Citation: | Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010 |
[1] | Tonouchi M. Cutting-edge terahertz technology. Nat Photonics 1, 97–105 (2007). doi: 10.1038/nphoton.2007.3 |
[2] | Zaytsev KI, Kudrin KG, Karasik VE, Reshetov IV, Yurchenko SO. In vivo terahertz spectroscopy of pigmentary skin nevi: pilot study of non-invasive early diagnosis of dysplasia. Appl Phys Lett 106, 053702 (2015). doi: 10.1063/1.4907350 |
[3] | Ma FS, Lin YS, Zhang XH, Lee C. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3, e171 (2014). doi: 10.1038/lsa.2014.52 |
[4] | Tong MY, Hu YZ, Xie XN, Zhu XG, Wang ZY et al. Helicity-dependent THz emission induced by ultrafast spin photocurrent in nodal-line semimetal candidate Mg3Bi2. Opto-Electron Adv 3, 200023 (2020). |
[5] | Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006). doi: 10.1126/science.1133628 |
[6] | Nemati A, Wang Q, Hong MH, Teng JH. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018). |
[7] | Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). |
[8] | Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). |
[9] | Ma XL, Pu MB, Li X, Guo YH, Luo XG. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019). |
[10] | Rahmani M, Leo G, Brener I, Zayats AV, Maier SA et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). |
[11] | Wang YQ, Ma XL, Li X, Pu MB, Luo XG. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron Adv 1, 180013 (2018). |
[12] | Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004). doi: 10.1126/science.1105371 |
[13] | Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004). doi: 10.1126/science.1094025 |
[14] | Rodrigo SG, de León-Pérez F, Martín-Moreno L. Extraordinary optical transmission: fundamentals and applications. Proc IEEE 104, 2288–2306 (2016). doi: 10.1109/JPROC.2016.2580664 |
[15] | Padilla WJ, Aronsson MT, Highstrete C, Lee M, Taylor AJ et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys Rev B 75, 041102 (2007). |
[16] | Bingham CM, Tao H, Liu XL, Averitt RD, Zhang X et al. Planar wallpaper group metamaterials for novel terahertz applications. Opt Express 16, 18565–18575 (2008). doi: 10.1364/OE.16.018565 |
[17] | Kim S, Jang MS, Brar VW, Tolstova Y, Mauser KW et al. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat Commun 7, 12323 (2016). doi: 10.1038/ncomms12323 |
[18] | Gao WL, Shu J, Reichel K, Nickel DV, He XW et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 14, 1242–1248 (2014). doi: 10.1021/nl4041274 |
[19] | Seo M, Kyoung J, Park H, Koo S, Kim HS et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett 10, 2064–2068 (2010). doi: 10.1021/nl1002153 |
[20] | Hendry E, Lockyear MJ, Rivas JG, Kuipers L, Bonn M. Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays. Phys Rev B 75, 235305 (2007). doi: 10.1103/PhysRevB.75.235305 |
[21] | Lee SH, Choi M, Kim TT, Lee S, Liu M et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11, 936–941 (2012). doi: 10.1038/nmat3433 |
[22] | Kim TT, Oh SS, Kim HD, Park HS, Hess O et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3, e1701377 (2017). doi: 10.1126/sciadv.1701377 |
[23] | Miao ZQ, Wu Q, Li X, He Q, Ding K et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5, 041027 (2015). |
[24] | Ju L, Geng BS, Horng J, Girit C, Martin M et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6, 630–634 (2011). doi: 10.1038/nnano.2011.146 |
[25] | Thareja V, Kang JH, Yuan HT, Milaninia KM, Hwang HY et al. Electrically tunable coherent optical absorption in graphene with ion gel. Nano Lett 15, 1570–1576 (2015). doi: 10.1021/nl503431d |
[26] | Seo MA, Park HR, Koo SM, Park DJ, Kang JH et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat Photonics 3, 152–156 (2009). doi: 10.1038/nphoton.2009.22 |
[27] | Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW et al. Memory metamaterials. Science 325, 1518–1521 (2009). doi: 10.1126/science.1176580 |
[28] | Zhao YC, Zhang YX, Shi QW, Liang SX, Huang WX et al. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photonics 5, 3040–3050 (2018). doi: 10.1021/acsphotonics.8b00276 |
[29] | Cai HL, Chen S, Zou CW, Huang QP, Liu Y et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Adv Opt Mater 6, 1800257 (2018). doi: 10.1002/adom.201800257 |
[30] | Shportko K, Kremers S, Woda M, Lencer D, Robertson J et al. Resonant bonding in crystalline phase-change materials. Nat Mater 7, 653–658 (2008). doi: 10.1038/nmat2226 |
[31] | Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M et al. Interfacial phase-change memory. Nat Nanotechnol 6, 501–505 (2011). doi: 10.1038/nnano.2011.96 |
[32] | Jeong TH, Kim MR, Seo H, Kim SJ, Kim SY. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J Appl Phys 86, 774–778 (1999). doi: 10.1063/1.370803 |
[33] | Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photonics 11, 465–476 (2017). doi: 10.1038/nphoton.2017.126 |
[34] | Cao T, Zhang L, Simpson RE, Cryan MJ. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J Opt Soc Am B 30, 1580–1585 (2013). |
[35] | Cao T, Simpson RE, Cryan MJ. Study of tunable negative index metamaterials based on phase-change materials. J Opt Soc Am B 30, 439–444 (2013). doi: 10.1364/JOSAB.30.000439 |
[36] | Kwon Y, Kim JH, Chae S, Lee Y, Jachun SG et al. Device characteristics of a Ge-doped SbTe alloy for high-speed phase-change random access memory. J Korean Phys Soc 59, 466–469 (2011). doi: 10.3938/jkps.59.466 |
[37] | Wuttig M. Towards a universal memory. Nat Mater 4, 265–266 (2005). doi: 10.1038/nmat1359 |
[38] | Gholipour B, Zhang JF, MacDonald KF, Hewak DW, Zheludev NI. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater 25, 3050–3054 (2013). doi: 10.1002/adma.201300588 |
[39] | Michel AKU, Zalden P, Chigrin DN, Wuttig M, Lindenberg AM et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics 1, 833–839 (2014). doi: 10.1021/ph500121d |
[40] | Cao T, Fang LH, Cao Y, Li N, Fan ZY et al. Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci Bull 64, 814–822 (2019). doi: 10.1016/j.scib.2019.02.017 |
[41] | Kalikka J, Zhou XL, Behera J, Nannicini G, Simpson RE. Evolutionary design of interfacial phase change van der Waals heterostructures. Nanoscale 8, 18212–18220 (2016). doi: 10.1039/C6NR05539G |
[42] | Zhou XL, Behera JK, Lv SL, Wu LC, Song ZT et al. Avalanche atomic switching in strain engineered Sb2Te3–GeTe interfacial phase-change memory cells. Nano Futures 1, 025003 (2017). doi: 10.1088/2399-1984/aa8434 |
[43] | Chu CH, Tseng ML, Chen J, Wu PC, Chen YH et al. Active dielectric metasurface based on phase-change medium. Laser Photon Rev 10, 986–994 (2016). doi: 10.1002/lpor.201600106 |
[44] | Zhou XL, Kalikka J, Ji XL, Wu LC, Song ZT et al. Phase-change memory materials by design: a strain engineering approach. Adv Mater 28, 3007–3016 (2016). doi: 10.1002/adma.201505865 |
[45] | Behera JK, Zhou XL, Tominaga J, Simpson RE. Laser switching and characterisation of chalcogenides: systems, measurements, and applicability to photonics [invited]. Opt Mater Express 7, 3741–3759 (2017). doi: 10.1364/OME.7.003741 |
[46] | Kodama CH, Coutu Jr RA. Tunable split-ring resonators using germanium telluride. Appl Phys Lett 108, 231901 (2016). doi: 10.1063/1.4953228 |
[47] | Pitchappa P, Kumar A, Prakash S, Jani H, Venkatesan T et al. Chalcogenide phase change material for active terahertz photonics. Adv Mater 31, 1808157 (2019). doi: 10.1002/adma.201808157 |
[48] | Chew LT, Dong WL, Liu L, Zhou XL, Behera J et al. Chalcogenide active photonics. Proc SPIE 10345, 103451B (2017). |
[49] | Azad AK, Zhang WL. Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness. Opt Lett 30, 2945–2947 (2005). doi: 10.1364/OL.30.002945 |
[50] | Gopalan P, Wang YS, Sensale-Rodriguez B. Terahertz characterization of two-dimensional low-conductive layers enabled by metal gratings. Sci Rep 11, 2833 (2021). doi: 10.1038/s41598-021-82560-2 |
[51] | Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999 |
[52] | Lalanne P, Rodier JC, Hugonin JP. Surface plasmons of metallic surfaces perforated by nanohole arrays. J Opt A:Pure Appl Opt 7, 422–426 (2005). doi: 10.1088/1464-4258/7/8/013 |
[53] | Liu HT, Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008). doi: 10.1038/nature06762 |
[54] | Liu HT, Lalanne P. Comprehensive microscopic model of the extraordinary optical transmission. J Opt Soc Am A 27, 2542–2550 (2010). |
[55] | van Beijnum F, Rétif C, Smiet CB, Liu HT, Lalanne P et al. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492, 411–414 (2012). doi: 10.1038/nature11669 |
[56] | Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570 |
[57] | Martín-Moreno L, García-Vidal F, Lezec HJ, Pellerin KM, Thio T et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86, 1114 (2001). doi: 10.1103/PhysRevLett.86.1114 |
[58] | Porto JA, García-Vidal F, Pendry JB. Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83, 2845–2848 (1999). doi: 10.1103/PhysRevLett.83.2845 |
[59] | Lee BS, Burr GW, Shelby RM, Raoux S, Rettner CT et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009). doi: 10.1126/science.1177483 |
[60] | Wang L, Zhang YX, Guo XQ, Chen T, Liang HJ et al. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 9, 965 (2019). doi: 10.3390/nano9070965 |
[61] | Ma ZT, Geng ZX, Fan ZY, Liu J, Chen HD. Modulators for terahertz communication: the current state of the art. Research 2019, 6482975 (2019). |
[62] | Raoux S. Phase change materials. Annu Rev Mater Res 39, 25–48 (2009). doi: 10.1146/annurev-matsci-082908-145405 |
[63] | Terao M, Morikawa T, Ohta T. Electrical phase-change memory: fundamentals and state of the art. Jpn J Appl Phys 48, 080001 (2009). doi: 10.1143/JJAP.48.080001 |
[64] | Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater 11, 279–283 (2012). doi: 10.1038/nmat3275 |
[65] | Chu CH, Da Shiue C, Cheng HW, Tseng ML, Chiang HP et al. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Opt Express 18, 18383–18393 (2010). doi: 10.1364/OE.18.018383 |
[66] | Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys 69, 2849–2856 (1991). doi: 10.1063/1.348620 |
[67] | Weidenhof V, Pirch N, Friedrich I, Ziegler S, Wuttig M. Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J Appl Phys 88, 657–664 (2000). doi: 10.1063/1.373717 |
[68] | Wuttig M, Salinga M. Fast transformers. Nat Mater 11, 270–271 (2012). doi: 10.1038/nmat3288 |
[69] | Oh SH, Baek K, Son SK, Song K, Oh JW et al. In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5. Nanoscale Adv 2, 3841–3848 (2020). doi: 10.1039/D0NA00223B |
[70] | Sarkar J, Gleixner B. Evolution of phase change memory characteristics with operating cycles: electrical characterization and physical modeling. Appl Phys Lett 91, 233506 (2007). doi: 10.1063/1.2821845 |
[71] | Do K, Lee D, Ko DH, Sohn H, Cho MH. TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes. Electrochem Solid State Lett 13, H284–H286 (2010). doi: 10.1149/1.3439647 |
[72] | Kim C, Kang DM, Lee TY, Kim KHP, Kang YS et al. Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices. Appl Phys Lett 94, 193504 (2009). doi: 10.1063/1.3127223 |
[73] | Krusin-Elbaum L, Cabral Jr C, Chen KN, Copel M, Abraham DW et al. Evidence for segregation of Te in Ge2Sb2Te5 films: effect on the “phase-change” stress. Appl Phys Lett 90, 141902 (2007). doi: 10.1063/1.2719148 |
[74] | Yang TY, Park IM, Kim BJ, Joo YC. Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field. Appl Phys Lett 95, 032104 (2009). doi: 10.1063/1.3184584 |
[75] | Haynes WM, Lide DR, Bruno TJ. CRC Handbook of Chemistry and Physics 95th ed (CRC Press, Boca Raton, 2014). |
[76] | Chen HT, O'hara JF, Azad AK, Taylor AJ, Averitt RD et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photonics 2, 295–298 (2008). doi: 10.1038/nphoton.2008.52 |
[77] | Yang K, Liu SC, Arezoomandan S, Nahata A, Sensale-Rodriguez B. Graphene-based tunable metamaterial terahertz filters. Appl Phys Lett 105, 093105 (2014). doi: 10.1063/1.4894807 |
[78] | Jung H, Koo J, Heo E, Cho B, In C et al. Electrically controllable molecularization of terahertz meta-atoms. Adv Mater 30, 1802760 (2018). doi: 10.1002/adma.201802760 |
[79] | Deng ZL, Zhang S, Wang GP. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces. Nanoscale 8, 1588–1594 (2016). doi: 10.1039/C5NR07181J |
[80] | Deng ZL, Cao YY, Li XP, Wang GP. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photonics Res 6, 443–450 (2018). doi: 10.1364/PRJ.6.000443 |
Supplementary Information for Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials |
![]() |
Configuration of the EOT metamaterials for the THz region. (a) Schematic of the all-optical, reconfigurable, non-volatile phase-change metamaterials induced EOT switch: single nanosecond pulsed laser transits a 100 nm thick GST225 film reversibly between the amorphous and crystalline states. (b) The FEM simulated transmission spectra of the chalcogenide metamaterials with the amorphous state at the various diameter of d = 40, 60, and 80 μm (top panel) and various heights of hAu = 50, 80, 100, 200, and 300 nm (bottom panel). (c) Optical microscope (top panel) and FIB cross-sections (bottom panel) images of the EOT metamaterials. The geometrical parameters of the subwavelength holes array are p = 100 μm, d = 60 μm, respectively; the thicknesses of the Au and GST225 layers are hAu = 0.2 μm and hGST = 0.1 μm, respectively. (d) The temperature-dependent optical conductivity (σ) of the 100 nm thick GST225 film. (e) The behavior of resonant transition in the metamaterials: numerical simulated (top panel) and experimental measured (bottom panel) transmission spectra at the various temperatures ranging from 25°C to 300°C. The reduction of the peak intensity can be experimentally and theoretically observed by increasing the temperature. (f) The modulation efficiency against the annealing temperature varied from 25 °C to 300 °C.
In sequence processing for the reversible state change. (a) Schematic of the reversible state change of the GST225 layer hybridised with an EOT metamaterials: the AD-AM GST225 is initially heated above TC=250 °C to switch to the CR-GST225 via a hot plate. A single ns pulsed laser is transited to thermally anneal the CR-GST225 layer above TM=600 °C that reamorphises the CR-GST225. Consequent quenching leads to the MQ-AM GST225. A temperature above TC=250 °C but below TM=600 °C is needed to recrystallise the MQ-AM GST225, which is achieved by using a hot plate. (b) The σ of 100 nm thick GST225 film at the various structural states of the as-deposited amorphous (AD-AM, black line), crystalline (CR, red line), melt quenched amorphous (MQ-AM, grey line), and re-crystallised (R-CR, orange line) over a spectral range of 0.2-1.8 THz. Experimental realisation of reversibly tunable EOT effect: the THz-TDS measurement of the transmission spectra of the chalcogenide metamaterials with the various structural phases of (c) AD-AM, CR and (d) MQ-AM, and R-CR.
Numerical simulation of total E- field distribution along the x-z plane of the metamaterials at the various temperatures of (a) 25 °C, (b) 150 °C, (c) 200 °C, and (d) 300 °C.
(a) Measured transmission spectra of the EOT chalcogenide metamaterials for twenty switching times. (b) The values of transmission peaks for the amorphous (shown by black dots) and crystalline (indicated by red dots) states with twenty switching times. The morphology (top panel) and cross-sectional (bottom panel) images of the chalcogenide metamaterials (c) before and (d) after 20 transition times.