Citation: | Tan DZ, Sun K, Li ZL, Xu BB, Qiu JR. Photo-processing of perovskites: current research status and challenges. Opto-Electron Sci 1, 220014 (2022). doi: 10.29026/oes.2022.220014 |
[1] | Liu XK, Xu WD, Bai S, Jin YZ, Wang JP et al. Metal halide perovskites for light-emitting diodes. Nat Mater 20, 10–21 (2021). doi: 10.1038/s41563-020-0784-7 |
[2] | Ni ZY, Bao CX, Liu Y, Jiang Q, Wu WQ et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020). doi: 10.1126/science.aba0893 |
[3] | Tan S, Huang TY, Yavuz I, Wang R, Yoon TW et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022). doi: 10.1038/s41586-022-04604-5 |
[4] | Dey A, Ye JZ, De A, Debroye E, Ha SK et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021). doi: 10.1021/acsnano.0c08903 |
[5] | Cao ZL, Hu FR, Zhang CF, Zhu S, Xiao M et al. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Adv Photonics 2, 054001 (2020). |
[6] | Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779 |
[7] | Rainò G, Yazdani N, Boehme SC, Kober-Czerny M, Zhu CL et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat Commun 13, 2587 (2022). doi: 10.1038/s41467-022-30016-0 |
[8] | Xiao K, Lin YH, Zhang M, Oliver RDJ, Wang X et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022). doi: 10.1126/science.abn7696 |
[9] | Peng J, Walter D, Ren YH, Tebyetekerwa M, Wu YL et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021). doi: 10.1126/science.abb8687 |
[10] | Kim YH, Park J, Kim S, Kim JS, Xu HX et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat Nanotechnol 17, 590–597 (2022). doi: 10.1038/s41565-022-01113-4 |
[11] | Deng YZ, Peng F, Lu Y, Zhu XT, Jin WX et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat Photonics 16, 505–511 (2022). doi: 10.1038/s41566-022-00999-9 |
[12] | Chen QS, Wu J, Ou XY, Huang BL, Almutlaq J et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). doi: 10.1038/s41586-018-0451-1 |
[13] | Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opt-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019 |
[14] | Mo QH, Chen C, Cai WS, Zhao SY, Yan DD et al. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photonics Rev 15, 2100278 (2021). doi: 10.1002/lpor.202100278 |
[15] | Prochowicz D, Saski M, Yadav P, Grätzel M, Lewiński J. Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication. Acc Chem Res 52, 3233–3243 (2019). doi: 10.1021/acs.accounts.9b00454 |
[16] | Zhou Y, Wang Y. Perovskite Quantum Dots: Synthesis, Properties and Applications (Springer, Singapore, 2020). |
[17] | Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006 |
[18] | Wang YY, Fedin I, Zhang H, Talapin DV. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017). doi: 10.1126/science.aan2958 |
[19] | Liu WZ, Shi JH, Zhang LP, Han AJ, Huang SL et al. Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nat Energy 7, 427–437 (2022). doi: 10.1038/s41560-022-01018-5 |
[20] | Yang J, Hahm D, Kim K, Rhee S, Lee M et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat Commun 11, 2874 (2020). doi: 10.1038/s41467-020-16652-4 |
[21] | Chen LW, Hong MH. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci 1, 210007 (2022). doi: 10.29026/oes.2022.210007 |
[22] | Zhang XW, Zhang DD, Tan DZ, Xian YH, Liu XF et al. Highly defective nanocrystals as ultrafast optical switches: nonequilibrium synthesis and efficient nonlinear optical response. Chem Mater 32, 10025–10034 (2020). doi: 10.1021/acs.chemmater.0c03235 |
[23] | Pan D, Liu SL, Li JW, Ni JC, Xin C et al. Rapid fabrication of 3D chiral microstructures by single exposure of interfered femtosecond vortex beams and capillary-force-assisted self-assembly. Adv Funct Mater 32, 2106917 (2022). doi: 10.1002/adfm.202106917 |
