Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013
Citation: Ren J, Lin H, Zheng XR, Lei WW, Liu D et al. Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film. Opto-Electron Sci 1, 210013 (2022). doi: 10.29026/oes.2022.210013

Original Article Open Access

Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film

More Information
  • Recently, hexagonal boron nitride (h-BN) has become a promising nanophotonic platform for on-chip information devices due to the practicability in generating optically stable, ultra-bright quantum emitters. For an integrated information-processing chip, high optical nonlinearity is indispensable for various fundamental functionalities, such as all-optical modulation, high order harmonic generation, optical switching and so on. Here we study the third-order optical nonlinearity of free-standing h-BN thin films, which is an ideal platform for on-chip integration and device formation without the need of transfer. The films were synthesized by a solution-based method with abundant functional groups enabling high third-order optical nonlinearity. Unlike the highly inert pristine h-BN films synthesized by conventional methods, the free-standing h-BN films could be locally oxidized upon tailored femtosecond laser irradiation, which further enhances the third-order nonlinearity, especially the nonlinear refraction index, by more than 20 times. The combination of the free-standing h-BN films with laser activation and patterning capability establishes a new promising platform for high performance on-chip photonic devices with modifiable optical performance.
  • 加载中
  • [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [2] Zheng XR, Xu B, Li S, Lin H, Qiu L et al. Free-standing graphene oxide mid-infrared polarizers. Nanoscale 12, 11480–11488 (2020). doi: 10.1039/D0NR01619E

    CrossRef Google Scholar

    [3] Zheng XR, Jia BH, Lin H, Qiu L, Li D et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat Commun 6, 8433 (2015). doi: 10.1038/ncomms9433

    CrossRef Google Scholar

    [4] Lin H, Lin KT, Yang TS, Jia BH. Graphene multilayer photonic metamaterials: fundamentals and applications. Adv Mater Technol 6, 2000963 (2021). doi: 10.1002/admt.202000963

    CrossRef Google Scholar

    [5] Lin KT, Lin H, Yang TS, Jia BH. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun 11, 1389 (2020). doi: 10.1038/s41467-020-15116-z

    CrossRef Google Scholar

    [6] Lin H, Sturmberg BCP, Lin KT, Yang YY, Zheng XR et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics 13, 270–276 (2019). doi: 10.1038/s41566-019-0389-3

    CrossRef Google Scholar

    [7] Wei SB, Cao GY, Lin H, Yuan XC, Somekh M et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano 15, 4769–4776 (2021). doi: 10.1021/acsnano.0c09395

    CrossRef Google Scholar

    [8] Wei SB, Cao GY, Lin H, Mu HR, Liu WB et al. High tolerance detour-phase graphene-oxide flat lens. Photonics Res 9, 2454–2463 (2021). doi: 10.1364/prj.434599

    CrossRef Google Scholar

    [9] Lin H, Xu ZQ, Cao GY, Zhang YP, Zhou JD et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light:Sci Appl 9, 137 (2020). doi: 10.1038/s41377-020-00374-9

    CrossRef Google Scholar

    [10] Li XY, Wei SB, Cao GY, Lin H, Zhao YJ et al. Graphene metalens for particle nanotracking. Photonics Res 8, 1316–1322 (2020). doi: 10.1364/PRJ.397262

    CrossRef Google Scholar

    [11] Zhou CH, Cao GY, Gan ZX, Ou QD, Chen WJ et al. Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl Mater Interfaces 11, 26017–26023 (2019). doi: 10.1021/acsami.9b07708

    CrossRef Google Scholar

    [12] Cao GY, Lin H, Fraser S, Zheng XR, Del Rosal B et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl Mater Interfaces 11, 20298–20303 (2019). doi: 10.1021/acsami.9b05109

    CrossRef Google Scholar

    [13] Cao GY, Gan XS, Lin H, Jia BH. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron Adv 1, 180012 (2018). doi: 10.29026/oea.2018.180012

    CrossRef Google Scholar

    [14] Hu QM, Lin KT, Lin H, Zhang YY, Jia BH. Graphene metapixels for dynamically switchable structural color. ACS Nano 15, 8930–8939 (2021). doi: 10.1021/acsnano.1c01570

    CrossRef Google Scholar

    [15] Wang ZY, Yang TS, Zhang YP, Ou QD, Lin H et al. Flat lenses based on 2D perovskite nanosheets. Adv Mater 32, 2001388 (2020). doi: 10.1002/adma.202001388

    CrossRef Google Scholar

    [16] Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007). doi: 10.1126/science.1144216

    CrossRef Google Scholar

    [17] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3, 404–409 (2004). doi: 10.1038/nmat1134

    CrossRef Google Scholar

    [18] Nebel CE. Light sources: tackling the deep ultraviolet. Nat Photonics 3, 564–566 (2009). doi: 10.1038/nphoton.2009.177

    CrossRef Google Scholar

    [19] Kim S, Fröch JE, Christian J, Straw M, Bishop J et al. Photonic crystal cavities from hexagonal boron nitride. Nat Commun 9, 2623 (2018). doi: 10.1038/s41467-018-05117-4

    CrossRef Google Scholar

    [20] Caldwell JD, Aharonovich I, Cassabois G, Edgar JH, Gil B et al. Photonics with hexagonal boron nitride. Nat Rev Mater 4, 552–567 (2019). doi: 10.1038/s41578-019-0124-1

    CrossRef Google Scholar

    [21] Ismach A, Chou H, Ferrer DA, Wu YP, McDonnell S et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 6, 6378–6385 (2012). doi: 10.1021/nn301940k

    CrossRef Google Scholar

    [22] Li YL, Rao Y, Mak KF, You Y, Wang SY et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett 13, 3329–3333 (2013). doi: 10.1021/nl401561r

    CrossRef Google Scholar

    [23] Kim S, Fröch JE, Gardner A, Li C, Aharonovich I et al. Second-harmonic generation in multilayer hexagonal boron nitride flakes. Opt Lett 44, 5792–5795 (2019). doi: 10.1364/OL.44.005792

    CrossRef Google Scholar

    [24] Popkova AA, Popkova IM, Fröch JE, Kim S, Kim I et al. Optical third-harmonic generation in hexagonal boron nitride thin films. ACS Photonics 8, 824–831 (2021). doi: 10.1021/acsphotonics.0c01759

    CrossRef Google Scholar

    [25] Lei WW, Mochalin VN, Liu D, Qin S, Gogotsi Y et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat Commun 6, 8849 (2015). doi: 10.1038/ncomms9849

    CrossRef Google Scholar

    [26] Zhang SL, Liu LW, Ren S, Li ZL, Zhao YH et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003

    CrossRef Google Scholar

    [27] Rahmani M, Leo G, Brener I, Zayats AV, Maier SA et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018).

    Google Scholar

    [28] Yang TS, Lin H, Jia BH. Ultrafast direct laser writing of 2D materials for multifunctional photonics devices. Chin Opt Lett 18, 023601 (2020). doi: 10.3788/COL202018.023601

    CrossRef Google Scholar

    [29] Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [30] Zhao G, Zhang F, Wu YZ, Hao XP, Wang ZP et al. One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance. Adv Opt Mater 4, 141–146 (2016). doi: 10.1002/adom.201500415

    CrossRef Google Scholar

    [31] Li LH, Cervenka J, Watanabe K, Taniguchi T, Chen Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014). doi: 10.1021/nn500059s

    CrossRef Google Scholar

    [32] Zheng XR, Jia BH, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv Mater 26, 2699–2703 (2014). doi: 10.1002/adma.201304681

    CrossRef Google Scholar

    [33] Ren J, Zheng XR, Tian ZM, Li D, Wang P et al. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Appl Phys Lett 109, 221105 (2016). doi: 10.1063/1.4969068

    CrossRef Google Scholar

    [34] Fraser S, Zheng XR, Qiu L, Li D, Jia BH. Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Appl Phys Lett 107, 031112 (2015). doi: 10.1063/1.4927387

    CrossRef Google Scholar

    [35] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [36] Xie XZ, Zhou CX, Wei X, Hu W, Ren QL. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019).

    Google Scholar

    [37] Zheng XR, Lin H, Yang TS, Jia BH. Laser trimming of graphene oxide for functional photonic applications. J Phys D:Appl Phys 50, 074003 (2017). doi: 10.1088/1361-6463/aa54e9

    CrossRef Google Scholar

    [38] Guo L, Shao RQ, Zhang YL, Jiang HB, Li XB et al. Bandgap tailoring and synchronous microdevices patterning of graphene oxides. J Phys Chem C 116, 3594–3599 (2012). doi: 10.1021/jp209843m

    CrossRef Google Scholar

    [39] Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi: 10.1126/science.1156965

    CrossRef Google Scholar

    [40] Yang YY, Lin H, Zhang BY, Zhang YN, Zheng XR et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 6, 1033–1040 (2019). doi: 10.1021/acsphotonics.9b00060

    CrossRef Google Scholar

    [41] Lu JP, Wu J, Carvalho A, Ziletti A, Liu HW et al. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9, 10411–10421 (2015). doi: 10.1021/acsnano.5b04623

    CrossRef Google Scholar

    [42] The properties of glass. By G. W. Morey, Pp, 561. New York; Reinhold Publishing Corp.; London: chapman & Hall, Ltd., 1938.62s. 6d. J Soc Chem Ind 58, 422 (1939). doi: 10.1002/jctb.5000581834

    CrossRef Google Scholar

    [43] Li PF, Chen Y, Yang TS, Wang ZY, Lin H et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl Mater Interfaces 9, 12759–12765 (2017). doi: 10.1021/acsami.7b01709

    CrossRef Google Scholar

    [44] Yang TS, Abdelwahab I, Lin H, Bao Y, Tan SJR et al. Anisotropic third-order nonlinearity in pristine and lithium hydride intercalated black phosphorus. ACS Photonics 5, 4969–4977 (2018). doi: 10.1021/acsphotonics.8b01200

    CrossRef Google Scholar

    [45] Tan SJR, Abdelwahab I, Ding ZJ, Zhao XX, Yang TS et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J Am Chem Soc 139, 2504–2511 (2017). doi: 10.1021/jacs.6b13238

    CrossRef Google Scholar

    [46] Kumbhakar P, Kole AK, Tiwary CS, Biswas S, Vinod S et al. Nonlinear optical properties and temperature-dependent UV–Vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv Opt Mater 3, 828–835 (2015). doi: 10.1002/adom.201400445

    CrossRef Google Scholar

    [47] Sheik-Bahae M, Said AA, Van Stryland EW. High-sensitivity, single-beam n2 measurements. Opt Lett 14, 955–957 (1989). doi: 10.1364/OL.14.000955

    CrossRef Google Scholar

    [48] Lu SB, Zhao CJ, Zou YH, Chen SQ, Chen Y et al. Third order nonlinear optical property of Bi2Se3. Opt Express 21, 2072–2082 (2013). doi: 10.1364/Oe.21.002072

    CrossRef Google Scholar

    [49] Spano R, Daldosso N, Cazzanelli M, Ferraioli L, Tartara L et al. Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm. Opt Express 17, 3941–3950 (2009). doi: 10.1364/Oe.17.003941

    CrossRef Google Scholar

    [50] Termoss H, Toury B, Pavan S, Brioude A, Bernard S et al. Preparation of boron nitride-based coatings on metallic substrates via infrared irradiation of dip-coated polyborazylene. J Mater Chem 19, 2671–2674 (2009). doi: 10.1039/b820327j

    CrossRef Google Scholar

    [51] Xia CQ, Zheng CX, Fuhrer MS, Palomba S. Nonlinear optical frequency mixing response of single and multilayer graphene. Opt Lett 41, 1122–1125 (2016). doi: 10.1364/Ol.41.001122

    CrossRef Google Scholar

    [52] Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA. Coherent nonlinear optical response of graphene. Phys Rev Lett 105, 097401 (2010). doi: 10.1103/physrevlett.105.097401

    CrossRef Google Scholar

    [53] Autere A, Jussila H, Dai YY, Wang YD, Lipsanen H et al. Nonlinear optics with 2D layered materials. Adv Mater 30, 1705963 (2018). doi: 10.1002/adma.201705963

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(6739) PDF downloads(459) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint