Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010
Citation: Cao T, Lian M, Chen XY, Mao LB, Liu K et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci 1, 210010 (2022). doi: 10.29026/oes.2022.210010

Original Article Open Access

Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials

More Information
  • Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission (EOT) in the terahertz (THz) region, whereby a giant forward light propagation can be created using constructive interference of tunneling surface plasmonic waves. However, numerous applications of THz meta-devices demand an active manipulation of the THz beam in free space. Although some studies have been carried out to control the EOT for the THz region, few of these are based upon electrical modulation of the EOT phenomenon, and novel strategies are required for actively and dynamically reconfigurable EOT meta-devices. In this work, we experimentally present that the EOT resonance can be coupled to optically reconfigurable chalcogenide metamaterials which offers a reversible all-optical control of the THz light. A modulation efficiency of 88% in transmission at 0.85 THz is experimentally observed using the EOT metamaterials, which is composed of a gold (Au) circular aperture array sitting on a non-volatile chalcogenide phase change material (Ge2Sb2Te5) film. This comes up with a robust and ultrafast reconfigurable EOT over 20 times of switching, excited by a nanosecond pulsed laser. The measured data have a good agreement with finite-element-method numerical simulation. This work promises THz modulators with significant on/off ratios and fast speeds.
  • 加载中
  • [1] Tonouchi M. Cutting-edge terahertz technology. Nat Photonics 1, 97–105 (2007). doi: 10.1038/nphoton.2007.3

    CrossRef Google Scholar

    [2] Zaytsev KI, Kudrin KG, Karasik VE, Reshetov IV, Yurchenko SO. In vivo terahertz spectroscopy of pigmentary skin nevi: pilot study of non-invasive early diagnosis of dysplasia. Appl Phys Lett 106, 053702 (2015). doi: 10.1063/1.4907350

    CrossRef Google Scholar

    [3] Ma FS, Lin YS, Zhang XH, Lee C. Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3, e171 (2014). doi: 10.1038/lsa.2014.52

    CrossRef Google Scholar

    [4] Tong MY, Hu YZ, Xie XN, Zhu XG, Wang ZY et al. Helicity-dependent THz emission induced by ultrafast spin photocurrent in nodal-line semimetal candidate Mg3Bi2. Opto-Electron Adv 3, 200023 (2020).

    Google Scholar

    [5] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006). doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [6] Nemati A, Wang Q, Hong MH, Teng JH. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018).

    Google Scholar

    [7] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021).

    Google Scholar

    [8] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019).

    Google Scholar

    [9] Ma XL, Pu MB, Li X, Guo YH, Luo XG. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019).

    Google Scholar

    [10] Rahmani M, Leo G, Brener I, Zayats AV, Maier SA et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018).

    Google Scholar

    [11] Wang YQ, Ma XL, Li X, Pu MB, Luo XG. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron Adv 1, 180013 (2018).

    Google Scholar

    [12] Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004). doi: 10.1126/science.1105371

    CrossRef Google Scholar

    [13] Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004). doi: 10.1126/science.1094025

    CrossRef Google Scholar

    [14] Rodrigo SG, de León-Pérez F, Martín-Moreno L. Extraordinary optical transmission: fundamentals and applications. Proc IEEE 104, 2288–2306 (2016). doi: 10.1109/JPROC.2016.2580664

    CrossRef Google Scholar

    [15] Padilla WJ, Aronsson MT, Highstrete C, Lee M, Taylor AJ et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys Rev B 75, 041102 (2007).

    Google Scholar

    [16] Bingham CM, Tao H, Liu XL, Averitt RD, Zhang X et al. Planar wallpaper group metamaterials for novel terahertz applications. Opt Express 16, 18565–18575 (2008). doi: 10.1364/OE.16.018565

    CrossRef Google Scholar

    [17] Kim S, Jang MS, Brar VW, Tolstova Y, Mauser KW et al. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat Commun 7, 12323 (2016). doi: 10.1038/ncomms12323

    CrossRef Google Scholar

    [18] Gao WL, Shu J, Reichel K, Nickel DV, He XW et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 14, 1242–1248 (2014). doi: 10.1021/nl4041274

    CrossRef Google Scholar

    [19] Seo M, Kyoung J, Park H, Koo S, Kim HS et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett 10, 2064–2068 (2010). doi: 10.1021/nl1002153

