Citation: | Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004 |
[1] | Yoneda N, Saita Y, Nomura T. Computer-generated-hologram-based holographic data storage using common-path off-axis digital holography. Opt Lett 45, 2796–2799 (2020). doi: 10.1364/OL.392801 |
[2] | Hesselink L, Orlov SS, Bashaw MC. Holographic data storage systems. Proc IEEE 92, 1231–1280 (2004). doi: 10.1109/JPROC.2004.831212 |
[3] | Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665–668 (1998). doi: 10.1038/31429 |
[4] | Lin X, Liu J P, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto-Electron Adv 3, 190004 (2020). doi: 10.29026/oea.2020.190004 |
[5] | Geng J. Three-dimensional display technologies. Adv Opt Photonics 5, 456–535 (2013). doi: 10.1364/AOP.5.000456 |
[6] | Shi L, Li BC, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021). doi: 10.1038/s41586-020-03152-0 |
[7] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[8] | Singh V, Tayal S, Mehta DS. Highly stable wide-field common path digital holographic microscope based on a Fresnel biprism interferometer. OSA Continuum 1, 48–55 (2018). doi: 10.1364/OSAC.1.000048 |
[9] | Faridian A, Pedrini G, Osten W. Opposed-view dark-field digital holographic microscopy. Biomed Opt Express 5, 728–736 (2014). doi: 10.1364/BOE.5.000728 |
[10] | Zheng JJ, Gao P, Shao XP. Opposite-view digital holographic microscopy with autofocusing capability. Sci Rep 7, 4255 (2017). doi: 10.1038/s41598-017-04568-x |
[11] | Li JX, Kamin S, Zheng GX, Neubrech F, Zhang S et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv 4, eaar676 (2018). |
[12] | Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[13] | Wu RY, Zhao YQ, Li N, Kong SG. Polarization image demosaicking using polarization channel difference prior. Opt Express 29, 22066–22079 (2021). doi: 10.1364/OE.424457 |
[14] | Hong YQ, Han SK. Polarization-dependent SOA-based PolSK modulation for turbulence-robust FSO communication. Opt Express 29, 15587–15594 (2021). doi: 10.1364/OE.421808 |
[15] | Duan YH, Zhang F, Pu MB, Guo YH, Xie T et al. Polarization-dependent spatial channel multiplexing dynamic hologram in the visible band. Opt Express 29, 18351–18361 (2021). doi: 10.1364/OE.425000 |
[16] | Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009 |
[17] | Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[18] | Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys Rev X 7, 041056 (2017). |
[19] | Gao H, Wang YX, Fan XH, Jiao BZ, Li TA et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci Adv 6, eaba8595 (2020). doi: 10.1126/sciadv.aba8595 |
[20] | Fang XY, Ren HR, Li KY, Luan HT, Hua YL et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv Opt Photonics 13, 772–833 (2021). doi: 10.1364/AOP.414320 |
[21] | Gu M, Fang XY, Ren HR, Goi E. Optically digitalized holography: a perspective for all-optical machine learning. Engineering 5, 363–365 (2019). doi: 10.1016/j.eng.2019.04.002 |
[22] | Georgi P, Wei QS, Sain B, Schlickriede C, Wang YT et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718 |
[23] | Bao YJ, Yu Y, Xu HF, Guo C, Li JT et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl 8, 95 (2019). doi: 10.1038/s41377-019-0206-2 |
[24] | Wu ZG, Zhou XW, Wu SY, Yan ZK, Li Y et al. Dynamic holographic display based on perovskite nanocrystal doped liquid crystal film. IEEE Photonics J 13, 6 (2021). |
[25] | Fang XY, Kuang ZY, Chen P, Yang HC, Li Q et al. Examining second-harmonic generation of high-order Laguerre-Gaussian modes through a single cylindrical lens. Opt Lett 42, 4387–4390 (2017). doi: 10.1364/OL.42.004387 |
[26] | Wei D, Guo JL, Fang XY, Wei DZ, Ni R et al. Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal. Opt Express 25, 11556–11563 (2017). doi: 10.1364/OE.25.011556 |
[27] | Tang RK, Li XJ, Wu WJ, Pan HF, Zeng HP et al. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface. Opt Express 23, 9796–9802 (2015). doi: 10.1364/OE.23.009796 |
[28] | Gruneisen MT, Miller WA, Dymale RC, Sweiti AM. Holographic generation of complex fields with spatial light modulators: application to quantum key distribution. Appl Optics 47, A32–A42 (2008). doi: 10.1364/AO.47.000A32 |
[29] | Gong L, Zhao Q, Zhang H, Hu XY, Huang K et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci Appl 8, 27 (2019). doi: 10.1038/s41377-019-0140-3 |
[30] | Zhu L, Wang J. A review of multiple optical vortices generation: methods and applications. Front Optoelectron 12, 52–68 (2019). doi: 10.1007/s12200-019-0910-9 |
[31] | Willner AE, Huang H, Yan Y, Ren Y, Ahmed N et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66–106 (2015). doi: 10.1364/AOP.7.000066 |
[32] | Wang J, Chen S, Liu J. Orbital angular momentum communications based on standard multi-mode fiber (invited paper). APL Photonics 6, 060804 (2021). doi: 10.1063/5.0049022 |
[33] | Liu J, Nape I, Wang Q, Vallés A, Wang J et al. Multidimensional entanglement transport through single-mode fiber. Sci Adv 6, eaay0837 (2020). doi: 10.1126/sciadv.aay0837 |
[34] | Wang QK, Wang FX, Liu J, Chen W, Han ZF et al. High-dimensional quantum cryptography with hybrid orbital-angular-momentum states through 25 km of ring-core fiber: a proof-of-concept demonstration. Phys Rev Appl 15, 064034 (2021). doi: 10.1103/PhysRevApplied.15.064034 |
[35] | Ren HR, Fang XY, Jang J, Bürger J, Rho J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4 |
[36] | Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x |
[37] | Fang XY, Yang HC, Yao WZ, Wang TX, Zhang Y et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv Photonics 3, 015001 (2021). |
[38] | Fang XY, Wang HJ, Yang HC, Ye ZL, Wang YM et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys Rev A 102, 043506 (2020). doi: 10.1103/PhysRevA.102.043506 |
[39] | Kong LJ, Zhang FR, Zhang JF, Sun YF, Zhang XD. High-dimensional entanglement-enabled holography for quantum encryption. (2021); http://doi.org/10.21203/rs.3.rs-658825/v1. |
[40] | Cai XL, Wang JW, Strain MJ, Johnson-Morris B, Zhu JB et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012). doi: 10.1126/science.1226528 |
[41] | Al-Attili AZ, Burt D, Li Z, Higashitarumizu N, Gardes FY et al. Germanium vertically light-emitting micro-gears generating orbital angular momentum. Opt Express 26, 34675–34688 (2018). doi: 10.1364/OE.26.034675 |
[42] | Cao FL, Zhao Y, Yao CH, Xie CQ. All diffractive optical element setup for creating and characterizing optical vortices with high topological charges: analytical models and numerical results. Opt Commun 495, 127119 (2021). doi: 10.1016/j.optcom.2021.127119 |
[43] | Li K, Tang KF, Lin D, Wang J, Li BX et al. Direct generation of optical vortex beams with tunable topological charges up to 18th using an axicon. Opt Laser Technol 143, 107339 (2021). doi: 10.1016/j.optlastec.2021.107339 |
[44] | Wang Y, Zhao P, Feng X, Xu YT, Cui KY et al. Integrated photonic emitter with a wide switching range of orbital angular momentum modes. Sci Rep 6, 22512 (2016). doi: 10.1038/srep22512 |
[45] | Carpentier AV, Michinel H, Salgueiro JR, Olivieri D. Making optical vortices with computer-generated holograms. Am J Phys 76, 916–921 (2008). doi: 10.1119/1.2955792 |
[46] | Gradshteyn IS, Ryzhik IM. Table of Integrals, Series, and Products 8th ed (Academic Press, Cambridge, 2014). |
[47] | Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series Vol 2: Special Functions (Gordon and Breach, New York, 1986). |
[48] | Qiu XD, Li FS, Liu HG, Chen XF, Chen LX. Optical vortex copier and regenerator in the Fourier domain. Photonics Res 6, 641–646 (2018). doi: 10.1364/PRJ.6.000641 |
[49] | Makey G, Yavuz Ö, Kesim DK, Turnalı A, Elahi P et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics 13, 251–256 (2019). doi: 10.1038/s41566-019-0393-7 |
[50] | Shan QS, Wei CT, Jiang Y, Song JZ, Zou YS et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci Appl 9, 163 (2020). doi: 10.1038/s41377-020-00402-8 |
[51] | Ketchum RS, Blanche PA. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution. Photonics 8, 62 (2021). doi: 10.3390/photonics8030062 |
[52] | Turtaev S, Leite IT, Mitchell KJ, Padgett MJ, Phillips DB et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt Express 25, 29874–29884 (2017). doi: 10.1364/OE.25.029874 |
[53] | Kim I, Jang J, Kim G, Lee J, Badloe T et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5 |
[54] | Wang DY, Liu FF, Liu T, Sun SL, He Q et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl 10, 67 (2021). doi: 10.1038/s41377-021-00504-x |
[55] | Meng Y, Chen YZ, Lu LH, Ding YM, Cusano A et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl 10, 235 (2021). doi: 10.1038/s41377-021-00655-x |
[56] | Tseng E, Colburn S, Whitehead J, Huang LC, Baek SH et al. Neural nano-optics for high-quality thin lens imaging. Nat Commun 12, 6493 (2021). doi: 10.1038/s41467-021-26443-0 |
[57] | Matin A, Wang X. Compressive coded rotating mirror camera for high-speed imaging. Photonics 8, 34 (2021). doi: 10.3390/photonics8020034 |
[58] | https://www.gaosuxiangji.com/products/detail/nid/3747.html. |
Supplementary information for 100 Hertz frame-rate switching threedimensional orbital angular momentum multiplexing holography via cross convolution |
|
Supplementary video |
The schematical diagram of the high-frame-rate information extraction from an OAM multiplexing hologram. Ten images of the Arabic numerals ranging from 0 to 9 are encoded with OAM charges ranging from –50 to 50. Different colors represent different information channels indicated by specific OAM charges. Amplitude decoding keys are loaded on the DMD sequentially with corresponding decoding OAM charge for reproduction of the images. The lower right inset represents the time sequence for obtaining each image of the Arabic numeral by switching on the corresponding decoding patterns on DMD. Acquisition of the first few significant digits of the value π is illustrated in this figure.
The schematic diagram of the information extraction from an OAM selective hologram and an OAM multiplexing hologram via cross convolution. (a) The principle of the cross convolution theorem for an OAM selective holography. For an OAM selective holography, the image (here, a music symbol) is sampled, Fourier transformed and superposed with a specific helical phase to form an OAM selective hologram. By applying corresponding ADK on the DMD, reproduction of the image can be displayed on the imaging plane. The ADK will result in a series of images due to its spatial frequency distribution. But only when the cross convolution theorem holds, these images are separated clearly and an exclusive image with basic Gaussian pixels will appear in a specific diffraction order. (b) The encoding and decoding process of OAM multiplexing holography. For OAM multiplexing holography, various images (four letters of an alphabet) are encoded in a single hologram with four OAM information channels indicated by OAM charge of –10, –5, 5 and 10. By applying the corresponding ADKs of these information channels, the images can be reconstructed.
Three-dimensional holography based on the cross convolution theorem. (a) The experimental setup of three-dimensional holography with an OAM selective hologram via cross convolution. Three images of the letter “I”, “P” and “C” with different z coordinates form a 3D image. They are first per-shaped with different parabolic phases and then encoded with a same OAM charge (ls = 1) in an OAM selective hologram. The lens F1, F2 and pinhole before the SLM constitute the collimation and filtering system which provide a plane wave illumination of the hologram with a finite aperture. The SLM and DMD are loaded with OAM selective hologram and corresponding ADK, respectively. They are coupled to the main optical path through two beam splitters and they meet the accurate imaging relationship through the two lenses of F3 and F4. CCD is moved to obtain the reconstructed images of the letters through the imaging lens of F5. (b) The simulation and experimental results of this holographic 3D display based on cross convolution theorem.
A high-frame-rate information transmission example through OAM multiplexing holography based on cross convolution theorem. (a) The OAM multiplexing hologram which contains ten images of the Arabic numerals ranging from 0 to 9 encoded with OAM charges ranging from –50 to 50. (b) Sequential transmission of the first 100 significant digits of the value π through holography. (c) The individual SNRs for each image of the Arabic numeral. (d) The simulation and experimental results of holographic reconstruction of a specific image of an Arabic numeral “3”.