02660

    CrossRef Google Scholar

    [123] The National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart.https://www.nrel.gov/pv/cell-efficiency.html.

    Google Scholar

    [124] Li LD, Wang YR, Wang XY, Lin RX, Luo X et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy 7, 708–717 (2022). doi: 10.1038/s41560-022-01045-2

    CrossRef Google Scholar

    [125] Zhuang QX, Zhang C, Gong C, Li HY, Li HX et al. Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 102, 107747 (2022). doi: 10.1016/j.nanoen.2022.107747

    CrossRef Google Scholar

    [126] Cao HQ, Li JZ, Dong Z, Su J, Chang JJ, Zhao Q et al. Reducing defects in perovskite solar cells with white light illumination-assisted synthesis. ACS Energy Lett 4, 2821–2829 (2019). doi: 10.1021/acsenergylett.9b02145

    CrossRef Google Scholar

    [127] Zhizhchenko A, Syubaev S, Berestennikov A, Yulin AV, Porfirev A et al. Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13, 4140–4147 (2019). doi: 10.1021/acsnano.8b08948

    CrossRef Google Scholar

    [128] Tian XY, Xu YL, Zhao HM, Qin XB, Nie YT et al. Femtosecond laser direct writing of perovskite patterns with whispering gallery mode lasing. J Mater Chem C 8, 7314–7321 (2020). doi: 10.1039/D0TC01839B

    CrossRef Google Scholar

    [129] Zhang YC, Jiang QL, Long MQ, Han RZ, Cao KQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005

    CrossRef Google Scholar

    [130] Wang Z, Zhang B, Tan DZ, Qiu JR. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence. Opto-Electron Adv 6, 220008 (2023).

    Google Scholar

    [131] Wang Z, Zhang B, Tan DZ, Qiu JR. Long-term optical information storage in glass with ultraviolet-light-preprocessing-induced enhancement of the signal-to-noise ratio. Opt Lett 46, 3937–3940 (2021). doi: 10.1364/OL.433674

    CrossRef Google Scholar

    [132] Wang YQ, Liu CM, Ren Y, Zuo XB, Canton SE et al. Visualizing light-induced microstrain and phase transition in lead-free perovskites using time-resolved X-Ray diffraction. J Am Chem Soc 144, 5335–5341 (2022). doi: 10.1021/jacs.1c11747

    CrossRef Google Scholar

    [133] Serpetzoglou E, Konidakis I, Kourmoulakis G, Demeridou I, Chatzimanolis K et al. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron Sci 1, 210005 (2022). doi: 10.29026/oes.2022.210005

    CrossRef Google Scholar

    [134] Feng QJ, Zhang X, Nan GJ. Unveiling the nature of light-triggered hole traps in lead halide perovskites: a study with time-dependent density functional theory. J Phys Chem Lett 12, 12075–12083 (2021). doi: 10.1021/acs.jpclett.1c03652

    CrossRef Google Scholar

    [135] Sun QS, Liu XD, Cao J, Stantchev RI, Zhou Y et al. Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide perovskites. J Phys Chem C 122, 17552–17558 (2018). doi: 10.1021/acs.jpcc.8b05695

    CrossRef Google Scholar

    [136] Tan DZ, Jiang P, Xu BB, Qiu JR. Single-pulse-induced ultrafast spatial clustering of metal in glass: fine tunability and application. Adv Photonics Res 2, 2000121 (2021). doi: 10.1002/adpr.202000121

    CrossRef Google Scholar

    [137] Liang SY, Liu YF, Wang SY, Ji ZK, Xia H et al. High-resolution patterning of 2D perovskite films through femtosecond laser direct writing. Adv Funct Mater 32, 0224957 (2022). doi: 10.1002/adfm.202204957

    CrossRef Google Scholar

    [138] Gan ZS, Cao YY, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 4, 2061 (2009).

    Google Scholar

    [139] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7, 22–44 (2013). doi: 10.1002/lpor.201100046

    CrossRef Google Scholar

    [140] Dun GH, Zhang HN, Qin K, Tan XC, Zhao R et al. Wafer-scale photolithography-pixeled pb-free perovskite X-ray detectors. ACS Nano 16, 10199–10208 (2022). doi: 10.1021/acsnano.2c01074

    CrossRef Google Scholar

    [141] Zhang XW, Liu SM, Tan DZ, Xian YH, Zhang DD et al. Photochemically derived plasmonic semiconductor nanocrystals as an optical switch for ultrafast photonics. Chem Mater 32, 3180–3187 (2020). doi: 10.1021/acs.chemmater.0c00194

    CrossRef Google Scholar

    [142] Li F, Chen CC, Lu SY, Chen XG, Liu WY et al. Direct patterning of colloidal nanocrystals via thermally activated ligand chemistry. ACS Nano 16, 13674–13683 (2022). doi: 10.1021/acsnano.2c04033

    CrossRef Google Scholar

    [143] Antolini F, Orazi L. Quantum dots synthesis through direct laser patterning: a review. Front Chem 7, 252 (2019). doi: 10.3389/fchem.2019.00252

    CrossRef Google Scholar

    [144] Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001). doi: 10.1126/science.1066541

    CrossRef Google Scholar

    [145] Srivastava S, Santos A, Critchley K, Kim KS, Podsiadlo P et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010). doi: 10.1126/science.1177218

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(11117) PDF downloads(906) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint