Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004
Citation: Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004

Original Article Open Access

100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution

More Information
  • The orbital angular momentum (OAM) of light has been implemented as an information carrier in OAM holography. Holographic information can be multiplexed in theoretical unbounded OAM channels, promoting the applications of optically addressable dynamic display and high-security optical encryption. However, the frame-rate of the dynamic extraction of the information reconstruction process in OAM holography is physically determined by the switching speed of the incident OAM states, which is currently below 30 Hz limited by refreshing rate of the phase-modulation spatial light modulator (SLM). Here, based on a cross convolution with the spatial frequency of the OAM-multiplexing hologram, the spatial frequencies of an elaborately-designed amplitude distribution, namely amplitude decoding key, has been adopted for the extraction of three-dimensional holographic information encoded in a specific OAM information channel. We experimentally demonstrated a dynamic extraction frame rate of 100 Hz from an OAM multiplexing hologram with 10 information channels indicated by individual OAM values from –50 to 50. The new concept of cross convolution theorem can even provide the potential of parallel reproduction and distribution of information encoded in many OAM channels at various positions which boosts the capacity of information processing far beyond the traditional decoding methods. Thus, our results provide a holographic paradigm for high-speed 3D information processing, paving an unprecedented way to achieve the high-capacity short-range optical communication system.
  • 加载中
  • [1] Yoneda N, Saita Y, Nomura T. Computer-generated-hologram-based holographic data storage using common-path off-axis digital holography. Opt Lett 45, 2796–2799 (2020). doi: 10.1364/OL.392801

    CrossRef Google Scholar

    [2] Hesselink L, Orlov SS, Bashaw MC. Holographic data storage systems. Proc IEEE 92, 1231–1280 (2004). doi: 10.1109/JPROC.2004.831212

    CrossRef Google Scholar

    [3] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665–668 (1998). doi: 10.1038/31429

    CrossRef Google Scholar

    [4] Lin X, Liu J P, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto-Electron Adv 3, 190004 (2020). doi: 10.29026/oea.2020.190004

    CrossRef Google Scholar

    [5] Geng J. Three-dimensional display technologies. Adv Opt Photonics 5, 456–535 (2013). doi: 10.1364/AOP.5.000456

    CrossRef Google Scholar

    [6] Shi L, Li BC, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021). doi: 10.1038/s41586-020-03152-0

    CrossRef Google Scholar

    [7] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [8] Singh V, Tayal S, Mehta DS. Highly stable wide-field common path digital holographic microscope based on a Fresnel biprism interferometer. OSA Continuum 1, 48–55 (2018). doi: 10.1364/OSAC.1.000048

    CrossRef Google Scholar

    [9] Faridian A, Pedrini G, Osten W. Opposed-view dark-field digital holographic microscopy. Biomed Opt Express 5, 728–736 (2014). doi: 10.1364/BOE.5.000728

    CrossRef Google Scholar

    [10] Zheng JJ, Gao P, Shao XP. Opposite-view digital holographic microscopy with autofocusing capability. Sci Rep 7, 4255 (2017). doi: 10.1038/s41598-017-04568-x

    CrossRef Google Scholar

    [11] Li JX, Kamin S, Zheng GX, Neubrech F, Zhang S et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv 4, eaar676 (2018).

    Google Scholar

    [12] Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [13] Wu RY, Zhao YQ, Li N, Kong SG. Polarization image demosaicking using polarization channel difference prior. Opt Express 29, 22066–22079 (2021). doi: 10.1364/OE.424457

    CrossRef Google Scholar

    [14] Hong YQ, Han SK. Polarization-dependent SOA-based PolSK modulation for turbulence-robust FSO communication. Opt Express 29, 15587–15594 (2021). doi: 10.1364/OE.421808

    CrossRef Google Scholar

    [15] Duan YH, Zhang F, Pu MB, Guo YH, Xie T et al. Polarization-dependent spatial channel multiplexing dynamic hologram in the visible band. Opt Express 29, 18351–18361 (2021). doi: 10.1364/OE.425000

    CrossRef Google Scholar

    [16] Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [17] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [18] Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys Rev X 7, 041056 (2017).

    Google Scholar

    [19] Gao H, Wang YX, Fan XH, Jiao BZ, Li TA et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci Adv 6, eaba8595 (2020). doi: 10.1126/sciadv.aba8595

    CrossRef Google Scholar

    [20] Fang XY, Ren HR, Li KY, Luan HT, Hua YL et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics. Adv Opt Photonics 13, 772–833 (2021). doi: 10.1364/AOP.414320

    CrossRef Google Scholar

    [21] Gu M, Fang XY, Ren HR, Goi E. Optically digitalized holography: a perspective for all-optical machine learning. Engineering 5, 363–365 (2019). doi: 10.1016/j.eng.2019.04.002

    CrossRef Google Scholar

    [22] Georgi P, Wei QS, Sain B, Schlickriede C, Wang YT et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718

    CrossRef Google Scholar

    [23] Bao YJ, Yu Y, Xu HF, Guo C, Li JT et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl 8, 95 (2019). doi: 10.1038/s41377-019-0206-2

    CrossRef Google Scholar

    [24] Wu ZG, Zhou XW, Wu SY, Yan ZK, Li Y et al. Dynamic holographic display based on perovskite nanocrystal doped liquid crystal film. IEEE Photonics J 13, 6 (2021).

    Google Scholar

    [25] Fang XY, Kuang ZY, Chen P, Yang HC, Li Q et al. Examining second-harmonic generation of high-order Laguerre-Gaussian modes through a single cylindrical lens. Opt Lett 42, 4387–4390 (2017). doi: 10.1364/OL.42.004387

    CrossRef Google Scholar

    [26] Wei D, Guo JL, Fang XY, Wei DZ, Ni R et al. Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal. Opt Express 25, 11556–11563 (2017). doi: 10.1364/OE.25.011556

    CrossRef Google Scholar

    [27] Tang RK, Li XJ, Wu WJ, Pan HF, Zeng HP et al. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface. Opt Express 23, 9796–9802 (2015). doi: 10.1364/OE.23.009796

    CrossRef Google Scholar

    [28] Gruneisen MT, Miller WA, Dymale RC, Sweiti AM. Holographic generation of complex fields with spatial light modulators: application to quantum key distribution. Appl Optics 47, A32–A42 (2008). doi: 10.1364/AO.47.000A32

    CrossRef Google Scholar

    [29] Gong L, Zhao Q, Zhang H, Hu XY, Huang K et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci Appl 8, 27 (2019). doi: 10.1038/s41377-019-0140-3

    CrossRef Google Scholar

    [30] Zhu L, Wang J. A review of multiple optical vortices generation: methods and applications. Front Optoelectron 12, 52–68 (2019). doi: 10.1007/s12200-019-0910-9

    CrossRef Google Scholar

    [31] Willner AE, Huang H, Yan Y, Ren Y, Ahmed N et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66–106 (2015). doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [32] Wang J, Chen S, Liu J. Orbital angular momentum communications based on standard multi-mode fiber (invited paper). APL Photonics 6, 060804 (2021). doi: 10.1063/5.0049022

    CrossRef Google Scholar

    [33] Liu J, Nape I, Wang Q, Vallés A, Wang J et al. Multidimensional entanglement transport through single-mode fiber. Sci Adv 6, eaay0837 (2020). doi: 10.1126/sciadv.aay0837

    CrossRef Google Scholar

    [34] Wang QK, Wang FX, Liu J, Chen W, Han ZF et al. High-dimensional quantum cryptography with hybrid orbital-angular-momentum states through 25 km of ring-core fiber: a proof-of-concept demonstration. Phys Rev Appl 15, 064034 (2021). doi: 10.1103/PhysRevApplied.15.064034

    CrossRef Google Scholar

    [35] Ren HR, Fang XY, Jang J, Bürger J, Rho J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [36] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [37] Fang XY, Yang HC, Yao WZ, Wang TX, Zhang Y et al. High-dimensional orbital angular momentum multiplexing nonlinear holography. Adv Photonics 3, 015001 (2021).

    Google Scholar

    [38] Fang XY, Wang HJ, Yang HC, Ye ZL, Wang YM et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys Rev A 102, 043506 (2020). doi: 10.1103/PhysRevA.102.043506

    CrossRef Google Scholar

    [39] Kong LJ, Zhang FR, Zhang JF, Sun YF, Zhang XD. High-dimensional entanglement-enabled holography for quantum encryption. (2021); http://doi.org/10.21203/rs.3.rs-658825/v1.

    Google Scholar

    [40] Cai XL, Wang JW, Strain MJ, Johnson-Morris B, Zhu JB et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012). doi: 10.1126/science.1226528

    CrossRef Google Scholar

    [41] Al-Attili AZ, Burt D, Li Z, Higashitarumizu N, Gardes FY et al. Germanium vertically light-emitting micro-gears generating orbital angular momentum. Opt Express 26, 34675–34688 (2018). doi: 10.1364/OE.26.034675

    CrossRef Google Scholar

    [42] Cao FL, Zhao Y, Yao CH, Xie CQ. All diffractive optical element setup for creating and characterizing optical vortices with high topological charges: analytical models and numerical results. Opt Commun 495, 127119 (2021). doi: 10.1016/j.optcom.2021.127119

    CrossRef Google Scholar

    [43] Li K, Tang KF, Lin D, Wang J, Li BX et al. Direct generation of optical vortex beams with tunable topological charges up to 18th using an axicon. Opt Laser Technol 143, 107339 (2021). doi: 10.1016/j.optlastec.2021.107339

    CrossRef Google Scholar

    [44] Wang Y, Zhao P, Feng X, Xu YT, Cui KY et al. Integrated photonic emitter with a wide switching range of orbital angular momentum modes. Sci Rep 6, 22512 (2016). doi: 10.1038/srep22512

    CrossRef Google Scholar

    [45] Carpentier AV, Michinel H, Salgueiro JR, Olivieri D. Making optical vortices with computer-generated holograms. Am J Phys 76, 916–921 (2008). doi: 10.1119/1.2955792

    CrossRef Google Scholar

    [46] Gradshteyn IS, Ryzhik IM. Table of Integrals, Series, and Products 8th ed (Academic Press, Cambridge, 2014).

    Google Scholar

    [47] Prudnikov AP, Brychkov YA, Marichev OI. Integrals and Series Vol 2: Special Functions (Gordon and Breach, New York, 1986).

    Google Scholar

    [48] Qiu XD, Li FS, Liu HG, Chen XF, Chen LX. Optical vortex copier and regenerator in the Fourier domain. Photonics Res 6, 641–646 (2018). doi: 10.1364/PRJ.6.000641

    CrossRef Google Scholar

    [49] Makey G, Yavuz Ö, Kesim DK, Turnalı A, Elahi P et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics 13, 251–256 (2019). doi: 10.1038/s41566-019-0393-7

    CrossRef Google Scholar

    [50] Shan QS, Wei CT, Jiang Y, Song JZ, Zou YS et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci Appl 9, 163 (2020). doi: 10.1038/s41377-020-00402-8

    CrossRef Google Scholar

    [51] Ketchum RS, Blanche PA. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution. Photonics 8, 62 (2021). doi: 10.3390/photonics8030062

    CrossRef Google Scholar

    [52] Turtaev S, Leite IT, Mitchell KJ, Padgett MJ, Phillips DB et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt Express 25, 29874–29884 (2017). doi: 10.1364/OE.25.029874

    CrossRef Google Scholar

    [53] Kim I, Jang J, Kim G, Lee J, Badloe T et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5

    CrossRef Google Scholar

    [54] Wang DY, Liu FF, Liu T, Sun SL, He Q et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl 10, 67 (2021). doi: 10.1038/s41377-021-00504-x

    CrossRef Google Scholar

    [55] Meng Y, Chen YZ, Lu LH, Ding YM, Cusano A et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl 10, 235 (2021). doi: 10.1038/s41377-021-00655-x

    CrossRef Google Scholar

    [56] Tseng E, Colburn S, Whitehead J, Huang LC, Baek SH et al. Neural nano-optics for high-quality thin lens imaging. Nat Commun 12, 6493 (2021). doi: 10.1038/s41467-021-26443-0

    CrossRef Google Scholar

    [57] Matin A, Wang X. Compressive coded rotating mirror camera for high-speed imaging. Photonics 8, 34 (2021). doi: 10.3390/photonics8020034

    CrossRef Google Scholar

    [58] https://www.gaosuxiangji.com/products/detail/nid/3747.html.

    Google Scholar

  • Supplementary information for 100 Hertz frame-rate switching threedimensional orbital angular momentum multiplexing holography via cross convolution
    Supplementary video
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(15513) PDF downloads(987) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint