Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014
Citation: Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014

Original Article Open Access

Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion

More Information
  • Metasurfaces that can realize the polarization manipulation of electromagnetic waves on the sub-wavelength scale have become an emerging research field. Here, a novel strategy of combining the metasurface and Fresnel zone plate to form a metasurface zone plate is proposed to realize the conversion from nearly arbitrary polarizations to a fixed polarization. Specifically, when one polarized wave is incident on adjacent ring zones constructed by different types of meta-atoms, the transmitted waves generated by odd-numbered and even-numbered ring zones converge at the same focus and superimpose to generate a fixed polarized wave. As function demonstrations, we have designed two types of metasurface zone plates: one is a focused linear polarizer, and the other can convert nearly arbitrary polarized waves into focused circularly polarized waves. The simulated and measured results are consistent with theoretical expectations, suggesting that the proposed concept is flexible and feasible. Our work provides an alternative platform for polarization manipulation and may vigorously promote the development of polarization photonic devices.
  • 加载中
  • [1] Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053

    CrossRef Google Scholar

    [2] Li XP, Lan TH, Tien CH, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [3] Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009

    CrossRef Google Scholar

    [4] Scheel S, Welsch DG. Quantum theory of light and noise polarization in nonlinear optics. Phys Rev Lett 96, 073601 (2006). doi: 10.1103/PhysRevLett.96.073601

    CrossRef Google Scholar

    [5] Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [6] Stav T, Faerman A, Maguid E, Oren D, Kleiner V et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1103 (2018). doi: 10.1126/science.aat9042

    CrossRef Google Scholar

    [7] Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [8] Rubin NA, D'Aversa G, Chevalier P, Shi ZJ, Chen WT et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [9] Gansel JK, Thiel M, Rill MS, Decker M, Bade K et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009). doi: 10.1126/science.1177031

    CrossRef Google Scholar

    [10] Kim TT, Oh SS, Kim HD, Park HS, Hess O et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3, e1701377 (2017). doi: 10.1126/sciadv.1701377

    CrossRef Google Scholar

    [11] Li W, Coppens ZJ, Besteiro LV, Wang WY, Govorov AO et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 6, 8379 (2015). doi: 10.1038/ncomms9379

    CrossRef Google Scholar

    [12] Ma W, Cheng F, Liu YM. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018). doi: 10.1021/acsnano.8b03569

    CrossRef Google Scholar

    [13] Pfeiffer C, Zhang C, Ray V, Guo LJ, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902

    CrossRef Google Scholar

    [14] Turner MD, Saba M, Zhang QM, Cumming BP, Schröder-Turk GE et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat Photonics 7, 801–805 (2013). doi: 10.1038/nphoton.2013.233

    CrossRef Google Scholar

    [15] Tanaka K, Arslan D, Fasold S, Steinert M, Sautter J et al. Chiral bilayer all-dielectric metasurfaces. ACS Nano 14, 15926–15935 (2020). doi: 10.1021/acsnano.0c07295

    CrossRef Google Scholar

    [16] Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020).

    Google Scholar

    [17] Lee HE, Ahn HY, Mun J, Lee YY, Kim M et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360 (2018).

    Google Scholar

    [18] Mun J, Kim M, Yang Y, Badloe T, Ni JC et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light-Sci Appl 9, 139 (2020). doi: 10.1038/s41377-020-00367-8

    CrossRef Google Scholar

    [19] Mun J, Rho J. Surface-enhanced circular dichroism by multipolar radiative coupling. Opt Lett 43, 2856–2859 (2018). doi: 10.1364/OL.43.002856

    CrossRef Google Scholar

    [20] Yang Y, Kim M, Mun J, Rho J. Ultra-sharp circular dichroism induced by twisted layered C4 oligomers. Adv Theor Simul 3, 1900229 (2020). doi: 10.1002/adts.201900229

    CrossRef Google Scholar

    [21] Zhang S, Zhou JF, Park YS, Rho J, Singh R et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat Commun 3, 942 (2012). doi: 10.1038/ncomms1908

    CrossRef Google Scholar

    [22] Ye WM, Yuan XD, Guo CC, Zhang JF, Yang B et al. Large chiroptical effects in planar chiral metamaterials. Phy Rev A 7, 054003 (2017).

    Google Scholar

    [23] Ma ZJ, Li Y, Li Y, Gong YD, Maier SA et al. All-dielectric planar chiral metasurface with gradient geometric phase. Opt Express 26, 6067–6078 (2018). doi: 10.1364/OE.26.006067

    CrossRef Google Scholar

    [24] Zheng CL, Li J, Wang SL, Li JT, Li MY et al. Optically tunable all-silicon chiral metasurface in terahertz band. Appl Phys Lett 118, 051101 (2021). doi: 10.1063/5.0039992

    CrossRef Google Scholar

    [25] Yue Z, Zheng CL, Li J, Li JT, Liu JY et al. A dual band spin-selective transmission metasurface and its wavefront manipulation. Nanoscale 13, 10898–10905 (2021). doi: 10.1039/D1NR02624K

    CrossRef Google Scholar

    [26] Li JT, Li J, Zheng CL, Wang SL, Li MY et al. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189–199 (2021). doi: 10.1016/j.carbon.2020.09.090

    CrossRef Google Scholar

    [27] Li J, Li JT, Yang Y, Li JN, Zhang YT et al. Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020). doi: 10.1016/j.carbon.2020.03.019

    CrossRef Google Scholar

    [28] Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 97, 167401 (2006). doi: 10.1103/PhysRevLett.97.167401

    CrossRef Google Scholar

    [29] Khaliq HS, Kim I, Kim J, Oh DK, Zubair M et al. Manifesting simultaneous optical spin conservation and spin isolation in diatomic metasurfaces. Adv Opt Mater 9, 2002002 (2021). doi: 10.1002/adom.202002002

    CrossRef Google Scholar

    [30] Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [31] Zheng CL, Li J, Li JT, Yue Z, Wang SL et al. All-silicon chiral metasurfaces and wavefront shaping assisted by interference. Sci China Phys Mech Astron 64, 114212 (2021). doi: 10.1007/s11433-021-1768-0

    CrossRef Google Scholar

    [32] Rana AS, Kim I, Ansari MA, Anwar MS, Saleem M et al. Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation. ACS Appl Mater Interfaces 12, 48899–48909 (2020). doi: 10.1021/acsami.0c10006

    CrossRef Google Scholar

    [33] Gao S, Zhou CY, Yue WJ, Li Y, Zhang CW et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-Bit phase control. ACS Appl Mater Interfaces 13, 14497–14506 (2021). doi: 10.1021/acsami.1c00967

    CrossRef Google Scholar

    [34] Li ZC, Liu WW, Cheng H, Choi DY, Chen SQ et al. Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces. Adv Opt Mater 7, 1900260 (2019).

    Google Scholar

    [35] Zhang YL, Cheng Y, Chen M, Xu RH, Yuan LB. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface. Appl Phys Lett 117, 021105 (2020). doi: 10.1063/5.0014987

    CrossRef Google Scholar

    [36] Li X, Tang J, Baine J. Polarization-independent metasurface lens based on binary phase fresnel zone plate. Nanomaterials 10, 1467 (2020). doi: 10.3390/nano10081467

    CrossRef Google Scholar

    [37] Wang JY, Yang JQ, Kang GG. Achromatic focusing effect of metasurface-based binary phase Fresnel zone plate. Phys Lett A 407, 127463 (2021). doi: 10.1016/j.physleta.2021.127463

    CrossRef Google Scholar

    [38] Yoon G, Jang J, Mun J, Nam KT, Rho J. Metasurface zone plate for light manipulation in vectorial regime. Commun Phys 2, 156 (2019). doi: 10.1038/s42005-019-0258-x

    CrossRef Google Scholar

    [39] Yang BW, Liu T, Guo HJ, Xiao SY, Zhou L. High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage. Sci Bull 64, 823–835 (2019). doi: 10.1016/j.scib.2019.05.028

    CrossRef Google Scholar

    [40] Huang WX, Lin J, Qiu M, Liu T, He Q et al. A complete phase diagram for dark-bright coupled plasmonic systems: applicability of Fano's formula. Nanophotonics 9, 3251–3262 (2020). doi: 10.1515/nanoph-2020-0007

    CrossRef Google Scholar

    [41] Li Y, Lin J, Guo HJ, Sun WJ, Xiao SY et al. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater 8, 1901548 (2020). doi: 10.1002/adom.201901548

    CrossRef Google Scholar

    [42] Zhang XY, Li Q, Liu FF, Qiu M, Sun SL et al. Controlling angular dispersions in optical metasurfaces. Light-Sci Appl 9, 76 (2020). doi: 10.1038/s41377-020-0313-0

    CrossRef Google Scholar

  • Supplementary information for Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(7646) PDF downloads(904) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint