Citation: | Zheng ZH, Zhu SK, Chen Y, Chen HY, Chen JH. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electron Sci 1, 220012 (2022). doi: 10.29026/oes.2022.220012 |
[1] | Ishio H, Minowa J, Nosu K. Review and status of wavelength-division-multiplexing technology and its application. J Lightwave Technol 2, 448–463 (1984). doi: 10.1109/JLT.1984.1073653 |
[2] | Xu HN, Dai DX, Shi YC. Silicon Integrated nanophotonic devices for on-chip multi-mode interconnects. Appl Sci 10, 6365 (2020). doi: 10.3390/app10186365 |
[3] | Yu Y, Sun CL, Zhang XL. Silicon chip-scale space-division multiplexing: from devices to system. Sci China Inf Sci 61, 080403 (2018). doi: 10.1007/s11432-017-9449-4 |
[4] | Khonina SN, Kazanskiy NL, Butt MA, Karpeev SV. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127 |
[5] | Jiang WF, Miao JY, Li T. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system. Sci Rep 9, 13223 (2019). doi: 10.1038/s41598-019-49763-0 |
[6] | Dai DX, Li CL, Wang SP, Wu H, Shi YC et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonics Rev 12, 1700109 (2018). doi: 10.1002/lpor.201700109 |
[7] | Huang QD, Jin W, Chiang KS. Broadband mode switch based on a three-dimensional waveguide Mach–Zehnder interferometer. Opt Lett 42, 4877–4880 (2017). doi: 10.1364/OL.42.004877 |
[8] | Zheng ZH, Chen Y, Chen HY, Chen JH. Ultra-compact reconfigurable device for mode conversion and dual-mode DPSK demodulation via inverse design. Opt Express 29, 17718–17725 (2021). doi: 10.1364/OE.420874 |
[9] | Wang HW, Zhang Y, He Y, Zhu QM, Sun L et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv Opt Mater 7, 1801191 (2018). |
[10] | Sun CL, Wu WH, Yu Y, Chen GY, Zhang XL et al. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing. Nanophotonics 7, 1571–1580 (2018). doi: 10.1515/nanoph-2018-0053 |
[11] | Ashry I, Mao Y, Trichili A, Wang BW, Ng TK et al. A review of using few-mode fibers for optical sensing. IEEE Access 8, 179592–179605 (2020). doi: 10.1109/ACCESS.2020.3027965 |
[12] | Su YK, He Y, Chen HS, Li XY, Li GF. Perspective on mode-division multiplexing. Appl Phys Lett 118, 200502 (2021). doi: 10.1063/5.0046071 |
[13] | Yang ZY, Albrow-Owen T, Cai WW, Hasan T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722 |
[14] | Micó G, Gargallo B, Pastor D, Muñoz P. Integrated optic sensing spectrometer: concept and design. Sensors 19, 1018 (2019). doi: 10.3390/s19051018 |
[15] | Subramanian AZ, Ryckeboer E, Dhakal A, Peyskens F, Malik A et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photonics Res 3, B47–B59 (2015). doi: 10.1364/PRJ.3.000B47 |
[16] | Xiong J, Cai XS, Cui KY, Huang YD, Yang JW et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022). doi: 10.1364/OPTICA.440013 |
[17] | Zhang WY, Song HY, He X, Huang LQ, Zhang XY et al. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci Appl 10, 108 (2021). doi: 10.1038/s41377-021-00545-2 |
[18] | Wan NH, Meng F, Schröder T, Shiue RJ, Chen EH et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nat Commun 6, 7762 (2015). doi: 10.1038/ncomms8762 |
[19] | Tian Y, Li JH, Wu ZY, Chen YX, Zhu PK et al. Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF. Opt Express 25, 16603–16617 (2017). doi: 10.1364/OE.25.016603 |
[20] | Doerr CR, Zhang LM, Winzer PJ. Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating. J Lightwave Technol 29, 536–541 (2011). doi: 10.1109/JLT.2010.2097240 |
[21] | Yang ZY, Albrow-Owen T, Cui HX, Alexander-Webber J, Gu FX et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019). doi: 10.1126/science.aax8814 |
[22] | Yuan SF, Naveh D, Watanabe K, Taniguchi T, Xia FN. A wavelength-scale black phosphorus spectrometer. Nat Photonics 15, 601–607 (2021). doi: 10.1038/s41566-021-00787-x |
[23] | Li A, Fainman Y. On-chip spectrometers using stratified waveguide filters. Nat Commun 12, 2704 (2021). doi: 10.1038/s41467-021-23001-6 |
[24] | Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y |
[25] | Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6 |
[26] | Zhou JJ, Huang BL, Yan Z, Bünzli JCG. Emerging role of machine learning in light-matter interaction. Light Sci Appl 8, 84 (2019). doi: 10.1038/s41377-019-0192-4 |
[27] | Yang JW, Cui KY, Cai XS, Xiong J, Zhu HB et al. Ultraspectral imaging based on metasurfaces with freeform shaped meta‐atoms. Laser Photonics Rev 16, 2100663 (2022). doi: 10.1002/lpor.202100663 |
[28] | Ma W, Cheng F, Xu YH, Wen QL, Liu YM. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi‐supervised learning strategy. Adv Mater 31, 1901111 (2019). doi: 10.1002/adma.201901111 |
[29] | Ma W, Xu YH, Xiong B, Deng L, Peng RW et al. Pushing the limits of functionality‐multiplexing capability in metasurface design based on statistical machine learning. Adv Mater 34, 2110022 (2022). doi: 10.1002/adma.202110022 |
[30] | Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[31] | Cerjan B, Halas NJ. Toward a nanophotonic nose: a compressive sensing-enhanced, optoelectronic mid-Infrared spectrometer. ACS Photonics 6, 79–86 (2019). |
[32] | Wang Z, Yu ZF. Spectral analysis based on compressive sensing in nanophotonic structures. Opt Express 22, 25608–25614 (2014). doi: 10.1364/OE.22.025608 |
[33] | Kwak Y, Park SM, Ku Z, Urbas A, Kim YL. A pearl spectrometer. Nano Lett 21, 921–930 (2021). doi: 10.1021/acs.nanolett.0c03618 |
[34] | Zhang JH, Cheng ZW, Dong JJ, Zhang XL. Cascaded nanobeam spectrometer with high resolution and scalability. Optica 9, 517–521 (2022). doi: 10.1364/OPTICA.453483 |
[35] | Bao J, Bawendi MG. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015). doi: 10.1038/nature14576 |
[36] | Chang CC, Lee HN. On the estimation of target spectrum for filter-array based spectrometers. Opt Express 16, 1056–1061 (2008). doi: 10.1364/OE.16.001056 |
[37] | Cheng ZW, Zhao YH, Zhang JH, Zhou HL, Gao DS et al. Generalized modular spectrometers combining a compact nanobeam microcavity and computational reconstruction. ACS Photonics 9, 74–81 (2022). |
[38] | Zheng BJ, Li LF, Wang JZ, Zhuge MH, Su X et al. On‐chip measurement of photoluminescence with high sensitivity monolithic spectrometer. Adv Opt Mater 8, 2000191 (2020). doi: 10.1002/adom.202000191 |
[39] | Liu CY, Guo JS, Yu LW, Li J, Zhang M et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci Appl 10, 123 (2021). doi: 10.1038/s41377-021-00551-4 |
[40] | Xia FN, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat Nanotechnol 4, 839–843 (2009). doi: 10.1038/nnano.2009.292 |
[41] | Romagnoli M, Sorianello V, Midrio M, Koppens FHL, Huyghebaert C et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat Rev Mater 3, 392–414 (2018). doi: 10.1038/s41578-018-0040-9 |
[42] | Yan SQ, Zuo Y, Xiao SS, Oxenløwe LK, Ding YH. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron Adv 5, 210159 (2022). doi: 10.29026/oea.2022.210159 |
[43] | Gan XT, Shiue RJ, Gao YD, Meric I, Heinz TF et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 7, 883–887 (2013). doi: 10.1038/nphoton.2013.253 |
[44] | Shiue RJ, Gao YD, Wang YF, Peng C, Robertson AD et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett 15, 7288–7293 (2015). doi: 10.1021/acs.nanolett.5b02368 |
[45] | Buscema M, Island JO, Groenendijk DJ, Blanter SI, Steele GA et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev 44, 3691–3718 (2015). doi: 10.1039/C5CS00106D |
[46] | Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 7, 363–368 (2012). doi: 10.1038/nnano.2012.60 |
[47] | Li H, Anugrah Y, Koester SJ, Li M. Optical absorption in graphene integrated on silicon waveguides. Appl Phys Lett 101, 111110 (2012). doi: 10.1063/1.4752435 |
[48] | Edelman A. Eigenvalues and condition numbers of random matrices. SIAM J Matrix Anal Appl 9, 543–560 (1988). doi: 10.1137/0609045 |
[49] | Redding B, Liew SF, Sarma R, Cao H. Compact spectrometer based on a disordered photonic chip. Nat Photonics 7, 746–751 (2013). doi: 10.1038/nphoton.2013.190 |
Supplementary information for Towards integrated mode-division demultiplexing spectrometer by deep learning |
![]() |
(a) Illustration of the proposed mode-division demultiplexing (MDD) spectrometer. The multimode spectral signal (mode1–modek) dispersed in the branched waveguide structures and detected by graphene-photodetector units. The generated photocurrents I1–Im at unit1–unitm from the input multimode spectral signals are fed into a deep neural network (DNN) to extract the desired spectral profiles F1 (λ)–Fk (λ). (b) Structural parameters of a designed branched waveguide and graphene photodetector. Inset: the cross-section view of a silicon waveguide and graphene photodetector.
Simulated characterizations of the proposed device for the single-mode (TE1–TE4) spectrometer by Tikhonov regularization optimization. (a) Normalized photoresponses of two typical spectral detecting units. (b) Correlation functions of the spectral responses for different TE modes. (c, d) Recovered spectral profiles of dual peaks separated by 7 nm (c) and the same random spectra (d) for TE1–TE4.
Principle of the single-shot multimode reconstruction (SMR) algorithm. The unknown multimode spectra are imported to the proposed MDD spectrometer at the same time. The response photocurrents I1-Im are captured at unit1-unitm, and then are fed into the trained SMR-DNN as a pixel image to implement simultaneous reconstruction of different mode spectra in single shot.
Single-shot simultaneous multimode reconstructions from the trained SMR-DNN for TE1–TE4. (a) Dual spectral peaks resolution with light wavelength separated by 15 nm, (b) single peaks with FWHM-15 nm uniformly distributed in the bandwidth of 1500-1600 nm. (c–f) The construction of multimode spectra in different modes: (c) TE1, (d) TE2, (e) TE3, and (f) TE4.
Principle and performance of the designed multi-shot resolution-enhanced (MRE) architecture. (a) Principle of the MRE algorithm. The various single-mode photocurrent (T1–Tk) images are generated by the spectral responses of photodetecting arrays and are fed into MRE-DNN to obtain resolution-improved results. (b–d) Recovered results of dual spectral peaks with light wavelength separated by 3 nm (b), single peaks with FWHM-3 nm uniformly distributed in the bandwidth (c), and the constructed random spectra (d).