Ma TG, Tobah M, Wang HZ, Guo LJ. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012
Citation: Ma TG, Tobah M, Wang HZ, Guo LJ. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022) . doi: 10.29026/oes.2022.210012

Original Article Open Access

Benchmarking deep learning-based models on nanophotonic inverse design problems

More Information
  • Photonic inverse design concerns the problem of finding photonic structures with target optical properties. However, traditional methods based on optimization algorithms are time-consuming and computationally expensive. Recently, deep learning-based approaches have been developed to tackle the problem of inverse design efficiently. Although most of these neural network models have demonstrated high accuracy in different inverse design problems, no previous study has examined the potential effects under given constraints in nanomanufacturing. Additionally, the relative strength of different deep learning-based inverse design approaches has not been fully investigated. Here, we benchmark three commonly used deep learning models in inverse design: Tandem networks, Variational Auto-Encoders, and Generative Adversarial Networks. We provide detailed comparisons in terms of their accuracy, diversity, and robustness. We find that tandem networks and Variational Auto-Encoders give the best accuracy, while Generative Adversarial Networks lead to the most diverse predictions. Our findings could serve as a guideline for researchers to select the model that can best suit their design criteria and fabrication considerations. In addition, our code and data are publicly available, which could be used for future inverse design model development and benchmarking.

  • 加载中
  • [1] Shen YZ, Friend CS, Jiang Y, Jakubczyk D, Swiatkiewicz J et al. Nanophotonics: interactions, materials, and applications. J Phys Chem B 104, 7577–7587 (2000). doi: 10.1021/jp0016131

    CrossRef Google Scholar

    [2] Pu MB, Guo YH, Li X, Ma XL, Luo XG. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018). doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [3] Gan XT, Mak KF, Gao YD, You YM, Hatami F et al. Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett 12, 5626–5631 (2012). doi: 10.1021/nl302746n

    CrossRef Google Scholar

    [4] de Leon NP, Shields BJ, Yu CL, Englund DE, Akimov AV et al. Tailoring light-matter interaction with a nanoscale Plasmon resonator. Phys Rev Lett 108, 226803 (2012). doi: 10.1103/PhysRevLett.108.226803

    CrossRef Google Scholar

    [5] Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong light–matter interactions. Acs Photonics 5, 24–42 (2018).

    Google Scholar

    [6] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [7] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [8] Huang YJ, Luo J, Pu MB, Guo YH, Zhao ZY et al. Catenary electromagnetics for ultra‐broadband lightweight absorbers and large‐scale flat antennas. Adv Sci 6, 1801691 (2019). doi: 10.1002/advs.201801691

    CrossRef Google Scholar

    [9] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [10] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [11] Staude I, Miroshnichenko AE, Decker M, Fofang NT, Liu S et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013). doi: 10.1021/nn402736f

    CrossRef Google Scholar

    [12] Lin DM, Fan PY, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014). doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [13] Nagarajan R, Joyner CH, Schneider RP, Bostak JS, Butrie T et al. Large-scale photonic integrated circuits. IEEE J Sel Top Quant Electron 11, 50–65 (2005). doi: 10.1109/JSTQE.2004.841721

    CrossRef Google Scholar

    [14] Maier SA. Metamaterials and imaging with surface Plasmon polaritons. In Maier SA. Plasmonics: Fundamentals and Applications. 193–200 (Springer, 2007); http://doi.org/10.1007/0-387-37825-1_11.

    Google Scholar

    [15] Decker M, Staude I, Falkner M, Dominguez J, Neshev DN et al. High‐efficiency dielectric Huygens’ surfaces. Adv Opt Mater 3, 813–820 (2015). doi: 10.1002/adom.201400584

    CrossRef Google Scholar

    [16] Stern B, Ji XC, Okawachi Y, Gaeta AL, Lipson M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018). doi: 10.1038/s41586-018-0598-9

    CrossRef Google Scholar

    [17] Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013). doi: 10.1038/nature11727

    CrossRef Google Scholar

    [18] Cheng QX, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018). doi: 10.1364/OPTICA.5.001354

    CrossRef Google Scholar

    [19] Thomson D, Zilkie A, Bowers JE, Komljenovic T, Reed GT et al. Roadmap on silicon photonics. J Opt 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003

    CrossRef Google Scholar

    [20] Walmsley I. Photonic quantum technologies. Proceedings of SPIE 11844, 11844OF (2021).

    Google Scholar

    [21] Tittl A, Leitis A, Liu MK, Yesilkoy F, Choi DY et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768

    CrossRef Google Scholar

    [22] Chen LW, Yin YM, Li Y, Hong MH. Multifunctional inverse sensing by spatial distribution characterization of scattering photons. Opto-Electron Adv 2, 190019 (2019).

    Google Scholar

    [23] Nguyen TT, Lim S. Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector. Sci Rep 7, 3204 (2017). doi: 10.1038/s41598-017-03591-2

    CrossRef Google Scholar

    [24] Kim I, So S, Rana AS, Mehmood MQ, Rho J. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics 7, 1827–1833 (2018). doi: 10.1515/nanoph-2018-0095

    CrossRef Google Scholar

    [25] Campbell SD, Sell D, Jenkins RP, Whiting EB, Fan JA et al. Review of numerical optimization techniques for meta-device design [Invited]. Opt Mater Express 9, 1842–1863 (2019). doi: 10.1364/OME.9.001842

    CrossRef Google Scholar

    [26] Hansen E. Interval forms of Newtons method. Computing 20, 153–163 (1978). doi: 10.1007/BF02252344

    CrossRef Google Scholar

    [27] Ruder S. An overview of gradient descent optimization algorithms. arXiv: 1609.04747 (2017).

    Google Scholar

    [28] Kim WJ, O’Brien J. Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method. J Opt Soc Am B 21, 289–295 (2004). doi: 10.1364/JOSAB.21.000289

    CrossRef Google Scholar

    [29] Lalau-Keraly CM, Bhargava S, Miller OD, Yablonovitch E. Adjoint shape optimization applied to electromagnetic design. Opt Express 21, 21693–21701 (2013). doi: 10.1364/OE.21.021693

    CrossRef Google Scholar

    [30] Storn R, Price K. Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11, 341–359 (1997). doi: 10.1023/A:1008202821328

    CrossRef Google Scholar

    [31] Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell 1, 33–57 (2007). doi: 10.1007/s11721-007-0002-0

    CrossRef Google Scholar

    [32] Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems 2951–2959 (Curran Associates Inc. , 2012).

    Google Scholar

    [33] Schneider PI, Santiago XG, Soltwisch V, Hammerschmidt M, Burger S et al. Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction. ACS Photonics 6, 2726–2733 (2019). doi: 10.1021/acsphotonics.9b00706

    CrossRef Google Scholar

    [34] Yang WH, Xiao SM, Song QH, Liu YL, Wu YK et al. All-dielectric metasurface for high-performance structural color. Nat Commun 11, 1864 (2020). doi: 10.1038/s41467-020-15773-0

    CrossRef Google Scholar

    [35] Liu DJ, Tan YX, Khoram E, Yu ZF. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365–1369 (2018). doi: 10.1021/acsphotonics.7b01377

    CrossRef Google Scholar

    [36] Ma W, Cheng F, Xu YH, Wen QL, Liu YM. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi‐supervised learning strategy. Adv Mater 31, 1901111 (2019). doi: 10.1002/adma.201901111

    CrossRef Google Scholar

    [37] Liu ZC, Zhu DY, Rodrigues SP, Lee KT, Cai WS. Generative model for the inverse design of metasurfaces. Nano Lett 18, 6570–6576 (2018). doi: 10.1021/acs.nanolett.8b03171

    CrossRef Google Scholar

    [38] Wiecha PR, Arbouet A, Girard C, Muskens OL. Deep learning in nano-photonics: inverse design and beyond. Photonics Res 9, B182–B200 (2021). doi: 10.1364/PRJ.415960

    CrossRef Google Scholar

    [39] Khatib O, Ren SM, Malof J, Padilla WJ. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv Funct Mater 31, 2101748 (2021). doi: 10.1002/adfm.202101748

    CrossRef Google Scholar

    [40] Jiang JQ, Chen MK, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater 6, 679–700 (2021). doi: 10.1038/s41578-020-00260-1

    CrossRef Google Scholar

    [41] Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [42] Jordan MI. Constrained supervised learning. J Math Psychol 36, 396–425 (1992). doi: 10.1016/0022-2496(92)90029-7

    CrossRef Google Scholar

    [43] Jordan MI, Rumelhart DE. Forward models: supervised learning with a distal teacher. Cogn Sci 16, 307–354 (1992). doi: 10.1207/s15516709cog1603_1

    CrossRef Google Scholar

    [44] Sohn K, Yan XC, Lee H. Learning structured output representation using deep conditional generative models. In Proceedings of the 28th International Conference on Neural Information Processing Systems 3483–3491 (MIT Press, 2015).

    Google Scholar

    [45] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv: 1411.1784 (2014).

    Google Scholar

    [46] Gao L, Li XZ, Liu DJ, Wang LH, Yu ZF. A bidirectional deep neural network for accurate silicon color design. Adv Mater 31, 1905467 (2019). doi: 10.1002/adma.201905467

    CrossRef Google Scholar

    [47] Ma W, Cheng F, Liu YM. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018). doi: 10.1021/acsnano.8b03569

    CrossRef Google Scholar

    [48] Kingma DP, Welling M. Auto-encoding variational Bayes. arXiv: 1312.6114 (2014).

    Google Scholar

    [49] Jiang JQ, Sell D, Hoyer S, Hickey J, Yang JJ et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019). doi: 10.1021/acsnano.9b02371

    CrossRef Google Scholar

    [50] So S, Rho J. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics 8, 1255–1261 (2019). doi: 10.1515/nanoph-2019-0117

    CrossRef Google Scholar

    [51] https://github.com/taigaoma1997/benchmark_in_de.git.

    Google Scholar

    [52] Pal SK, Mitra S. Multilayer perceptron, fuzzy sets, and classification. IEEE Trans Neural Netw 3, 683–697 (1992). doi: 10.1109/72.159058

    CrossRef Google Scholar

    [53] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 60, 84–90 (2017). doi: 10.1145/3065386

    CrossRef Google Scholar

    [54] Hugonin JP, Lalanne P. RETICOLO software for grating analysis. arXiv: 2101.00901 (2021).

    Google Scholar

    [55] Han X, Fan ZY, Liu ZY, Li C, Guo LJ. Inverse design of metasurface optical filters using deep neural network with high degrees of freedom. InfoMat 3, 432–442 (2021). doi: 10.1002/inf2.12116

    CrossRef Google Scholar

    [56] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L et al. Plasmonic nanostructure design and characterization via Deep Learning. Light:Sci Appl 7, 60 (2018). doi: 10.1038/s41377-018-0060-7

    CrossRef Google Scholar

    [57] Chen MK, Jiang JQ, Fan JA. Design space reparameterization enforces hard geometric constraints in inverse-designed nanophotonic devices. ACS Photonics 7, 3141–3151 (2020). doi: 10.1021/acsphotonics.0c01202

    CrossRef Google Scholar

    [58] Sell D, Yang JJ, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082

    CrossRef Google Scholar

    [59] Wang HZ, Zheng ZY, Ji CG, Guo LJ. Automated multi-layer optical design via deep reinforcement learning. Mach Learn:Sci Technol 2, 025013 (2021). doi: 10.1088/2632-2153/abc327

    CrossRef Google Scholar

    [60] Jiang JQ, Fan JA. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett 19, 5366–5372 (2019). doi: 10.1021/acs.nanolett.9b01857

    CrossRef Google Scholar

    [61] Jiang JQ, Fan JA. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics 9, 1059–1069 (2019). doi: 10.1515/nanoph-2019-0330

    CrossRef Google Scholar

  • Supplementary information for Benchmarking deep learning-based models on nanophotonic inverse design problems
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(372) PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint