Zhang YC, Jiang QL, Long MQ, Han RZ, Cao KQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005
Citation: Zhang YC, Jiang QL, Long MQ, Han RZ, Cao KQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005 (2022). doi: 10.29026/oes.2022.220005

Review Open Access

Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications

More Information
  • Over the past two decades, femtosecond laser-induced periodic structures (femtosecond-LIPSs) have become ubiquitous in a variety of materials, including metals, semiconductors, dielectrics, and polymers. Femtosecond-LIPSs have become a useful laser processing method, with broad prospects in adjusting material properties such as structural color, data storage, light absorption, and luminescence. This review discusses the formation mechanism of LIPSs, specifically the LIPS formation processes based on the pump-probe imaging method. The pulse shaping of a femtosecond laser in terms of the time/frequency, polarization, and spatial distribution is an efficient method for fabricating high-quality LIPSs. Various LIPS applications are also briefly introduced. The last part of this paper discusses the LIPS formation mechanism, as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
  • 加载中
  • [1] Fork RL, Greene BI, Shank CV. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl Phys Lett 38, 671–672 (1981). doi: 10.1063/1.92500

    CrossRef Google Scholar

    [2] Chichkov BN, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63, 109–115 (1996). doi: 10.1007/BF01567637

    CrossRef Google Scholar

    [3] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [4] Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog Quant Electron 38, 119–156 (2014). doi: 10.1016/j.pquantelec.2014.03.002

    CrossRef Google Scholar

    [5] Yang QX, Liu HL, He S, Tian QY, Xu B et al. Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance. Opto-Electron Adv 4, 200005 (2021). doi: 10.29026/oea.2021.200005

    CrossRef Google Scholar

    [6] Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021).

    Google Scholar

    [7] Zhang YC, Jiang QL, Cao KQ, Chen TQ, Cheng K et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photonics Res 9, 839–847 (2021). doi: 10.1364/PRJ.418937

    CrossRef Google Scholar

    [8] Jia TQ, Chen HX, Huang M, Zhao FL, Qiu JR et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys Rev B 72, 125429 (2005). doi: 10.1103/PhysRevB.72.125429

    CrossRef Google Scholar

    [9] Wang JC, Guo CL. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals. Appl Phys Lett 87, 251914 (2005). doi: 10.1063/1.2146067

    CrossRef Google Scholar

    [10] Wang L, Chen QD, Cao XW, Buividas R, Wang XW et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci Appl 6, e17112 (2017). doi: 10.1038/lsa.2017.112

    CrossRef Google Scholar

    [11] Miyaji G, Miyazaki K, Zhang KF, Yoshifuji T, Fujita J. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt Express 20, 14848–14856 (2012). doi: 10.1364/OE.20.014848

    CrossRef Google Scholar

    [12] Xie HB, Zhao B, Cheng JL, Chamoli SK, Zou TT et al. Super-regular femtosecond laser nanolithography based on dual-interface plasmons coupling. Nanophotonics 10, 3831–3842 (2021). doi: 10.1515/nanoph-2021-0329

    CrossRef Google Scholar

    [13] Gnilitskyi I, Derrien TJY, Levy Y, Bulgakova NM, Mocek T et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z

    CrossRef Google Scholar

    [14] Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1, 210003 (2022).

    Google Scholar

    [15] Birnbaum M. Semiconductor surface damage produced by ruby lasers. J Appl Phys 36, 3688–3689 (1965). doi: 10.1063/1.1703071

    CrossRef Google Scholar

    [16] Sipe JE, Young JF, Preston JS, Van Driel HM. Laser-induced periodic surface structure. I. Theory. Phys Rev B 27, 1141–1154 (1983). doi: 10.1103/PhysRevB.27.1141

    CrossRef Google Scholar

    [17] Shimotsuma Y, Kazansky PG, Qiu JR, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 91, 247405 (2003). doi: 10.1103/PhysRevLett.91.247405

    CrossRef Google Scholar

    [18] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J Appl Phys 97, 013538 (2005). doi: 10.1063/1.1827919

    CrossRef Google Scholar

    [19] Miyaji G, Miyazaki K. Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses. Appl Phys Lett 89, 191902 (2006). doi: 10.1063/1.2374858

    CrossRef Google Scholar

    [20] Bhardwaj VR, Simova E, Rajeev PP, Hnatovsky C, Taylor RS et al. Optically produced arrays of planar nanostructures inside fused silica. Phys Rev Lett 96, 057404 (2006). doi: 10.1103/PhysRevLett.96.057404

    CrossRef Google Scholar

    [21] Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009). doi: 10.1021/nn900654v

    CrossRef Google Scholar

    [22] Höhm S, Rosenfeld A, Krüger J, Bonse J. Femtosecond laser-induced periodic surface structures on silica. J Appl Phys 112, 014901 (2012). doi: 10.1063/1.4730902

    CrossRef Google Scholar

    [23] Bonse J, Krüger J, Höhm S, Rosenfeld A. Femtosecond laser-induced periodic surface structures. J Laser Appl 24, 042006 (2012). doi: 10.2351/1.4712658

    CrossRef Google Scholar

    [24] Reif J, Varlamova O, Uhlig S, Varlamov S, Bestehorn M. On the physics of self-organized nanostructure formation upon femtosecond laser ablation. Appl Phys A 117, 179–184 (2014). doi: 10.1007/s00339-014-8339-x

    CrossRef Google Scholar

    [25] Cheng K, Liu JK, Cao KQ, Chen L, Zhang YC et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film. Phys Rev B 98, 184106 (2018). doi: 10.1103/PhysRevB.98.184106

    CrossRef Google Scholar

    [26] Rudenko A, Mauclair C, Garrelie F, Stoian R, Colombier JP. Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nanophotonics 8, 459–465 (2019). doi: 10.1515/nanoph-2018-0206

    CrossRef Google Scholar

    [27] Lin ZY, Liu HG, Ji LF, Lin WX, Hong MH. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20, 4947–4952 (2020). doi: 10.1021/acs.nanolett.0c01013

    CrossRef Google Scholar

    [28] Tsibidis GD, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B 92, 041405(R) (2015).

    Google Scholar

    [29] Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 385–407 (2013). doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [30] Fraggelakis F, Mincuzzi G, Lopez J, Manek-Hönninger I, Kling R. Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl Surf Sci 470, 677–686 (2019). doi: 10.1016/j.apsusc.2018.11.106

    CrossRef Google Scholar

    [31] Zhang DS, Li XZ, Fu Y, Yao QH, Li ZG et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron Adv 5, 210066 (2022).

    Google Scholar

    [32] Parker AR. 515 million years of structural colour. J Opt A Pure Appl Opt 2, R15–R28 (2000). doi: 10.1088/1464-4258/2/6/201

    CrossRef Google Scholar

    [33] Wu C, Crouch CH, Zhao L, Carey JE, Younkin R et al. Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78, 1850–1852 (2001). doi: 10.1063/1.1358846

    CrossRef Google Scholar

    [34] Bricchi E, Klappauf BG, Kazansky PG. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt Lett 29, 119–121 (2004). doi: 10.1364/OL.29.000119

    CrossRef Google Scholar

    [35] Vorobyev AY, Guo CL. Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92, 041914 (2008). doi: 10.1063/1.2834902

    CrossRef Google Scholar

    [36] Shimotsuma Y, Sakakura M, Kazansky PG, Beresna M, Qiu JR et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv Mater 22, 4039–4043 (2010). doi: 10.1002/adma.201000921

    CrossRef Google Scholar

    [37] Xiong PX, Jia TQ, Jia X, Feng DH, Zhang SA et al. Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams. New J Phys 13, 023044 (2011). doi: 10.1088/1367-2630/13/2/023044

    CrossRef Google Scholar

    [38] Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58

    CrossRef Google Scholar

    [39] Crouch CH, Carey JE, Shen M, Mazur E, Génin FY. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl Phys A 79, 1635–1641 (2004). doi: 10.1007/s00339-004-2676-0

    CrossRef Google Scholar

    [40] Solodar A, Cerkauskaite A, Drevinskas R, Kazansky PG, Abdulhalim I. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. Appl Phys Lett 113, 081603 (2018). doi: 10.1063/1.5040692

    CrossRef Google Scholar

    [41] Lopez-Santos C, Puerto D, Siegel J, Macias-Montero M, Florian C et al. Anisotropic resistivity surfaces produced in ITO films by laser-induced nanoscale self-organization. Adv Opt Mater 9, 2001086 (2021). doi: 10.1002/adom.202001086

    CrossRef Google Scholar

    [42] Garrelie F, Colombier JP, Pigeon F, Tonchev S, Faure N et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt Express 19, 9035–9043 (2011). doi: 10.1364/OE.19.009035

    CrossRef Google Scholar

    [43] Tsibidis GD, Skoulas E, Papadopoulos A, Stratakis E. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers. Phys Rev B 94, 081305(R) (2016).

    Google Scholar

    [44] Emmony DC, Howson RP, Willis LJ. Laser mirror damage in germanium at 10.6 μm. Appl Phys Lett 23, 598–600 (1973). doi: 10.1063/1.1654761

    CrossRef Google Scholar

    [45] Csete M, Marti O, Bor Z. Laser-induced periodic surface structures on different poly-carbonate films. Appl Phys A 73, 521–526 (2001). doi: 10.1007/s003390100973

    CrossRef Google Scholar

    [46] Austin DR, Kafka KRP, Lai YH, Wang Z, Zhang KK et al. High spatial frequency laser induced periodic surface structure formation in germanium by mid-IR femtosecond pulses. J Appl Phys 120, 143103 (2016). doi: 10.1063/1.4964737

    CrossRef Google Scholar

    [47] Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J. Laser-induced periodic surface structures-a scientific evergreen. IEEE J Sel Top Quantum Electron 23, 9000615 (2017).

    Google Scholar

    [48] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106, 104910 (2009). doi: 10.1063/1.3261734

    CrossRef Google Scholar

    [49] Zhou K, Jia X, Jia TQ, Cheng K, Cao KQ et al. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging. J Appl Phys 121, 104301 (2017). doi: 10.1063/1.4978375

    CrossRef Google Scholar

    [50] Gurevich EL, Gurevich SV. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl Surf Sci 302, 118–123 (2014). doi: 10.1016/j.apsusc.2013.10.141

    CrossRef Google Scholar

    [51] Liu JK, Jia TQ, Zhao HW, Huang YQ. Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water. J Phys D Appl Phys 49, 435105 (2016). doi: 10.1088/0022-3727/49/43/435105

    CrossRef Google Scholar

    [52] Liu JK, Jia X, Wu WS, Cheng K, Feng DH et al. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse. Opt Express 26, 6302–6315 (2018). doi: 10.1364/OE.26.006302

    CrossRef Google Scholar

    [53] Fuentes-Edfuf Y, Sánchez-Gil JA, Florian C, Giannini V, Solis J et al. Surface plasmon polaritons on rough metal surfaces: role in the formation of laser-induced periodic surface structures. ACS Omega 4, 6939–6946 (2019). doi: 10.1021/acsomega.9b00546

    CrossRef Google Scholar

    [54] Kafka KRP, Austin DR, Li H, Yi AY, Cheng J et al. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove. Opt Express 23, 19432–19441 (2015). doi: 10.1364/OE.23.019432

    CrossRef Google Scholar

    [55] Jia X, Jia TQ, Peng NN, Feng DH, Zhang SA et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging. J Appl Phys 115, 143102 (2014). doi: 10.1063/1.4870445

    CrossRef Google Scholar

    [56] Cheng K, Cao KQ, Zhang YC, Han RZ, Feng DH et al. Ultrafast dynamics of subwavelength periodic ripples induced by single femtosecond pulse: from noble to common metals. J Phys D Appl Phys 53, 285102 (2020). doi: 10.1088/1361-6463/ab82d9

    CrossRef Google Scholar

    [57] Cao KQ, Chen L, Wu HC, Liu JK, Cheng K et al. Large-area commercial-grating-quality subwavelength periodic ripples on silicon efficiently fabricated by gentle ablation with femtosecond laser interference via two cylindrical lenses. Opt Laser Technol 131, 106441 (2020). doi: 10.1016/j.optlastec.2020.106441

    CrossRef Google Scholar

    [58] Derrien TJY, Itina TE, Torres R, Sarnet T, Sentis M. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J Appl Phys 114, 083104 (2013). doi: 10.1063/1.4818433

    CrossRef Google Scholar

    [59] Tsibidis GD, Barberoglou M, Loukakos PA, Stratakis E, Fotakis C. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys Rev B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316

    CrossRef Google Scholar

    [60] Barberoglou M, Tsibidis GD, Gray D, Magoulakis E, Fotakis C et al. The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation. Appl Phys A 113, 273–283 (2013). doi: 10.1007/s00339-013-7893-y

    CrossRef Google Scholar

    [61] Tsibidis GD, Stratakis E, Loukakos PA, Fotakis C. Controlled ultrashort-pulse laser-induced ripple formation on semiconductors. Appl Phys A 114, 57–68 (2014). doi: 10.1007/s00339-013-8113-5

    CrossRef Google Scholar

    [62] Miyaji G, Hagiya M, Miyazaki K. Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse. Phys Rev B 96, 045122 (2017). doi: 10.1103/PhysRevB.96.045122

    CrossRef Google Scholar

    [63] Wortmann D, Gottmann J, Brandt N, Horn-Solle H. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt Express 16, 1517–1522 (2008). doi: 10.1364/OE.16.001517

    CrossRef Google Scholar

    [64] Gottmann J, Wortmann D, Hörstmann-Jungemann M. Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching. Appl Surf Sci 255, 5641–5646 (2009). doi: 10.1016/j.apsusc.2008.10.097

    CrossRef Google Scholar

    [65] Richter S, Miese C, Döring S, Zimmermann F, Withford MJ et al. Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE™. Opt Mater Express 3, 1161–1166 (2013). doi: 10.1364/OME.3.001161

    CrossRef Google Scholar

    [66] Hnatovsky C, Taylor RS, Rajeev PP, Simova E, Bhardwaj VR et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl Phys Lett 87, 014104 (2005). doi: 10.1063/1.1991991

    CrossRef Google Scholar

    [67] Corbari C, Champion A, Gecevičius M, Beresna M, Bellouard Y et al. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass. Opt Express 21, 3946–3958 (2013). doi: 10.1364/OE.21.003946

    CrossRef Google Scholar

    [68] Taylor RS, Hnatovsky C, Simova E, Rajeev PP, Rayner DM et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt Lett 32, 2888–2890 (2007). doi: 10.1364/OL.32.002888

    CrossRef Google Scholar

    [69] Juodkazis S, Nishimura K, Okuno H, Tabuchi Y, Matsuo S et al. Three-dimensional laser microfabrication of metals, semiconductors, and dielectrics. Proc SPIE 6732, 67320B (2007). doi: 10.1117/12.751889

    CrossRef Google Scholar

    [70] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev 2, 26–46 (2008). doi: 10.1002/lpor.200710031

    CrossRef Google Scholar

    [71] Liao Y, Pan WJ, Cui Y, Qiao LL, Bellouard Y et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt Lett 40, 3623–3626 (2015). doi: 10.1364/OL.40.003623

    CrossRef Google Scholar

    [72] Liao Y, Ni JL, Qiao LL, Huang M, Bellouard Y et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica 2, 329–334 (2015). doi: 10.1364/OPTICA.2.000329

    CrossRef Google Scholar

    [73] Nayak BK, Gupta MC. Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin. Opt Lasers Eng 48, 966–973 (2010). doi: 10.1016/j.optlaseng.2010.05.009

    CrossRef Google Scholar

    [74] Volkov SN, Kaplan AE, Miyazaki K. Evanescent field at nanocorrugated dielectric surface. Appl Phys Lett 94, 041104 (2009). doi: 10.1063/1.3075055

    CrossRef Google Scholar

    [75] Dong YY, Molian P. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser. Appl Phys Lett 84, 10–12 (2004). doi: 10.1063/1.1637948

    CrossRef Google Scholar

    [76] Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond. Phys Rev B 79, 125436 (2009). doi: 10.1103/PhysRevB.79.125436

    CrossRef Google Scholar

    [77] Jia TQ, Zhao FL, Huang M, Chen HX, Qiu JR et al. Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams. Appl Phys Lett 88, 111117 (2006). doi: 10.1063/1.2186067

    CrossRef Google Scholar

    [78] Le Harzic R, Dörr D, Sauer D, Stracke F, Zimmermann H. Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation. Appl Phys Lett 98, 211905 (2011). doi: 10.1063/1.3593493

    CrossRef Google Scholar

    [79] Hou SS, Huo YY, Xiong PX, Zhang Y, Zhang SA et al. Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses. J Phys D Appl Phys 44, 505401 (2011). doi: 10.1088/0022-3727/44/50/505401

    CrossRef Google Scholar

    [80] Huang M, Cheng Y, Zhao FL, Xu ZZ. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale. Ann Phys 525, 74–86 (2013). doi: 10.1002/andp.201200136

    CrossRef Google Scholar

    [81] Wang L, Xu BB, Cao XW, Li QK, Tian WJ et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 4, 637–642 (2017). doi: 10.1364/OPTICA.4.000637

    CrossRef Google Scholar

    [82] Miyazaki K, Miyaji G. Nanograting formation through surface plasmon fields induced by femtosecond laser pulses. J Appl Phys 114, 153108 (2013). doi: 10.1063/1.4826078

    CrossRef Google Scholar

    [83] Makin VS, Makin RS, Vorobyev AY, Guo CL. Dissipative nanostructures and Feigenbaum's universality in the "Metal-high-power ultrashort-pulsed polarized radiation" nonequilibrium nonlinear dynamical system. Tech Phys Lett 34, 387–390 (2008). doi: 10.1134/S1063785008050088

    CrossRef Google Scholar

    [84] Fuentes-Edfuf Y, Sánchez-Gil JA, Garcia-Pardo M, Serna R, Tsibidis GD et al. Tuning the period of femtosecond laser induced surface structures in steel: from angled incidence to quill writing. Appl Surf Sci 493, 948–955 (2019). doi: 10.1016/j.apsusc.2019.07.106

    CrossRef Google Scholar

    [85] Zhang H, Colombier JP, Li C, Faure N, Cheng GH et al. Coherence in ultrafast laser-induced periodic surface structures. Phys Rev B 92, 174109 (2015). doi: 10.1103/PhysRevB.92.174109

    CrossRef Google Scholar

    [86] Rahmani M, Lei DY, Giannini V, Lukiyanchuk B, Ranjbar M et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett 12, 2101–2106 (2012). doi: 10.1021/nl3003683

    CrossRef Google Scholar

    [87] Okamuro K, Hashida M, Miyasaka Y, Ikuta Y, Tokita S et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys Rev B 82, 165417 (2010). doi: 10.1103/PhysRevB.82.165417

    CrossRef Google Scholar

    [88] Jia TQ, Chen HX, Huang M, Zhao FL, Li XX et al. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals. Phys Rev B 73, 054105 (2006). doi: 10.1103/PhysRevB.73.054105

    CrossRef Google Scholar

    [89] Zhou K, Jia X, Xi HX, Liu JK, Feng DH et al. Periodic surface structures on Ni-Fe film induced by a single femtosecond laser pulse with diffraction rings. Chin Opt Lett 15, 022201 (2017). doi: 10.3788/COL201715.022201

    CrossRef Google Scholar

    [90] Hashida M, Miyasaka Y, Ikuta Y, Tokita S, Sakabe S. Crystal structures on a copper thin film with a surface of periodic self-organized nanostructures induced by femtosecond laser pulses. Phys Rev B 83, 235413 (2011). doi: 10.1103/PhysRevB.83.235413

    CrossRef Google Scholar

    [91] Bashir S, Rafique MS, Nathala CS, Ajami AA, Husinsky W. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol. Phys B 513, 48–57 (2017). doi: 10.1016/j.physb.2017.03.008

    CrossRef Google Scholar

    [92] Sakabe S, Hashida M, Tokita S, Namba S, Okamuro K. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys Rev B 79, 033409 (2009).

    Google Scholar

    [93] Winter J, Rapp S, Schmidt M, Huber HP. Ultrafast laser processing of copper: a comparative study of experimental and simulated transient optical properties. Appl Surf Sci 417, 2–15 (2017). doi: 10.1016/j.apsusc.2017.02.070

    CrossRef Google Scholar

    [94] Chan WL, Averback RS, Cahill DG. Nonlinear energy absorption of femtosecond laser pulses in noble metals. Appl Phys A 97, 287–294 (2009). doi: 10.1007/s00339-009-5383-z

    CrossRef Google Scholar

    [95] Murphy RD, Torralva B, Adams DP, Yalisove SM. Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate. Appl Phys Lett 102, 211101 (2013). doi: 10.1063/1.4807830

    CrossRef Google Scholar

    [96] Murphy RD, Torralva B, Adams DP, Yalisove SM. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features. Appl Phys Lett 104, 231117 (2014). doi: 10.1063/1.4882998

    CrossRef Google Scholar

    [97] Yang M, Wu Q, Chen ZD, Zhang B, Tang BQ et al. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse. Opt Lett 39, 343–346 (2014). doi: 10.1364/OL.39.000343

    CrossRef Google Scholar

    [98] Das SK, Messaoudi H, Debroy A, McGlynn E, Grunwald R. Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials. Opt Mater Express 3, 1705–1715 (2013). doi: 10.1364/OME.3.001705

    CrossRef Google Scholar

    [99] Liu JK, Zhao H, Cheng K, Ju JQ, Feng DH et al. Ultrafast dynamics of the thin surface plasma layer and the periodic ripples formation on GaP crystal irradiated by a single femtosecond laser pulse. Opt Express 27, 37859–37876 (2019). doi: 10.1364/OE.27.037859

    CrossRef Google Scholar

    [100] Murphy RD, Torralva B, Adams DP, Yalisove SM. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si. Appl Phys Lett 103, 141104 (2013). doi: 10.1063/1.4823588

    CrossRef Google Scholar

    [101] Garcia-Lechuga M, Puerto D, Fuentes-Edfuf Y, Solis J, Siegel J. Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures. ACS Photonics 3, 1961–1967 (2016). doi: 10.1021/acsphotonics.6b00514

    CrossRef Google Scholar

    [102] Jiang L, Wang AD, Li B, Cui TH, Lu YF. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl 7, 17134 (2018). doi: 10.1038/lsa.2017.134

    CrossRef Google Scholar

    [103] Guay JM, Lesina AC, Baxter J, Killaire G, Ramunno L et al. Topography tuning for plasmonic color enhancement via picosecond laser bursts. Adv Opt Mater 6, 1800189 (2018). doi: 10.1002/adom.201800189

    CrossRef Google Scholar

    [104] Giannuzzi G, Gaudiuso C, Di Franco C, Scamarcio G, Lugarà PM et al. Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays. Opt Lasers Eng 114, 15–21 (2019). doi: 10.1016/j.optlaseng.2018.10.006

    CrossRef Google Scholar

    [105] Han WN, Jiang L, Li XW, Wang QS, Li H et al. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay. Opt Express 22, 15820–15828 (2014). doi: 10.1364/OE.22.015820

    CrossRef Google Scholar

    [106] Zhao Z, Zhao B, Lei YH, Yang JJ, Guo CL. Laser-induced regular nanostructure chains within microgrooves of Fe-based metallic glass. Appl Surf Sci 529, 147156 (2020). doi: 10.1016/j.apsusc.2020.147156

    CrossRef Google Scholar

    [107] Shi XS, Jiang L, Li X, Wang SM, Yuan YP et al. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures. Opt Lett 38, 3743–3746 (2013). doi: 10.1364/OL.38.003743

    CrossRef Google Scholar

    [108] Hasegawa S, Hayasaki Y. Holographic femtosecond laser manipulation for advanced material processing. Adv Opt Technol 5, 39–54 (2016). doi: 10.5937/savteh1601039M

    CrossRef Google Scholar

    [109] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase fresnel lenses. Opt Lett 31, 1705–1707 (2006). doi: 10.1364/OL.31.001705

    CrossRef Google Scholar

    [110] Hasegawa S, Hayasaki Y. Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator. Opt Rev 14, 208–213 (2007). doi: 10.1007/s10043-007-0208-9

    CrossRef Google Scholar

    [111] Li BH, Jiang L, Li XW, Lin ZM, Huang LL et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping. Adv Opt Mater 6, 1801021 (2018). doi: 10.1002/adom.201801021

    CrossRef Google Scholar

    [112] Lin YH, Shi H, Jia TQ. Distortion and light intensity correction for spatiotemporal-interference-based spatial shaping. Laser Optoelectron Prog 58, 0314002 (2021). doi: 10.3788/LOP202158.0314002

    CrossRef Google Scholar

    [113] Shi H, Lin YH, Jia TQ, Cao KQ, Zhang YC et al. Efficient processing of super-hydrophobic biomimetic structures on stainless steel surfaces by spatiotemporal interference of two femtosecond laser beams based on spatial light modulator. Acta Photon Sin 50, 0650110 (2021).

    Google Scholar

    [114] Huang J, Jiang L, Li XW, Wei QS, Wang ZP et al. Cylindrically focused nonablative femtosecond laser processing of long-range uniform periodic surface structures with tunable diffraction efficiency. Adv Opt Mater 7, 1900706 (2019). doi: 10.1002/adom.201900706

    CrossRef Google Scholar

    [115] Zou TT, Zhao B, Xin W, Wang Y, Wang B et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci Appl 9, 69 (2020). doi: 10.1038/s41377-020-0311-2

    CrossRef Google Scholar

    [116] Dostovalov A, Bronnikov K, Korolkov V, Babin S, Mitsai E et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12, 13431–13441 (2020). doi: 10.1039/D0NR02182B

    CrossRef Google Scholar

    [117] Cao KQ, Chen L, Cheng K, Sun ZR, Jia TQ. Regular uniform large-area subwavelength nanogratings fabricated by the interference of two femtosecond laser beams via cylindrical lens. Chin Opt Lett 18, 093201 (2020). doi: 10.3788/COL202018.093201

    CrossRef Google Scholar

    [118] Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021). doi: 10.29026/oea.2021.200036

    CrossRef Google Scholar

    [119] Allegre OJ, Jin Y, Perrie W, Ouyang J, Fearon E et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt Express 21, 21198–21207 (2013). doi: 10.1364/OE.21.021198

    CrossRef Google Scholar

    [120] Allegre OJ, Perrie W, Edwardson SP, Dearden G, Watkins KG. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses. J Opt 14, 085601 (2012). doi: 10.1088/2040-8978/14/8/085601

    CrossRef Google Scholar

    [121] Jin Y, Allegre OJ, Perrie W, Abrams K, Ouyang J et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21, 25333–25343 (2013). doi: 10.1364/OE.21.025333

    CrossRef Google Scholar

    [122] Ouyang J, Perrie W, Allegre OJ, Heil T, Jin Y et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt Express 23, 12562–12572 (2015). doi: 10.1364/OE.23.012562

    CrossRef Google Scholar

    [123] Beresna M, Gecevičius M, Kazansky PG, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 98, 201101 (2011). doi: 10.1063/1.3590716

    CrossRef Google Scholar

    [124] Anoop KK, Rubano A, Fittipaldi R, Wang X, Paparo D et al. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate. Appl Phys Lett 104, 241604 (2014).

    Google Scholar

    [125] Hnatovsky C, Shvedov V, Krolikowski W, Rode A. Revealing local field structure of focused ultrashort pulses. Phys Rev Lett 106, 123901 (2011). doi: 10.1103/PhysRevLett.106.123901

    CrossRef Google Scholar

    [126] Lou K, Qian SX, Wang XL, Li YN, Gu B et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Opt Express 20, 120–127 (2012). doi: 10.1364/OE.20.000120

    CrossRef Google Scholar

    [127] Tsibidis GD, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett 40, 5172–5175 (2015). doi: 10.1364/OL.40.005172

    CrossRef Google Scholar

    [128] Nivas JJJ, Allahyari E, Cardano F, Rubano A, Fittipaldi R et al. Vector vortex beams generated by q-plates as a versatile route to direct fs laser surface structuring. Appl Surf Sci 471, 1028–1033 (2019). doi: 10.1016/j.apsusc.2018.12.091

    CrossRef Google Scholar

    [129] Nivas JJJ, He ST, Rubano A, Vecchione A, Paparo D et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep 5, 17929 (2015). doi: 10.1038/srep17929

    CrossRef Google Scholar

    [130] Jia TQ, Baba M, Suzuki M, Ganeev RA, Kuroda H et al. Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses. Opt Express 16, 1874–1878 (2008). doi: 10.1364/OE.16.001874

    CrossRef Google Scholar

    [131] Jia X, Jia TQ, Ding LE, Xiong PX, Deng L et al. Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams. Opt Lett 34, 788–790 (2009). doi: 10.1364/OL.34.000788

    CrossRef Google Scholar

    [132] Peng NN, Huo YY, Zhou K, Jia X, Pan J et al. The development of femtosecond laser-induced periodic nanostructures and their optical properties. Acta Phys Sin 62, 094201 (2013). doi: 10.7498/aps.62.094201

    CrossRef Google Scholar

    [133] Jia X, Jia TQ, Zhang SA, Sun ZR, Qiu JR et al. Manipulation of cross-linked micro/nanopatterns on ZnO by adjusting the femtosecond-laser polarizations of four-beam interference. Appl Phys A 114, 1333–1338 (2014). doi: 10.1007/s00339-013-7975-x

    CrossRef Google Scholar

    [134] Bonse J, Höhm S, Rosenfeld A, Krüger J. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti: sapphire femtosecond laser pulses in air. Appl Phys A 110, 547–551 (2013). doi: 10.1007/s00339-012-7140-y

    CrossRef Google Scholar

    [135] Liao Y, Cheng Y, Liu CN, Song JX, He F et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip 13, 1626–1631 (2013). doi: 10.1039/c3lc41171k

    CrossRef Google Scholar

    [136] Liu JK, Jia TQ, Zhou K, Feng DH, Zhang SA et al. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser. Opt Express 22, 32361–32370 (2014). doi: 10.1364/OE.22.032361

    CrossRef Google Scholar

    [137] Huang M, Xu ZZ. Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons. Laser Photonics Rev 8, 633–652 (2014). doi: 10.1002/lpor.201300212

    CrossRef Google Scholar

    [138] Miyaji G, Miyazaki K. Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses. Opt Express 24, 4648–4653 (2016). doi: 10.1364/OE.24.004648

    CrossRef Google Scholar

    [139] Li ZZ, Wang L, Fan H, Yu YH, Chen QD et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci Appl 9, 41 (2020). doi: 10.1038/s41377-020-0275-2

    CrossRef Google Scholar

    [140] Dusser B, Sagan Z, Soder H, Faure N, Colombier JP et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913–2924 (2010). doi: 10.1364/OE.18.002913

    CrossRef Google Scholar

    [141] Li GQ, Li JW, Yang L, Li XH, Hu YL et al. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci 276, 203–209 (2013). doi: 10.1016/j.apsusc.2013.03.067

    CrossRef Google Scholar

    [142] Vorobyev AY, Guo CL. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J Appl Phys 103, 043513 (2008). doi: 10.1063/1.2842403

    CrossRef Google Scholar

    [143] Gräf S, Kunz C, Undisz A, Wonneberger R, Rettenmayr M et al. Mechano-responsive colour change of laser-induced periodic surface structures. Appl Surf Sci 471, 645–651 (2019). doi: 10.1016/j.apsusc.2018.12.051

    CrossRef Google Scholar

    [144] Long JY, Fan PX, Zhong ML, Zhang HJ, Xie YD et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci 311, 461–467 (2014). doi: 10.1016/j.apsusc.2014.05.090

    CrossRef Google Scholar

    [145] Yao JW, Zhang CY, Liu HY, Dai QF, Wu LJ et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 258, 7625–7632 (2012). doi: 10.1016/j.apsusc.2012.04.105

    CrossRef Google Scholar

    [146] Li GQ, Li JW, Hu YL, Zhang CC, Li XH et al. Femtosecond laser color marking stainless steel surface with different wavelengths. Appl Phys A 118, 1189–1196 (2015). doi: 10.1007/s00339-014-8868-3

    CrossRef Google Scholar

    [147] Liu W, Jiang L, Han WN, Hu J, Li XW et al. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains. Opt Express 27, 9782–9793 (2019). doi: 10.1364/OE.27.009782

    CrossRef Google Scholar

    [148] Huang J, Jiang L, Li XW, Wang AD, Wang Z et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics 8, 869–878 (2019). doi: 10.1515/nanoph-2019-0056

    CrossRef Google Scholar

    [149] Zhang CY, Yao JW, Liu HY, Dai QF, Wu LJ et al. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses. Opt Lett 37, 1106–1108 (2012). doi: 10.1364/OL.37.001106

    CrossRef Google Scholar

    [150] Hwang JS, Park JE, Kim GW, Lee H, Yang MY. Fabrication of printable nanograting using solution-based laser-induced periodic surface structure process. Appl Surf Sci 547, 149178 (2021). doi: 10.1016/j.apsusc.2021.149178

    CrossRef Google Scholar

    [151] Gnilitskyi I, Gruzdev V, Bulgakova NM, Mocek T, Orazi L. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Appl Phys Lett 109, 143101 (2016). doi: 10.1063/1.4963784

    CrossRef Google Scholar

    [152] Bricchi E, Kazansky PG. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl Phys Lett 88, 111119 (2006). doi: 10.1063/1.2185587

    CrossRef Google Scholar

    [153] Lei YH, Sakakura M, Wang L, Yu YH, Wang HJ et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica 8, 1365–1371 (2021). doi: 10.1364/OPTICA.433765

    CrossRef Google Scholar

    [154] Zhang JY, Gecevičius M, Beresna M, Kazansky PG. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901

    CrossRef Google Scholar

    [155] Wang HJ, Lei YH, Wang L, Sakakura M, Yu YH et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass. Laser Photonics Rev 16, 2100563 (2022).

    Google Scholar

    [156] Beresna M, Gecevičius M, Kazansky PG. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt Mater Express 1, 783–795 (2011). doi: 10.1364/OME.1.000783

    CrossRef Google Scholar

    [157] Drevinskas R, Kazansky PG. High-performance geometric phase elements in silica glass. APL Photonics 2, 066104 (2017). doi: 10.1063/1.4984066

    CrossRef Google Scholar

    [158] Brasselet E, Royon A, Canioni L. Dense arrays of microscopic optical vortex generators from femtosecond direct laser writing of radial birefringence in glass. Appl Phys Lett 100, 181901 (2012). doi: 10.1063/1.4705414

    CrossRef Google Scholar

    [159] Fernandes LA, Grenier JR, Herman PR, Aitchison JS, Marques PVS. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica. Opt Express 19, 11992–11999 (2011). doi: 10.1364/OE.19.011992

    CrossRef Google Scholar

    [160] Beresna M, Kazansky PG. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass. Opt Lett 35, 1662–1664 (2010). doi: 10.1364/OL.35.001662

    CrossRef Google Scholar

    [161] Drevinskas R, Beresna M, Gecevičius M, Khenkin M, Kazanskii AG et al. Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon. Appl Phys Lett 106, 171106 (2015). doi: 10.1063/1.4919538

    CrossRef Google Scholar

    [162] Drevinskas R, Beresna M, Zhang JY, Kazanskii AG, Kazansky PG. Ultrafast laser-induced metasurfaces for geometric phase manipulation. Adv Opt Mater 5, 1600575 (2017). doi: 10.1002/adom.201600575

    CrossRef Google Scholar

    [163] Song J, Dai Y, Tao WJ, Gong M, Ma GH et al. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser. Appl Surf Sci 363, 664–669 (2016). doi: 10.1016/j.apsusc.2015.12.096

    CrossRef Google Scholar

    [164] Cerkauskaite A, Drevinskas R, Solodar A, Abdulhalim I, Kazansky PG. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 4, 2944–2951 (2017). doi: 10.1021/acsphotonics.7b01082

    CrossRef Google Scholar

    [165] Zhang FZ, Chen L, Zhang YC, Jiang QL, Feng DH et al. High-performance birefringence of periodic nanostructures in FTO thin film fabricated by IR-UV femtosecond laser. Front Phys 10, 861389 (2022). doi: 10.3389/fphy.2022.861389

    CrossRef Google Scholar

    [166] Chen L, Cao KQ, Liu JK, Jia TQ, Li YY et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens. Opt Express 28, 30094–30106 (2020). doi: 10.1364/OE.402037

    CrossRef Google Scholar

    [167] Li H, Zhang CY, Li XF, Xiang J, Tie SL et al. Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation. Opt Express 23, 30118–30126 (2015). doi: 10.1364/OE.23.030118

    CrossRef Google Scholar

    [168] Vorobyev AY, Guo CL. Femtosecond laser blackening of platinum. J Appl Phys 104, 053516 (2008). doi: 10.1063/1.2975989

    CrossRef Google Scholar

    [169] Vorobyev AY, Guo CL. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals. Appl Phys A 86, 321–324 (2007). doi: 10.1007/s00339-006-3800-0

    CrossRef Google Scholar

    [170] Vorobyev AY, Topkov AN, Gurin OV, Svich VA, Guo CL. Enhanced absorption of metals over ultrabroad electromagnetic spectrum. Appl Phys Lett 95, 121106 (2009). doi: 10.1063/1.3227668

    CrossRef Google Scholar

    [171] Vorobyev AY, Guo CL. Direct creation of black silicon using femtosecond laser pulses. Appl Surf Sci 257, 7291–7294 (2011). doi: 10.1016/j.apsusc.2011.03.106

    CrossRef Google Scholar

    [172] Yang J, Luo FF, Kao TS, Li X, Ho GW et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl 3, e185 (2014). doi: 10.1038/lsa.2014.66

    CrossRef Google Scholar

    [173] Wang PQ, Liu Z, Xu KC, Blackwood DJ, Hong MH et al. Periodic upright nanopyramids for light management applications in ultrathin crystalline silicon solar cells. IEEE J Photovolt 7, 493–501 (2017). doi: 10.1109/JPHOTOV.2016.2641298

    CrossRef Google Scholar

    [174] Zhao QZ, Ciobanu F, Malzer S, Wang LJ. Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring. Appl Phys Lett 91, 121107 (2007). doi: 10.1063/1.2786863

    CrossRef Google Scholar

    [175] Pan J, Jia TQ, Huo YY, Jia X, Feng DH et al. Great enhancement of near band-edge emission of ZnSe two-dimensional complex nanostructures fabricated by the interference of three femtosecond laser beams. J Appl Phys 114, 093102 (2013). doi: 10.1063/1.4820462

    CrossRef Google Scholar

    [176] Jia X, Jia TQ, Zhang Y, Xiong PX, Feng DH et al. Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams. Opt Express 18, 14401–14408 (2010). doi: 10.1364/OE.18.014401

    CrossRef Google Scholar

    [177] Liu P, Wang WJ, Pan AF, Xiang Y, Wang DP. Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser. Opt Laser Technol 106, 259–264 (2018). doi: 10.1016/j.optlastec.2018.04.019

    CrossRef Google Scholar

    [178] Cubero Á, Martinez E, Angurel LA, De La Fuente GF, Navarro R et al. Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures. Nanomaterials 10, 2525 (2020). doi: 10.3390/nano10122525

    CrossRef Google Scholar

    [179] Cubero A, Martínez E, Angurel LA, De La Fuente GF, Navarro R et al. Effects of laser-induced periodic surface structures on the superconducting properties of Niobium. Appl Surf Sci 508, 145140 (2020). doi: 10.1016/j.apsusc.2019.145140

    CrossRef Google Scholar

    [180] Zuo P, Jiang L, Li X, Tian MY, Xu CY et al. Maskless micro/nanopatterning and bipolar electrical rectification of MoS2 flakes through femtosecond laser direct writing. ACS Appl Mater Interfaces 11, 39334–39341 (2019). doi: 10.1021/acsami.9b13059

    CrossRef Google Scholar

    [181] Nivas JJJ, Valadan M, Salvatore M, Fittipaldi R, Himmerlich M et al. Secondary electron yield reduction by femtosecond pulse laser-induced periodic surface structuring. Surf Interfaces 25, 101179 (2021). doi: 10.1016/j.surfin.2021.101179

    CrossRef Google Scholar

    [182] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20, 4049–4054 (2008). doi: 10.1002/adma.200800651

    CrossRef Google Scholar

    [183] Parker AR, Lawrence CR. Water capture by a desert beetle. Nature 414, 33–34 (2001). doi: 10.1038/35102108

    CrossRef Google Scholar

    [184] Chen F, Zhang DS, Yang Q, Yong JL, Du GQ et al. Bioinspired wetting surface via laser microfabrication. ACS Appl Mater Interfaces 5, 6777–6792 (2013). doi: 10.1021/am401677z

    CrossRef Google Scholar

    [185] Yong JL, Yang Q, Chen F, Zhang DS, Farooq U et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A 2, 5499–5507 (2014). doi: 10.1039/C3TA14711H

    CrossRef Google Scholar

    [186] Zouaghi S, Six T, Bellayer S, Moradi S, Hatzikiriakos SG et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing. ACS Appl Mater Interfaces 9, 26565–26573 (2017). doi: 10.1021/acsami.7b06709

    CrossRef Google Scholar

    [187] Wu D, Wang JN, Wu SZ, Chen QD, Zhao S et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Adv Funct Mater 21, 2927–2932 (2011). doi: 10.1002/adfm.201002733

    CrossRef Google Scholar

    [188] Yong JL, Chen F, Li MJ, Yang Q, Fang Y et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J Mater Chem A 5, 25249–25257 (2017). doi: 10.1039/C7TA07528F

    CrossRef Google Scholar

    [189] Yong JL, Chen F, Yang Q, Fang Y, Huo JL et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability. Chem Commun 51, 9813–9816 (2015). doi: 10.1039/C5CC02939B

    CrossRef Google Scholar

    [190] Moradi S, Kamal S, Englezos P, Hatzikiriakos SG. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology 24, 415302 (2013). doi: 10.1088/0957-4484/24/41/415302

    CrossRef Google Scholar

    [191] Lin Y, Han JP, Cai MY, Liu WJ, Luo X et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J Mater Chem A 6, 9049–9056 (2018). doi: 10.1039/C8TA01965G

    CrossRef Google Scholar

    [192] Moradi S, Hadjesfandiari N, Toosi SF, Kizhakkedathu JN, Hatzikiriakos SG. Effect of extreme wettability on platelet adhesion on metallic implants: from superhydrophilicity to superhydrophobicity. ACS Appl Mater Interfaces 8, 17631–17641 (2016). doi: 10.1021/acsami.6b03644

    CrossRef Google Scholar

    [193] Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S et al. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications. Appl Phys A 117, 103–110 (2014). doi: 10.1007/s00339-014-8229-2

    CrossRef Google Scholar

    [194] Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S et al. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel. Appl Surf Sci 336, 21–27 (2015). doi: 10.1016/j.apsusc.2014.08.111

    CrossRef Google Scholar

    [195] Wang Z, Zhao QZ, Wang CW. Reduction of friction of metals using laser-induced periodic surface nanostructures. Micromachines 6, 1606–1616 (2015). doi: 10.3390/mi6111444

    CrossRef Google Scholar

    [196] Bonse J, Kirner SV, Koter R, Pentzien S, Spaltmann D et al. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications. Appl Surf Sci 418, 572–579 (2017). doi: 10.1016/j.apsusc.2016.10.132

    CrossRef Google Scholar

    [197] Wang Z, Zhao QZ. Friction reduction of steel by laser-induced periodic surface nanostructures with atomic layer deposited TiO2 coating. Surf Coat Technol 344, 269–275 (2018). doi: 10.1016/j.surfcoat.2018.03.036

    CrossRef Google Scholar

    [198] Kunz C, Bonse J, Spaltmann D, Neumann C, Turchanin A et al. Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures. Appl Surf Sci 499, 143917 (2020). doi: 10.1016/j.apsusc.2019.143917

    CrossRef Google Scholar

    [199] Xing YQ, Wu Z, Yang JJ, Wang XS, Liu L. LIPSS combined with ALD MoS2 nano-coatings for enhancing surface friction and hydrophobic performances. Surf Coat Technol 385, 125396 (2020). doi: 10.1016/j.surfcoat.2020.125396

    CrossRef Google Scholar

    [200] Lu DL, Liu ZW. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3, 1205 (2012). doi: 10.1038/ncomms2176

    CrossRef Google Scholar

    [201] Hell SW, Sahl SJ, Bates M, Zhuang XW, Heintzmann R et al. The 2015 super-resolution microscopy roadmap. J Phys D Appl Phys 48, 443001 (2015). doi: 10.1088/0022-3727/48/44/443001

    CrossRef Google Scholar

    [202] Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021).

    Google Scholar

    [203] Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun 284, 3669–3692 (2011). doi: 10.1016/j.optcom.2011.03.084

    CrossRef Google Scholar

    [204] Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM et al. Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31, 97–105 (1983).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(8998) PDF downloads(372) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint