Citation: | Yue Z, Li JT, Li J, Zheng CL, Liu JY et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron Sci 1, 210014 (2022). doi: 10.29026/oes.2022.210014 |
[1] | Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053 |
[2] | Li XP, Lan TH, Tien CH, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006 |
[3] | Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009 |
[4] | Scheel S, Welsch DG. Quantum theory of light and noise polarization in nonlinear optics. Phys Rev Lett 96, 073601 (2006). doi: 10.1103/PhysRevLett.96.073601 |
[5] | Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092 |
[6] | Stav T, Faerman A, Maguid E, Oren D, Kleiner V et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1103 (2018). doi: 10.1126/science.aat9042 |
[7] | Li JT, Wang GC, Yue Z, Liu JY, Li J et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron Adv 5, 210062 (2022). doi: 10.29026/oea.2022.210062 |
[8] | Rubin NA, D'Aversa G, Chevalier P, Shi ZJ, Chen WT et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839 |
[9] | Gansel JK, Thiel M, Rill MS, Decker M, Bade K et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009). doi: 10.1126/science.1177031 |
[10] | Kim TT, Oh SS, Kim HD, Park HS, Hess O et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3, e1701377 (2017). doi: 10.1126/sciadv.1701377 |
[11] | Li W, Coppens ZJ, Besteiro LV, Wang WY, Govorov AO et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 6, 8379 (2015). doi: 10.1038/ncomms9379 |
[12] | Ma W, Cheng F, Liu YM. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018). doi: 10.1021/acsnano.8b03569 |
[13] | Pfeiffer C, Zhang C, Ray V, Guo LJ, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys Rev Lett 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902 |
[14] | Turner MD, Saba M, Zhang QM, Cumming BP, Schröder-Turk GE et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat Photonics 7, 801–805 (2013). doi: 10.1038/nphoton.2013.233 |
[15] | Tanaka K, Arslan D, Fasold S, Steinert M, Sautter J et al. Chiral bilayer all-dielectric metasurfaces. ACS Nano 14, 15926–15935 (2020). doi: 10.1021/acsnano.0c07295 |
[16] | Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). |
[17] | Lee HE, Ahn HY, Mun J, Lee YY, Kim M et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360 (2018). |
[18] | Mun J, Kim M, Yang Y, Badloe T, Ni JC et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light-Sci Appl 9, 139 (2020). doi: 10.1038/s41377-020-00367-8 |
[19] | Mun J, Rho J. Surface-enhanced circular dichroism by multipolar radiative coupling. Opt Lett 43, 2856–2859 (2018). doi: 10.1364/OL.43.002856 |
[20] | Yang Y, Kim M, Mun J, Rho J. Ultra-sharp circular dichroism induced by twisted layered C4 oligomers. Adv Theor Simul 3, 1900229 (2020). doi: 10.1002/adts.201900229 |
[21] | Zhang S, Zhou JF, Park YS, Rho J, Singh R et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat Commun 3, 942 (2012). doi: 10.1038/ncomms1908 |
[22] | Ye WM, Yuan XD, Guo CC, Zhang JF, Yang B et al. Large chiroptical effects in planar chiral metamaterials. Phy Rev A 7, 054003 (2017). |
[23] | Ma ZJ, Li Y, Li Y, Gong YD, Maier SA et al. All-dielectric planar chiral metasurface with gradient geometric phase. Opt Express 26, 6067–6078 (2018). doi: 10.1364/OE.26.006067 |
[24] | Zheng CL, Li J, Wang SL, Li JT, Li MY et al. Optically tunable all-silicon chiral metasurface in terahertz band. Appl Phys Lett 118, 051101 (2021). doi: 10.1063/5.0039992 |
[25] | Yue Z, Zheng CL, Li J, Li JT, Liu JY et al. A dual band spin-selective transmission metasurface and its wavefront manipulation. Nanoscale 13, 10898–10905 (2021). doi: 10.1039/D1NR02624K |
[26] | Li JT, Li J, Zheng CL, Wang SL, Li MY et al. Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189–199 (2021). doi: 10.1016/j.carbon.2020.09.090 |
[27] | Li J, Li JT, Yang Y, Li JN, Zhang YT et al. Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020). doi: 10.1016/j.carbon.2020.03.019 |
[28] | Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 97, 167401 (2006). doi: 10.1103/PhysRevLett.97.167401 |
[29] | Khaliq HS, Kim I, Kim J, Oh DK, Zubair M et al. Manifesting simultaneous optical spin conservation and spin isolation in diatomic metasurfaces. Adv Opt Mater 9, 2002002 (2021). doi: 10.1002/adom.202002002 |
[30] | Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295 |
[31] | Zheng CL, Li J, Li JT, Yue Z, Wang SL et al. All-silicon chiral metasurfaces and wavefront shaping assisted by interference. Sci China Phys Mech Astron 64, 114212 (2021). doi: 10.1007/s11433-021-1768-0 |
[32] | Rana AS, Kim I, Ansari MA, Anwar MS, Saleem M et al. Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation. ACS Appl Mater Interfaces 12, 48899–48909 (2020). doi: 10.1021/acsami.0c10006 |
[33] | Gao S, Zhou CY, Yue WJ, Li Y, Zhang CW et al. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-Bit phase control. ACS Appl Mater Interfaces 13, 14497–14506 (2021). doi: 10.1021/acsami.1c00967 |
[34] | Li ZC, Liu WW, Cheng H, Choi DY, Chen SQ et al. Arbitrary manipulation of light intensity by bilayer aluminum metasurfaces. Adv Opt Mater 7, 1900260 (2019). |
[35] | Zhang YL, Cheng Y, Chen M, Xu RH, Yuan LB. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface. Appl Phys Lett 117, 021105 (2020). doi: 10.1063/5.0014987 |
[36] | Li X, Tang J, Baine J. Polarization-independent metasurface lens based on binary phase fresnel zone plate. Nanomaterials 10, 1467 (2020). doi: 10.3390/nano10081467 |
[37] | Wang JY, Yang JQ, Kang GG. Achromatic focusing effect of metasurface-based binary phase Fresnel zone plate. Phys Lett A 407, 127463 (2021). doi: 10.1016/j.physleta.2021.127463 |
[38] | Yoon G, Jang J, Mun J, Nam KT, Rho J. Metasurface zone plate for light manipulation in vectorial regime. Commun Phys 2, 156 (2019). doi: 10.1038/s42005-019-0258-x |
[39] | Yang BW, Liu T, Guo HJ, Xiao SY, Zhou L. High-performance meta-devices based on multilayer meta-atoms: interplay between the number of layers and phase coverage. Sci Bull 64, 823–835 (2019). doi: 10.1016/j.scib.2019.05.028 |
[40] | Huang WX, Lin J, Qiu M, Liu T, He Q et al. A complete phase diagram for dark-bright coupled plasmonic systems: applicability of Fano's formula. Nanophotonics 9, 3251–3262 (2020). doi: 10.1515/nanoph-2020-0007 |
[41] | Li Y, Lin J, Guo HJ, Sun WJ, Xiao SY et al. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater 8, 1901548 (2020). doi: 10.1002/adom.201901548 |
[42] | Zhang XY, Li Q, Liu FF, Qiu M, Sun SL et al. Controlling angular dispersions in optical metasurfaces. Light-Sci Appl 9, 76 (2020). doi: 10.1038/s41377-020-0313-0 |
Supplementary information for Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion |
![]() |
(a) Performing diagram of x-LP beam generator. (b) Schematic diagram of RCP beam generation under non-polarized incidence.
(a) Schematic diagram of the linear polarizer. (b) Simulated results on the xz plane under x-LP incidence. (c) The intensity distributions of the transmitted x-LP and y-LP components on the xz plane under y-LP illumination. (d) The intensity profiles of the orthogonal LP components of the outgoing wave at the focal plane, under different polarized incidences.
(a) SEM image of the sample. (b) The measured intensity profiles of x-LP and y-LP components on the focal plane, under the incidences of four polarized waves.
(a) Schematic of the Meta-atom 1. (b) Top view of the Meta-atom 2. (c) Transmission amplitudes of cross- and co-polarized components at different frequencies, under LCP incidence. (d) Simulated results of phase shifts under LCP incidence. (e) The relationship between the transmission amplitudes of the orthogonal CP components and the incident frequency, when the RCP wave is incident. (f) The phase shift of the transmitted LCP wave at different incident frequencies under RCP incidence.
(a) Schematic diagram of the structure of the metasurface zone plate. (b, c) The intensity distributions of the cross- and co-polarized components at the focal plane under CP incidences. (d) The simulated intensity distribution of the focal plane under LP and EP incidences.
(a) SEM image of the fabricated metasurface zone plate. (b) The measured intensity profiles of the focal plane under CP and LP incidences. The inset is the intensity distribution across the focus along the x-axis.