[24] | Wang H, Zhang YL, Han DD, Wang W, Sun HB. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation. PhotoniX 2, 17 (2021). doi: 10.1186/s43074-021-00033-1 |
[25] | Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042 |
[26] | Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013 |
[27] | Yong JL, Yang Q, Hou X, Chen F. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci 2022, 9895418 (2022). |
[28] | Wang ZY, Yang TS, Zhang YP, Ou QD, Lin H et al. Flat lenses based on 2D perovskite nanosheets. Adv Mater 32, 2001388 (2020). doi: 10.1002/adma.202001388 |
[29] | Zhang B, Tan DZ, Wang Z, Liu XF, Xu BB et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light Sci Appl 10, 93 (2021). doi: 10.1038/s41377-021-00534-5 |
[30] | Wang YT, Cavillon M, Ballato J, Hawkins T, Elsmann T et al. 3D laser engineering of molten core optical fibers: toward a new generation of harsh environment sensing devices. Adv Opt Mater 10, 2200379 (2022). doi: 10.1002/adom.202200379 |
[31] | Tan DZ, Sun XY, Li ZL, Qiu JR. Effectively writing low propagation and bend loss waveguides in the silica glass by using a femtosecond laser. Opt Lett 47, 4766–4769 (2022). doi: 10.1364/OL.470670 |
[32] | Andaji-Garmaroudi Z, Anaya M, Pearson AJ, Stranks SD. Photobrightening in lead halide perovskites: observations, mechanisms, and future potential. Adv Energy Mater 10, 1903109 (2020). doi: 10.1002/aenm.201903109 |
[33] | Sun K, Tan DZ, Fang XY, Xia XT, Lin DJ et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022). doi: 10.1126/science.abj2691 |
[34] | Mao WX, Hall CR, Bernardi S, Cheng YB, Widmer-Cooper A et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat Mater 20, 55–61 (2021). doi: 10.1038/s41563-020-00826-y |
[35] | Macpherson S, Doherty TAS, Winchester AJ, Kosar S, Johnstone DN et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022). doi: 10.1038/s41586-022-04872-1 |
[36] | Kim GY, Senocrate A, Yang TY, Gregori G, Grätzel M et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater 17, 445–449 (2018). doi: 10.1038/s41563-018-0038-0 |
[37] | Holovský J, Amalathas AP, Landová L, Dzurňák B, Conrad B et al. Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar Cells. ACS Energy Lett 4, 3011–3017 (2019). doi: 10.1021/acsenergylett.9b02080 |
[38] | Ho K, Wei MY, Sargent EH, Walker GC. Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light. ACS Energy Lett 6, 934–940 (2021). doi: 10.1021/acsenergylett.0c02247 |
[39] | Lin ZN, Folgueras MC, Le HKD, Gao MY, Yang PD. Laser-accelerated phase transformation in cesium lead iodide perovskite. Matter 5, 1455–1465 (2022). doi: 10.1016/j.matt.2022.04.002 |
[40] | Chen WJ, Li W, Gan ZX, Cheng YB, Jia BH et al. Long-distance ionic diffusion in cesium lead mixed halide perovskite induced by focused illumination. Chem Mater 31, 9049–9056 (2019). doi: 10.1021/acs.chemmater.9b03320 |
[41] | Ummadisingu A, Steier L, Seo JY, Matsui T, Abate A et al. The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017). doi: 10.1038/nature22072 |
[42] | Liu D, Weng KK, Lu SY, Li F, Abudukeremu H et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci Adv 8, eabm8433 (2022). doi: 10.1126/sciadv.abm8433 |
[43] | Wei JJ, Zheng W, Huang P, Gong ZL, Liu Y et al. Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today 39, 101179 (2021). doi: 10.1016/j.nantod.2021.101179 |
[44] | Zhu XY, Dong H, Chen JB, Xu J, Li ZJ et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv Funct Mater 32, 2202408 (2022). doi: 10.1002/adfm.202202408 |
[45] | Pan JA, Ondry JC, Talapin DV. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Lett 21, 7609–7616 (2021). doi: 10.1021/acs.nanolett.1c02249 |
[46] | Kirschner MS, Diroll BT, Guo PJ, Harvey SM, Helweh W et al. Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nat Commun 10, 504 (2019). doi: 10.1038/s41467-019-08362-3 |
[47] | You P, Li GJ, Tang GQ, Cao JP, Yan F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ Sci 13, 1187–1196 (2020). doi: 10.1039/C9EE02324K |
[48] | Wheeler LM, Moore DT, Ihly R, Stanton NJ, Miller EM et al. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nat Commun 8, 1722 (2017). doi: 10.1038/s41467-017-01842-4 |
[49] | Tan DZ, Liu XF, Dai Y, Ma GH, Meunier M et al. A universal photochemical approach to ultra-small, well-dispersed nanoparticle/reduced graphene oxide hybrids with enhanced nonlinear optical properties. Adv Opt Mater 3, 836–841 (2015). doi: 10.1002/adom.201400560 |
[50] | Tan DZ, Zhang B, Qiu JR. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev 15, 2000455 (2021). doi: 10.1002/lpor.202000455 |
[51] | Zhizhchenko AY, Cherepakhin AB, Masharin MA, Pushkarev AP, Kulinich SA et al. Directional lasing from nanopatterned halide perovskite nanowire. Nano Lett 21, 10019–10025 (2021). doi: 10.1021/acs.nanolett.1c03656 |
[52] | Tan DZ, Wang Z, Xu BB, Qiu JR. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photonics 3, 024002 (2021). |
[53] | Zhizhchenko AY, Cherepakhin AB, Masharin MA, Pushkarev AP, Kulinich SA et al. Direct imprinting of laser field on halide perovskite single crystal for advanced photonic applications. Laser Photonics Rev 15, 2100094 (2021). doi: 10.1002/lpor.202100094 |
[54] | Tan DZ, Zhou SF, Qiu JR, Khusro N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. J Photochem Photobiol C:Photochem Rev 17, 50–68 (2013). doi: 10.1016/j.jphotochemrev.2013.08.002 |
[55] | Kong WC, Zhao C, Xing J, Zou YT, Huang T et al. Enhancing perovskite solar cell performance through femtosecond laser polishing. Solar RRL 4, 2000189 (2020). doi: 10.1002/solr.202000189 |
[56] | deQuilettes DW, Zhang W, Burlakov VM, Graham DJ, Leijtens T et al. Photo-induced halide redistribution in organic–inorganic perovskite films. Nat Commun 7, 11683 (2016). doi: 10.1038/ncomms11683 |
[57] | Sheng YH, Chen WJ, Hu FR, Liu CH, Di YS et al. Mechanism of photoinduced phase segregation in mixed-halide perovskite microplatelets and its application in micropatterning. ACS Appl Mater Interfaces 14, 12412–12422 (2022). doi: 10.1021/acsami.2c00590 |
[58] | Shirzadi E, Tappy N, Ansari F, Nazeeruddin MK, Hagfeldt A et al. Deconvolution of light-induced ion migration phenomena by statistical analysis of cathodoluminescence in lead halide-based perovskites. Adv Sci 9, 2103729 (2022). doi: 10.1002/advs.202103729 |
[59] | Mosconi E, Meggiolaro D, Snaith HJ, Stranks SD, De Angelis F. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy Environ Sci 9, 3180–3187 (2016). doi: 10.1039/C6EE01504B |
[60] | Wang YT, Quintana X, Kim J, Guan XW, Hu L et al. Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res 8, A56–A71 (2020). doi: 10.1364/PRJ.402411 |
[61] | Yang HR, Song CP, Xia TC, Li SF, Sun DY et al. Ultrafast transformation of PbI2 in two-step fabrication of halide perovskite films for long-term performance and stability via nanosecond laser shock annealing. J Mater Chem C 9, 12819–12827 (2021). doi: 10.1039/D1TC02475B |
[62] | Song CP, Yang HR, Liu F, Cheng GJ. Ultrafast femtosecond pressure modulation of structure and exciton kinetics in 2D halide perovskites for enhanced light response and stability. Nat Commun 12, 4879 (2021). doi: 10.1038/s41467-021-25140-2 |
[63] | Song CP, Tong L, Liu F, Ye L, Cheng GJ. Addressing the reliability and electron transport kinetics in halide perovskite film via pulsed laser engineering. Adv Funct Mater 30, 1906781 (2020). doi: 10.1002/adfm.201906781 |
[64] | Chou SS, Swartzentruber BS, Janish MT, Meyer KC, Biedermann LB et al. Laser direct write synthesis of lead halide perovskites. J Phys Chem Lett 7, 3736–3741 (2016). doi: 10.1021/acs.jpclett.6b01557 |
[65] | Li FM, Zhu WD, Bao CX, Yu T, Wang YRQ et al. Laser-assisted crystallization of CH3NH3PbI3 films for efficient perovskite solar cells with a high open-circuit voltage. Chem Commun 52, 5394–5397 (2016). doi: 10.1039/C6CC00753H |
[66] | Konidakis I, Maksudov T, Serpetzoglou E, Kakavelakis G, Kymakis E et al. Improved charge carrier dynamics of CH3NH3PbI3 perovskite films synthesized by means of laser-assisted crystallization. ACS Appl Energy Mater 1, 5101–5111 (2018). doi: 10.1021/acsaem.8b01152 |
[67] | Jeon T, Jin HM, Lee SH, Lee JM, Park HI et al. Laser crystallization of organic−inorganic hybrid perovskite solar cells. ACS Nano 10, 7907–7914 (2016). doi: 10.1021/acsnano.6b03815 |
[68] | Zhan WJ, Meng LH, Shao CD, Wu XG, Shi KB et al. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8, 765–770 (2021). doi: 10.1021/acsphotonics.1c00118 |
[69] | Song CP, Yang HR, Liu F, Ye L, Cheng GJ. Quantum dot enabled perovskite thin film with enhanced crystallization, stability, and carrier diffusion via pulsed laser nanoengineering. Adv Mater Interfaces 7, 2001021 (2020). doi: 10.1002/admi.202001021 |
[70] | Arciniegas MP, Castelli A, Piazza S, Dogan S, Ceseracciu L et al. Laser-induced localized growth of methylammonium lead halide perovskite nano- and microcrystals on substrates. Adv Funct Mater 27, 1701613 (2017). doi: 10.1002/adfm.201701613 |
[71] | Zhuang WJ, Li SL, Deng F, Li GC, Tie S et al. Laser writing of CsPbBr3 nanocrystals mediated by closely-packed Au nanoislands. Appl Surf Sci 538, 148143 (2021). doi: 10.1016/j.apsusc.2020.148143 |
[72] | Sun K, Tan DZ, Song J, Xiang WD, Xu BB et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications. Adv Opt Mater 9, 2100094 (2021). doi: 10.1002/adom.202100094 |
[73] | Musterman EJ, Dierolf V, Jain H. Curved lattices of crystals formed in glass. Int J Appl Glass Sci 13, 402–419 (2022). doi: 10.1111/ijag.16574 |
[74] | Hu YZ, Zhang WC, Ye Y, Zhao ZY, Liu C. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion. ACS Appl Nano Mater 3, 850–857 (2020). doi: 10.1021/acsanm.9b02362 |
[75] | Huang XJ, Guo QY, Yang DD, Xiao XD, Liu XF et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics 14, 82–88 (2020). doi: 10.1038/s41566-019-0538-8 |
[76] | Huang XJ, Guo QY, Kang SL, Ouyang TC, Chen QP et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14, 3150–3158 (2020). doi: 10.1021/acsnano.9b08314 |
[77] | Tan DZ, Sharafudeen KN, Yue YZ, Qiu JR. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002 |
[78] | Jiao YJ, Qian J, Zhao QZ, Dai Y, Yu XH et al. One-step precipitation of stable perovskite CsPbBr3 quantum dots in silicate glass by picosecond laser pulses. Opt Mater Express 12, 2260–2269 (2022). doi: 10.1364/OME.457559 |
[79] | Tian XY, Wang L, Li W, Lin QQ, Cao Q. Whispering gallery mode lasing from perovskite polygonal microcavities via femtosecond laser direct writing. ACS Appl Mater Interfaces 13, 16952–16958 (2021). doi: 10.1021/acsami.0c21824 |
[80] | Zhou CH, Cao GY, Gan ZX, Ou QD, Chen WJ et al. Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl Mater Interfaces 11, 26017–26023 (2019). doi: 10.1021/acsami.9b07708 |
[81] | Zhizhchenko AY, Tonkaev P, Gets D, Larin A, Zuev D et al. Makarov. Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small 16, 2000410 (2020). doi: 10.1002/smll.202000410 |
[82] | Lin ZY, Hong MH. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci 2021, 9783514 (2021). |
[83] | Chen J, Wu Y, Li XM, Cao F, Gu Y et al. Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv Mater Technol 2, 1700132 (2017). doi: 10.1002/admt.201700132 |
[84] | Tan MJH, Chan Y. Pulsed laser photopatterning of cesium lead halide perovskite structures as robust solution-processed optical gain media. Adv Mater Technol 5, 2000104 (2020). doi: 10.1002/admt.202000104 |
[85] | Liang SY, Liu YF, Wang SY, Xia H, Sun HB. High-resolution in situ patterning of perovskite quantum dots via femtosecond laser direct writing. Nanoscale 14, 1174–1178 (2022). doi: 10.1039/D1NR07516K |
[86] | Xing J, Zheng X, Yu Z, Lei YH, Hou L et al. Dramatically enhanced photoluminescence from femtosecond laser induced micro-/nanostructures on MAPbBr3 single crystal surface. Adv Opt Mater 6, 1800411 (2018). doi: 10.1002/adom.201800411 |
[87] | Sheng YH, Liu CH, Yu LY, Yang YY, Hu FR et al. Microsteganography on all inorganic perovskite micro-platelets by direct laser writing. Nanoscale 13, 14450–14459 (2021). doi: 10.1039/D1NR02511B |
[88] | Wang SX, Zhu JW, Huang H, Lin JD, Yang CB et al. Erasable glass-stabilized perovskite quantum dots for NIR-laser-stimuli-responsive optical security. Cell Rep Phys Sci 3, 100794 (2022). doi: 10.1016/j.xcrp.2022.100794 |
[89] | Li XM, Wu Y, Zhang SL, Cai B, Gu Y et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26, 2435–2445 (2016). doi: 10.1002/adfm.201600109 |
[90] | McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). doi: 10.1126/science.aad5845 |
[91] | Xu JX, Boyd CC, Yu ZJ, Palmstrom AF, Witter DJ et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020). doi: 10.1126/science.aaz5074 |
[92] | Xu XB, Dong YH, Zhang YZ, Han ZY, Liu JX et al. High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Res 15, 5476–5482 (2022). doi: 10.1007/s12274-022-4163-3 |
[93] | Wong YC, Wu WB, Wang T, Ng JDA, Khoo KH et al. Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes. Adv Mater 31, 1901247 (2019). |
[94] | Parobek D, Dong YT, Qiao T, Rossi D, Son DH. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J Am Chem Soc 139, 4358–4361 (2017). doi: 10.1021/jacs.7b01480 |
[95] | Zou C, Zheng JJ, Chang C, Majumdar A, Lin LY. Nonvolatile rewritable photomemory arrays based on reversible phase-change perovskite for optical information storage. Adv Opt Mater 7, 1900558 (2019). doi: 10.1002/adom.201900558 |
[96] | Steele JA, Yuan HF, Tan CYX, Keshavarz M, Steuwe C et al. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072–8083 (2017). doi: 10.1021/acsnano.7b02777 |
[97] | Liang TY, Liu WJ, Liu XY, Li YY, Fan JY. Fabry−Perot mode-limited high-Purcell-enhanced spontaneous emission from in situ laser-induced CsPbBr3 quantum dots in CsPb2Br5 microcavities. Nano Lett 22, 355–365 (2022). doi: 10.1021/acs.nanolett.1c04025 |
[98] | Li MJ, Yang DD, Huang XJ, Zhang H, Zhao YF et al. Coupling localized laser writing and nonlocal recrystallization in perovskite crystals for reversible multidimensional optical encryption. Adv Mater 34, 2201413 (2022). doi: 10.1002/adma.202201413 |
[99] | Klajn R, Bishop KJM, Grzybowski BA. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc Natl Acad Sci USA 104, 10305–10309 (2007). doi: 10.1073/pnas.0611371104 |
[100] | Wang Y, Li XM, Sreejith S, Cao F, Wang Z et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase. Adv Mater 28, 10637–10643 (2016). doi: 10.1002/adma.201604110 |
[101] | Shamsi J, Rastogi P, Caligiuri V, Abdelhady AL, Spirito D et al. Bright-emitting perovskite films by large-scale synthesis and photoinduced solid-state transformation of CsPbBr3 nanoplatelets. ACS Nano 11, 10206–10213 (2017). doi: 10.1021/acsnano.7b04761 |
[102] | Liu JK, Song KP, Shin Y, Liu X, Chen J et al. Light-induced self-assembly of cubic CsPbBr3 perovskite nanocrystals into nanowires. Chem Mater 31, 6642–6649 (2019). doi: 10.1021/acs.chemmater.9b00680 |
[103] | Dong YH, Hu H, Xu XB, Gu Y, Chueh CC et al. Photon-induced reshaping in perovskite material yields of nanocrystals with accurate control of size and morphology. J Phys Chem Lett 10, 4149–4156 (2019). doi: 10.1021/acs.jpclett.9b01673 |
[104] | Pan L, Ye T, Qin CD, Zhou B, Lei N et al. α-CsPbI3 nanocrystals by ultraviolet light-driven oriented attachment. J Phys Chem Lett 11, 913–919 (2020). doi: 10.1021/acs.jpclett.9b03367 |
[105] | Li HB, Liu XD, Ying QF, Wang C, Jia W et al. Self-assembly of perovskite CsPbBr3 quantum dots driven by a photo-induced alkynyl homocoupling reaction. Angew Chem Int Ed 59, 17207–17213 (2020). doi: 10.1002/anie.202004947 |
[106] | Brennan MC, Draguta S, Kamat PV, Kuno M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett 3, 204–213 (2018). doi: 10.1021/acsenergylett.7b01151 |
[107] | Ghosh S, Shi Q, Pradhan B, Mushtaq A, Acharya S et al. Light-induced defect healing and strong many-body interactions in formamidinium lead bromide perovskite nanocrystals. J Phys Chem Lett 11, 1239–1246 (2020). doi: 10.1021/acs.jpclett.9b03818 |
[108] | Wu X, Ma JJ, Qin MC, Guo XL, Li YH et al. Control over light soaking effect in all-inorganic perovskite solar cells. Adv Funct Mater 31, 2101287 (2021). doi: 10.1002/adfm.202101287 |
[109] | Li B, Lin MS, Kan CX, Hang PJ, Yao YX et al. Revealing the correlation of light soaking effect with ion migration in perovskite solar cells. Solar RRL 6, 2200050 (2022). doi: 10.1002/solr.202200050 |
[110] | Kobayashi E, Tsuji R, Martineau D, Hinsch A, Ito S. Light-induced performance increase of carbon-based perovskite solar module for 20-year stability. Cell Rep Phys Sci 2, 100648 (2021). doi: 10.1016/j.xcrp.2021.100648 |
[111] | Tsai H, Asadpour R, Blancon JC, Stoumpos CC, Durand O et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018). doi: 10.1126/science.aap8671 |
[112] | Rolston N, Bennett-Kennett R, Schelhas LT, Luther JM, Christians JA et al. Comment on “Light-induced lattice expansion leads to high-efficiency perovskite solar cells”. Science 368, eaay8691 (2020). doi: 10.1126/science.aay8691 |
[113] | Lian XM, Zuo LJ, Chen BW, Li B, Wu HT et al. Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy Environ Sci 15, 2499–2507 (2022). doi: 10.1039/D2EE01097F |
[114] | Li YZ, Xu XM, Wang CC, Ecker B, Yang JL et al. Light−induced degradation of CH3NH3PbI3 hybrid perovskite Thin Film. J Phys Chem C 121, 3904–3910 (2017). doi: 10.1021/acs.jpcc.6b11853 |
[115] | Misra RK, Aharon S, Li BL, Mogilyansky D, Visoly-Fisher I et al. Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J Phys Chem Lett 6, 326–330 (2015). doi: 10.1021/jz502642b |
[116] | Liu LG, Deng LG, Huang S, Zhang P, Linnros J et al. Photodegradation of organometal hybrid perovskite nanocrystals: clarifying the role of oxygen by single-dot photoluminescence. J Phys Chem Lett 10, 864–869 (2019). doi: 10.1021/acs.jpclett.9b00143 |
[117] | Akbulatov AF, Frolova LA, Dremova NN, Zhidkov I, Martynenko VM et al. Light or heat: what is killing lead halide perovskites under solar cell operation conditions. J Phys Chem Lett 11, 333–339 (2020). doi: 10.1021/acs.jpclett.9b03308 |
[118] | Barbé J, Newman M, Lilliu S, Kumar V, Lee HKH et al. Localized effect of PbI2 excess in perovskite solar cells probed by high-resolution chemical–optoelectronic mapping. J Mater Chem A 6, 23010–23018 (2018). doi: 10.1039/C8TA09536A |
[119] | Berhe TA, Cheng JH, Su WN, Pan CJ, Tsai MC et al. Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. J Mater Chem A 5, 21002–21015 (2017). doi: 10.1039/C7TA04615D |
[120] | Shan XY, Wang SM, Dong WW, Pan N, Shao JZ et al. Flash surface treatment of CH3NH3PbI3 films using 248 nm KrF excimer laser enhances the performance of perovskite solar cells. Solar RRL 3, 1900020 (2019). doi: 10.1002/solr.201900020 |
[121] | Zhu YF, Liu YF, Miller KA, Zhu HY, Egap E. Lead halide perovskite nanocrystals as photocatalysts for PET-RAFT polymerization under visible and near-infrared irradiation. ACS Macro Lett 9, 725–730 (2020). doi: 10.1021/acsmacrolett.0c00232 |
[122] | Jin XY, Ma KL, Chakkamalayath J, Morsby J, Gao HF. In situ photocatalyzed polymerization to stabilize perovskite nanocrystals in protic solvents. ACS Energy Lett 7, 610–616 (2022). doi: 10.1021/acsenergylett.1c02660 |
[123] | The National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart.https://www.nrel.gov/pv/cell-efficiency.html. |
[124] | Li LD, Wang YR, Wang XY, Lin RX, Luo X et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy 7, 708–717 (2022). doi: 10.1038/s41560-022-01045-2 |
[125] | Zhuang QX, Zhang C, Gong C, Li HY, Li HX et al. Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 102, 107747 (2022). doi: 10.1016/j.nanoen.2022.107747 |
[126] | Cao HQ, Li JZ, Dong Z, Su J, Chang JJ, Zhao Q et al. Reducing defects in perovskite solar cells with white light illumination-assisted synthesis. ACS Energy Lett 4, 2821–2829 (2019). doi: 10.1021/acsenergylett.9b02145 |
[127] | Zhizhchenko A, Syubaev S, Berestennikov A, Yulin AV, Porfirev A et al. Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13, 4140–4147 (2019). doi: 10.1021/acsnano.8b08948 |
[128] | Tian XY, Xu YL, Zhao HM, Qin XB, Nie YT et al. Femtosecond laser direct writing of perovskite patterns with whispering gallery mode lasing. J Mater Chem C 8, 7314–7321 (2020). doi: 10.1039/D0TC01839B |
[129] | Zhang YC, Jiang QL, Long MQ, Han RZ, Cao KQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005 |
[130] | Wang Z, Zhang B, Tan DZ, Qiu JR. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence. Opto-Electron Adv 6, 220008 (2023). |
[131] | Wang Z, Zhang B, Tan DZ, Qiu JR. Long-term optical information storage in glass with ultraviolet-light-preprocessing-induced enhancement of the signal-to-noise ratio. Opt Lett 46, 3937–3940 (2021). doi: 10.1364/OL.433674 |
[132] | Wang YQ, Liu CM, Ren Y, Zuo XB, Canton SE et al. Visualizing light-induced microstrain and phase transition in lead-free perovskites using time-resolved X-Ray diffraction. J Am Chem Soc 144, 5335–5341 (2022). doi: 10.1021/jacs.1c11747 |
[133] | Serpetzoglou E, Konidakis I, Kourmoulakis G, Demeridou I, Chatzimanolis K et al. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron Sci 1, 210005 (2022). doi: 10.29026/oes.2022.210005 |
[134] | Feng QJ, Zhang X, Nan GJ. Unveiling the nature of light-triggered hole traps in lead halide perovskites: a study with time-dependent density functional theory. J Phys Chem Lett 12, 12075–12083 (2021). doi: 10.1021/acs.jpclett.1c03652 |
[135] | Sun QS, Liu XD, Cao J, Stantchev RI, Zhou Y et al. Highly sensitive terahertz thin-film total internal reflection spectroscopy reveals in situ photoinduced structural changes in methylammonium lead halide perovskites. J Phys Chem C 122, 17552–17558 (2018). doi: 10.1021/acs.jpcc.8b05695 |
[136] | Tan DZ, Jiang P, Xu BB, Qiu JR. Single-pulse-induced ultrafast spatial clustering of metal in glass: fine tunability and application. Adv Photonics Res 2, 2000121 (2021). doi: 10.1002/adpr.202000121 |
[137] | Liang SY, Liu YF, Wang SY, Ji ZK, Xia H et al. High-resolution patterning of 2D perovskite films through femtosecond laser direct writing. Adv Funct Mater 32, 0224957 (2022). doi: 10.1002/adfm.202204957 |
[138] | Gan ZS, Cao YY, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 4, 2061 (2009). |
[139] | Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7, 22–44 (2013). doi: 10.1002/lpor.201100046 |
[140] | Dun GH, Zhang HN, Qin K, Tan XC, Zhao R et al. Wafer-scale photolithography-pixeled pb-free perovskite X-ray detectors. ACS Nano 16, 10199–10208 (2022). doi: 10.1021/acsnano.2c01074 |
[141] | Zhang XW, Liu SM, Tan DZ, Xian YH, Zhang DD et al. Photochemically derived plasmonic semiconductor nanocrystals as an optical switch for ultrafast photonics. Chem Mater 32, 3180–3187 (2020). doi: 10.1021/acs.chemmater.0c00194 |
[142] | Li F, Chen CC, Lu SY, Chen XG, Liu WY et al. Direct patterning of colloidal nanocrystals via thermally activated ligand chemistry. ACS Nano 16, 13674–13683 (2022). doi: 10.1021/acsnano.2c04033 |
[143] | Antolini F, Orazi L. Quantum dots synthesis through direct laser patterning: a review. Front Chem 7, 252 (2019). doi: 10.3389/fchem.2019.00252 |
[144] | Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001). doi: 10.1126/science.1066541 |
[145] | Srivastava S, Santos A, Critchley K, Kim KS, Podsiadlo P et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010). doi: 10.1126/science.1177218 |
Schematic overview of the current research on the photo-processing of perovskites.
(a) Optical absorption spectra (dash curves) and PL spectra (solid curves) of CsPbX3 perovskite NCs with various halide compositions. SEM images of perovskite films produced by (b) thermal annealing, (c) nanosecond laser writing, and (d) nanosecond laser writing with addition of carbon quantum dots. Scale bar, 500 nm. (e) Optical images and PL mapping of a CsPbBr3 perovskite array during the erasing–recovery processes excited by UV light. Scale bars: 100 μm. Figure reproduced with permission from: (a) ref.43, Elsevier; (b–d) ref.69, John Wiley and Sons; ref.75, Springer Nature.
(a) Mechanism of UV light induced patterning of perovskite NCs. (b) Patterning of various perovskite NCs. SEM images of the CsPbBr3 microlenses (c) and surface gratings (d). Figure reproduced with permission from: (a, b) ref.42, under a Creative Commons AttributionLicense 4.0; (c, d) ref.53, John Wiley and Sons.
(a) Schematic of ultrafast laser–induced liquid nanophase separation and generation of CsPb(Br1−xIx)3 perovskite NCs. (b) PL mappings and spectra of CsPb(Br1−xIx)3 perovskite NCs. Scale bar: 10 μm. (c) PL mappings and spectra of perovskite NCs in the Cl−-Br−-I− codoped glass. Figure reproduced with permission from ref.33, American Association for the Advancement of Science.
(a) Schematic diagram of laser induced phase transition from CsPb2Br5 to CsPbBr3 inside a CsPb2Br5 microplatelet. (b) PL spectra of CsPbBr3 generated by laser irradiation with various times (65 s per time). (c) The integral PL intensity as a function of the excitation intensity. (d) Schematic diagram of the strong cavity mode spontaneous emission of the laser-written CsPbBr3 in the CsPb2Br5 microplatelet. Figure reproduced with permission from ref.97, American Chemical Society.
(a–d) Light induced shape evolution of CsPbBr3 nanostructures with an increase in irradiation. (e) Schematic of light-induced ligand removal mechanism and assembly of CsPbBr3 nanocubes. (f) High-angle annular dark-field scanning transmission electron microscopy image of assembled nanostructures. (g) Cubic and (h) spindle perovskite superlattices. Figure reproduced with permission from: ref.102, American Chemical Society; ref.105, John Wiley and Sons.
(a) SEM images of a CsPbBr3 nanowire with laser-patterned nanogratings. (b) A schematically nanowire laser with vertically emitting light from its upper face. (c) PL image of the nanowire laser. (d) Photodetector arrays based on laser-written perovskites. Figure reproduced with permission from: (a−c) ref.51, American Chemical Society; ref.70, John Wiley and Sons.
(a) Schematic illustration of micro-LED devices with laser-written perovskite NCs inside a glass. (b) A dynamic holographic display. (c) PL mapping of the 3D perovskite dots in glass. (d) PL mapping of a perovskite pattern with tunable emission wavelength. Figure reproduced with permission from ref.33, American Association for the Advancement of Science.