    CrossRef Google Scholar

    [20] Hendry E, Lockyear MJ, Rivas JG, Kuipers L, Bonn M. Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays. Phys Rev B 75, 235305 (2007). doi: 10.1103/PhysRevB.75.235305

    CrossRef Google Scholar

    [21] Lee SH, Choi M, Kim TT, Lee S, Liu M et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11, 936–941 (2012). doi: 10.1038/nmat3433

    CrossRef Google Scholar

    [22] Kim TT, Oh SS, Kim HD, Park HS, Hess O et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3, e1701377 (2017). doi: 10.1126/sciadv.1701377

    CrossRef Google Scholar

    [23] Miao ZQ, Wu Q, Li X, He Q, Ding K et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5, 041027 (2015).

    Google Scholar

    [24] Ju L, Geng BS, Horng J, Girit C, Martin M et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6, 630–634 (2011). doi: 10.1038/nnano.2011.146

    CrossRef Google Scholar

    [25] Thareja V, Kang JH, Yuan HT, Milaninia KM, Hwang HY et al. Electrically tunable coherent optical absorption in graphene with ion gel. Nano Lett 15, 1570–1576 (2015). doi: 10.1021/nl503431d

    CrossRef Google Scholar

    [26] Seo MA, Park HR, Koo SM, Park DJ, Kang JH et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat Photonics 3, 152–156 (2009). doi: 10.1038/nphoton.2009.22

    CrossRef Google Scholar

    [27] Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW et al. Memory metamaterials. Science 325, 1518–1521 (2009). doi: 10.1126/science.1176580

    CrossRef Google Scholar

    [28] Zhao YC, Zhang YX, Shi QW, Liang SX, Huang WX et al. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photonics 5, 3040–3050 (2018). doi: 10.1021/acsphotonics.8b00276

    CrossRef Google Scholar

    [29] Cai HL, Chen S, Zou CW, Huang QP, Liu Y et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Adv Opt Mater 6, 1800257 (2018). doi: 10.1002/adom.201800257

    CrossRef Google Scholar

    [30] Shportko K, Kremers S, Woda M, Lencer D, Robertson J et al. Resonant bonding in crystalline phase-change materials. Nat Mater 7, 653–658 (2008). doi: 10.1038/nmat2226

    CrossRef Google Scholar

    [31] Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M et al. Interfacial phase-change memory. Nat Nanotechnol 6, 501–505 (2011). doi: 10.1038/nnano.2011.96

    CrossRef Google Scholar

    [32] Jeong TH, Kim MR, Seo H, Kim SJ, Kim SY. Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J Appl Phys 86, 774–778 (1999). doi: 10.1063/1.370803

    CrossRef Google Scholar

    [33] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photonics 11, 465–476 (2017). doi: 10.1038/nphoton.2017.126

    CrossRef Google Scholar

    [34] Cao T, Zhang L, Simpson RE, Cryan MJ. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J Opt Soc Am B 30, 1580–1585 (2013).

    Google Scholar

    [35] Cao T, Simpson RE, Cryan MJ. Study of tunable negative index metamaterials based on phase-change materials. J Opt Soc Am B 30, 439–444 (2013). doi: 10.1364/JOSAB.30.000439

    CrossRef Google Scholar

    [36] Kwon Y, Kim JH, Chae S, Lee Y, Jachun SG et al. Device characteristics of a Ge-doped SbTe alloy for high-speed phase-change random access memory. J Korean Phys Soc 59, 466–469 (2011). doi: 10.3938/jkps.59.466

    CrossRef Google Scholar

    [37] Wuttig M. Towards a universal memory. Nat Mater 4, 265–266 (2005). doi: 10.1038/nmat1359

    CrossRef Google Scholar

    [38] Gholipour B, Zhang JF, MacDonald KF, Hewak DW, Zheludev NI. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv Mater 25, 3050–3054 (2013). doi: 10.1002/adma.201300588

    CrossRef Google Scholar

    [39] Michel AKU, Zalden P, Chigrin DN, Wuttig M, Lindenberg AM et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics 1, 833–839 (2014). doi: 10.1021/ph500121d

    CrossRef Google Scholar

    [40] Cao T, Fang LH, Cao Y, Li N, Fan ZY et al. Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci Bull 64, 814–822 (2019). doi: 10.1016/j.scib.2019.02.017

    CrossRef Google Scholar

    [41] Kalikka J, Zhou XL, Behera J, Nannicini G, Simpson RE. Evolutionary design of interfacial phase change van der Waals heterostructures. Nanoscale 8, 18212–18220 (2016). doi: 10.1039/C6NR05539G

    CrossRef Google Scholar

    [42] Zhou XL, Behera JK, Lv SL, Wu LC, Song ZT et al. Avalanche atomic switching in strain engineered Sb2Te3–GeTe interfacial phase-change memory cells. Nano Futures 1, 025003 (2017). doi: 10.1088/2399-1984/aa8434

    CrossRef Google Scholar

    [43] Chu CH, Tseng ML, Chen J, Wu PC, Chen YH et al. Active dielectric metasurface based on phase-change medium. Laser Photon Rev 10, 986–994 (2016). doi: 10.1002/lpor.201600106

    CrossRef Google Scholar

    [44] Zhou XL, Kalikka J, Ji XL, Wu LC, Song ZT et al. Phase-change memory materials by design: a strain engineering approach. Adv Mater 28, 3007–3016 (2016). doi: 10.1002/adma.201505865

    CrossRef Google Scholar

    [45] Behera JK, Zhou XL, Tominaga J, Simpson RE. Laser switching and characterisation of chalcogenides: systems, measurements, and applicability to photonics [invited]. Opt Mater Express 7, 3741–3759 (2017). doi: 10.1364/OME.7.003741

    CrossRef Google Scholar

    [46] Kodama CH, Coutu Jr RA. Tunable split-ring resonators using germanium telluride. Appl Phys Lett 108, 231901 (2016). doi: 10.1063/1.4953228

    CrossRef Google Scholar

    [47] Pitchappa P, Kumar A, Prakash S, Jani H, Venkatesan T et al. Chalcogenide phase change material for active terahertz photonics. Adv Mater 31, 1808157 (2019). doi: 10.1002/adma.201808157

    CrossRef Google Scholar

    [48] Chew LT, Dong WL, Liu L, Zhou XL, Behera J et al. Chalcogenide active photonics. Proc SPIE 10345, 103451B (2017).

    Google Scholar

    [49] Azad AK, Zhang WL. Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness. Opt Lett 30, 2945–2947 (2005). doi: 10.1364/OL.30.002945

    CrossRef Google Scholar

    [50] Gopalan P, Wang YS, Sensale-Rodriguez B. Terahertz characterization of two-dimensional low-conductive layers enabled by metal gratings. Sci Rep 11, 2833 (2021). doi: 10.1038/s41598-021-82560-2

    CrossRef Google Scholar

    [51] Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999

    CrossRef Google Scholar

    [52] Lalanne P, Rodier JC, Hugonin JP. Surface plasmons of metallic surfaces perforated by nanohole arrays. J Opt A:Pure Appl Opt 7, 422–426 (2005). doi: 10.1088/1464-4258/7/8/013

    CrossRef Google Scholar

    [53] Liu HT, Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008). doi: 10.1038/nature06762

    CrossRef Google Scholar

    [54] Liu HT, Lalanne P. Comprehensive microscopic model of the extraordinary optical transmission. J Opt Soc Am A 27, 2542–2550 (2010).

    Google Scholar

    [55] van Beijnum F, Rétif C, Smiet CB, Liu HT, Lalanne P et al. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492, 411–414 (2012). doi: 10.1038/nature11669

    CrossRef Google Scholar

    [56] Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998). doi: 10.1038/35570

    CrossRef Google Scholar

    [57] Martín-Moreno L, García-Vidal F, Lezec HJ, Pellerin KM, Thio T et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86, 1114 (2001). doi: 10.1103/PhysRevLett.86.1114

    CrossRef Google Scholar

    [58] Porto JA, García-Vidal F, Pendry JB. Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83, 2845–2848 (1999). doi: 10.1103/PhysRevLett.83.2845

    CrossRef Google Scholar

    [59] Lee BS, Burr GW, Shelby RM, Raoux S, Rettner CT et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009). doi: 10.1126/science.1177483

    CrossRef Google Scholar

    [60] Wang L, Zhang YX, Guo XQ, Chen T, Liang HJ et al. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 9, 965 (2019). doi: 10.3390/nano9070965

    CrossRef Google Scholar

    [61] Ma ZT, Geng ZX, Fan ZY, Liu J, Chen HD. Modulators for terahertz communication: the current state of the art. Research 2019, 6482975 (2019).

    Google Scholar

    [62] Raoux S. Phase change materials. Annu Rev Mater Res 39, 25–48 (2009). doi: 10.1146/annurev-matsci-082908-145405

    CrossRef Google Scholar

    [63] Terao M, Morikawa T, Ohta T. Electrical phase-change memory: fundamentals and state of the art. Jpn J Appl Phys 48, 080001 (2009). doi: 10.1143/JJAP.48.080001

    CrossRef Google Scholar

    [64] Orava J, Greer AL, Gholipour B, Hewak DW, Smith CE. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater 11, 279–283 (2012). doi: 10.1038/nmat3275

    CrossRef Google Scholar

    [65] Chu CH, Da Shiue C, Cheng HW, Tseng ML, Chiang HP et al. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Opt Express 18, 18383–18393 (2010). doi: 10.1364/OE.18.018383

    CrossRef Google Scholar

    [66] Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys 69, 2849–2856 (1991). doi: 10.1063/1.348620

    CrossRef Google Scholar

    [67] Weidenhof V, Pirch N, Friedrich I, Ziegler S, Wuttig M. Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J Appl Phys 88, 657–664 (2000). doi: 10.1063/1.373717

    CrossRef Google Scholar

    [68] Wuttig M, Salinga M. Fast transformers. Nat Mater 11, 270–271 (2012). doi: 10.1038/nmat3288

    CrossRef Google Scholar

    [69] Oh SH, Baek K, Son SK, Song K, Oh JW et al. In situ TEM observation of void formation and migration in phase change memory devices with confined nanoscale Ge2Sb2Te5. Nanoscale Adv 2, 3841–3848 (2020). doi: 10.1039/D0NA00223B

    CrossRef Google Scholar

    [70] Sarkar J, Gleixner B. Evolution of phase change memory characteristics with operating cycles: electrical characterization and physical modeling. Appl Phys Lett 91, 233506 (2007). doi: 10.1063/1.2821845

    CrossRef Google Scholar

    [71] Do K, Lee D, Ko DH, Sohn H, Cho MH. TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes. Electrochem Solid State Lett 13, H284–H286 (2010). doi: 10.1149/1.3439647

    CrossRef Google Scholar

    [72] Kim C, Kang DM, Lee TY, Kim KHP, Kang YS et al. Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices. Appl Phys Lett 94, 193504 (2009). doi: 10.1063/1.3127223

    CrossRef Google Scholar

    [73] Krusin-Elbaum L, Cabral Jr C, Chen KN, Copel M, Abraham DW et al. Evidence for segregation of Te in Ge2Sb2Te5 films: effect on the “phase-change” stress. Appl Phys Lett 90, 141902 (2007). doi: 10.1063/1.2719148

    CrossRef Google Scholar

    [74] Yang TY, Park IM, Kim BJ, Joo YC. Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field. Appl Phys Lett 95, 032104 (2009). doi: 10.1063/1.3184584

    CrossRef Google Scholar

    [75] Haynes WM, Lide DR, Bruno TJ. CRC Handbook of Chemistry and Physics 95th ed (CRC Press, Boca Raton, 2014).

    Google Scholar

    [76] Chen HT, O'hara JF, Azad AK, Taylor AJ, Averitt RD et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photonics 2, 295–298 (2008). doi: 10.1038/nphoton.2008.52

    CrossRef Google Scholar

    [77] Yang K, Liu SC, Arezoomandan S, Nahata A, Sensale-Rodriguez B. Graphene-based tunable metamaterial terahertz filters. Appl Phys Lett 105, 093105 (2014). doi: 10.1063/1.4894807

    CrossRef Google Scholar

    [78] Jung H, Koo J, Heo E, Cho B, In C et al. Electrically controllable molecularization of terahertz meta-atoms. Adv Mater 30, 1802760 (2018). doi: 10.1002/adma.201802760

    CrossRef Google Scholar

    [79] Deng ZL, Zhang S, Wang GP. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces. Nanoscale 8, 1588–1594 (2016). doi: 10.1039/C5NR07181J

    CrossRef Google Scholar

    [80] Deng ZL, Cao YY, Li XP, Wang GP. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photonics Res 6, 443–450 (2018). doi: 10.1364/PRJ.6.000443

    CrossRef Google Scholar

  • Supplementary Information for Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(9749) PDF downloads(981) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint