Citation: | Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009 |
[1] | Gabor D. A new microscopic principle. Nature 161, 777–778 (1948). doi: 10.1038/161777a0 |
[2] | Lohmann AW. Reconstruction of vectorial wavefronts. Appl Opt 4, 1667–1668 (1965). doi: 10.1364/AO.4.001667 |
[3] | Rogers GL. Polarization effects in holography. J Opt Soc Am 56, 831 (1966). doi: 10.1364/JOSA.56.000831 |
[4] | Carter W, Engeling P, Dougal A. Polarization selection for reconstructed wavefronts and application to polarizing microholography. IEEE J Quant Electron 2, 44–46 (1966). doi: 10.1109/JQE.1966.1073774 |
[5] | Bryngdahl O. Polarizing holography. J Opt Soc Am 57, 545–546 (1967). doi: 10.1364/JOSA.57.000545 |
[6] | Fourney ME, Waggoner AP, Mate KV. Recording polarization effects via holography. J Opt Soc Am 58, 701–702 (1968). doi: 10.1364/JOSA.58.000701 |
[7] | Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J 48, 2909–2947 (1969). doi: 10.1002/j.1538-7305.1969.tb01198.x |
[8] | Kakichashvili SD. On polarization recording of holograms. Opt Spectrosc 32, 324–327 (1972). |
[9] | Nikolova L, Ramanujam PS. Polarization Holography (Cambridge University Press, Cambridge, 2009). |
[10] | Todorov T, Nikolova L, Tomova N. Polarization holography. 2: polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence. Appl Opt 23, 4588–4591 (1984). doi: 10.1364/AO.23.004588 |
[11] | Kuroda K, Matsuhashi Y, Fujimura R, Shimura T. Theory of polarization holography. Opt Rev 18, 374 (2011). doi: 10.1007/s10043-011-0072-5 |
[12] | Barada D, Ochiai T, Fukuda T, Kawata S, Kuroda K et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave. Opt Lett 37, 4528–4530 (2012). doi: 10.1364/OL.37.004528 |
[13] | Ochiai T, Barada D, Fukuda T, Hayasaki Y, Kuroda K et al. Angular multiplex recording of data pages by dual-channel polarization holography. Opt Lett 38, 748–750 (2013). doi: 10.1364/OL.38.000748 |
[14] | Wu A N, Kang G G, Zang J L, Liu Y, Tan X D et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle. Opt Express 23, 8880–8887 (2015). doi: 10.1364/OE.23.008880 |
[15] | Todorov T, Nikolova L, Tomova N, Dragostinova V. Photoinduced anisotropy in rigid dye solutions for transient polarization holography. IEEE J Quant Electron 22, 1262–1267 (1986). doi: 10.1109/JQE.1986.1073138 |
[16] | Huang T, Wagner KH. Coupled mode analysis of polarization volume hologram. IEEE J Quant Electron 31, 372–390 (1995). doi: 10.1109/3.348069 |
[17] | Lin SH, Cho SL, Chou SF, Lin JH, Lin CM et al. Volume polarization holographic recording in thick photopolymer for optical memory. Opt Express 22, 14944–14957 (2014). doi: 10.1364/OE.22.014944 |
[18] | Wang J, Kang G, Wu A, Liu Y, Zang J et al. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram. Opt Express 24, 1641–1647 (2016). doi: 10.1364/OE.24.001641 |
[19] | Zang JL, Kang GG, Li P, Liu Y, Fan FL et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography. Opt Lett 42, 1377–1380 (2017). doi: 10.1364/OL.42.001377 |
[20] | Shao L, Zang JL, Fan FL, Liu Y, Tan XD. Investigation of the null reconstruction effect of an orthogonal elliptical polarization hologram at a large recording angle. Appl Opt 58, 9983–9989 (2019). doi: 10.1364/AO.58.009983 |
[21] | Zang JL, Wu AA, Liu Y, Wang J, Lin X et al. Characteristics of volume polarization holography with linear polarization light. Opt Rev 22, 829–831 (2015). doi: 10.1007/s10043-015-0122-5 |
[22] | Qi PL, Wang JY, Yuan XY, Chen YX, Lin AY et al. Diffraction characteristics of a linear polarization hologram in coaxial recording. Opt Express 29, 6947–6956 (2021). doi: 10.1364/OE.416444 |
[23] | Xu XM, Zhang YY, Song HY, Lin X, Huang ZY et al. Generation of circular polarization with an arbitrarily polarized reading wave. Opt Express 29, 2613–2623 (2021). doi: 10.1364/OE.414531 |
[24] | Zhang YY, Kang GG, Zang JL, Wang J, Liu Y et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle. Opt Lett 41, 4126–4129 (2016). doi: 10.1364/OL.41.004126 |
[25] | Huang ZY, He YW, Dai TG, Zhu LL, Tan XD. Null reconstruction in orthogonal elliptical polarization holography read by non-orthogonal reference wave. Opt Lasers Eng 131, 106144 (2020). doi: 10.1016/j.optlaseng.2020.106144 |
[26] | Huang ZY, Wu CH, Chen YX, Lin X, Tan XD. Faithful reconstruction in orthogonal elliptical polarization holography read by different polarized waves. Opt Express 28, 23679–23689 (2020). doi: 10.1364/OE.399704 |
[27] | Wang JY, Qi PL, Lin AY, Chen YX, Zhang YY et al. Exposure response coefficient of polarization-sensitive media using tensor theory of polarization holography. Opt Lett 46, 4789–4792 (2021). doi: 10.1364/OL.431637 |
[28] | Hong YF, Kang GG, Zang JL, Fan FL, Liu Y et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography. Appl Opt 56, 10024–10029 (2017). doi: 10.1364/AO.56.010024 |
[29] | Qi PL, Wang JY, Song HY, Chen YX, Zhu LL et al. Faithful reconstruction condition of linear polarization holography. Acta Opt Sin 40, 2309001 (2020). doi: 10.3788/AOS202040.2309001 |
[30] | Huang ZY, Chen YX, Song HY, Tan XD. Faithful reconstruction in polarization holography suitable for high-speed recording and reconstructing. Opt Lett 45, 6282–6285 (2020). doi: 10.1364/OL.405354 |
[31] | Wang JY, Qi PL, Chen YX, Lin AY, Huang ZY et al. Faithful reconstruction of linear polarization wave without dielectric tensor constraint. Opt Express 29, 14033–14040 (2021). doi: 10.1364/OE.418519 |
[32] | Zang JL, Fan FL, Liu Y, Wei R, Tan XD. Four-channel volume holographic recording with linear polarization holography. Opt Lett 44, 4107–4110 (2019). doi: 10.1364/OL.44.004107 |
[33] | Huang L, Zhang YY, Zhang Q, Chen YX, Chen X et al. Generation of a vector light field based on polarization holography. Opt Lett 46, 4542–4545 (2021). doi: 10.1364/OL.438070 |
[34] | Wu CH, Chen YX, Huang ZY, Song HY, Tan XD. Orthogonal reconstruction in linear polarization holography. Laser Optoelect Prog 58, 0409001 (2021). doi: 10.3788/LOP202158.0409001 |
[35] | Tan XD, Matoba O, Okada-Shudo Y, Ide M, Shimura T et al. Secure optical memory system with polarization encryption. Appl Opt 40, 2310–2315 (2001). doi: 10.1364/AO.40.002310 |
[36] | Horimai H, Tan XD, Li J. Collinear holography. Appl Opt 44, 2575–2579 (2005). doi: 10.1364/AO.44.002575 |
[37] | Lin X, Liu JP, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto-Electron Adv 3, 190004 (2020). |
[38] | Hong YF, Zang JL, Liu Y, Fan FL, Wu AA et al. Review and prospect of polarization holography. Chin Opt 10, 588–602 (2017). doi: 10.3788/co.20171005.0588 |
[39] | Wei R, Zang JL, Liu Y, Fan FL, Huang ZY et al. Review on polarization holography for high density storage. Opto-Electron Eng 46, 180598 (2019). |
[40] | Su WJ, Hu Q, Zhao M, Yuan XP, Guo XJ et al. Development status and prospect of optical storage technology. Opto-Electron Eng 46, 180560 (2019). |
[41] | Lin X, Hao JY, Zheng MJ, Dai TG, Li H et al. Optical holographic data storage—The time for new development. Opto-Electron Eng 46, 180642 (2019). |
[42] | Li JH, Liu JP, Lin X, Liu JQ, Tan XD. Volume holographic data storage. Chin J Lasers 44, 1–12 (2017). doi: 10.3788/CJL201744.01 |
[43] | Li JH, Cao LC, Tan XD, He QS, Jin GF. Transmission type of collinear volume holographic storage technology based on LiNbO3 crystal. Acta Opt Sin 32, 0409001 (2012). doi: 10.3788/AOS201232.0409001 |
[44] | Chen YX, Hu P, Huang ZY, Wang JY, Song HY et al. Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide. ACS Appl Mater Interfaces 13, 27500–27512 (2021). doi: 10.1021/acsami.1c07390 |
[45] | Liu Y, Li ZZ, Zang JL, Wu AA, Wang J et al. The optical polarization properties of phenanthrenequinone-doped Poly(methyl methacrylate) photopolymer materials for volume holographic storage. Opt Rev 22, 837–840 (2015). doi: 10.1007/s10043-015-0108-3 |
[46] | Lin SH, Chen PL, Chuang CI, Chao YF, Hsu KY. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. Opt Lett 36, 3039–3041 (2011). doi: 10.1364/OL.36.003039 |
[47] | Liu P, Chang FW, Zhao Y, Li ZR, Sun XD. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures. Opt Express 26, 1072–1082 (2018). doi: 10.1364/OE.26.001072 |
[48] | Jian JL, Cao L, Wei XQ, Guo JX, Wang DY et al. A review of photopolymers on holography volume data storage. Opto-Electron Eng 46, 180552 (2019). |
[49] | Zang JL. Fundamental research on polarization holography based on tensor theory (Beijing Institute of Technology, Beijing, 2017). |
[50] | Hao JY, Wang K, Zhang YY, Li H, Lin X et al. Collinear non-interferometric phase retrieval for holographic data storage. Opt Express 28, 25795–25805 (2020). doi: 10.1364/OE.400599 |
[51] | Liu JP, Xu K, Liu JY, Cai JY, He YW et al. Phase modulated collinear holographic storage. Opto-Electron Eng 46, 180596 (2019). |
[52] | Wang JY, Qi PL, Lin AY, Chen YX, Huang ZY et al. Faithful reconstruction of linear polarization holography independent of exposure energy. Pro SPIE 11709, 1170909 (2021). |
[53] | Van Heerden PJ. Theory of optical information storage in solids. Appl Opt 2, 393–400 (1963). doi: 10.1364/AO.2.000393 |
[54] | Tan XD. Optical data storage technologies for big data era. Infrared Laser Eng 45, 0935001 (2016). doi: 10.3788/IRLA201645.0935001 |
[55] | Horimai H, Tan XD. Collinear technology for a holographic versatile disk. Appl Opt 45, 910–914 (2006). doi: 10.1364/AO.45.000910 |
[56] | Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053 |
[57] | Dhar L, Curtis K, Fäcke T. Coming of age. Nat Photonics 2, 403–405 (2008). doi: 10.1038/nphoton.2008.120 |
[58] | Li XP, Lan TH, Tien CH, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006 |
[59] | Ouyang X, Xu Y, Feng ZW, Tang WY, Cao YY et al. Polychromatic and polarized multilevel optical data storage. Nanoscale 11, 2447–2452 (2019). doi: 10.1039/C8NR09192G |
[60] | Chen WL, Zhang JY. Dimension expansion of high-capacity optical data storage. Opto-Electron Eng 46, 180571 (2019). |
[61] | Zhang JY, Gecevičius M, Beresna M, Kazansky PG. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901 |
[62] | Schnoes M, Ihas B, Dhar L, Michaels D, Setthachayanon S et al. Photopolymer use for holographic data storage. Proc SPIE 4988, 68–76 (2003). doi: 10.1117/12.474791 |
[63] | Tan XD, Matoba O, Shimura T, Kuroda K, Javidi B. Secure optical storage that uses fully phase encryption. Appl Opt 39, 6689–6694 (2000). doi: 10.1364/AO.39.006689 |
[64] | Wang Z, Chen YF, Jiang ZQ. Dual-wavelength digital holographic phase reconstruction based on a polarization-multiplexing configuration. Chin Opt Lett 14, 010008 (2016). doi: 10.3788/COL201614.010008 |
[65] | Liu JP, Horimai H, Lin X, Huang Y, Tan XD. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding. Opt Express 26, 3828–3838 (2018). doi: 10.1364/OE.26.003828 |
[66] | Nobukawa T, Nomura T. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator. Appl Opt 55, 2565–2573 (2016). doi: 10.1364/AO.55.002565 |
[67] | Hao JY, Lin X, Lin YK, Song HY, Chen RX et al. Lensless phase retrieval based on deep learning used in holographic data storage. Opt Lett 46, 4168–4171 (2021). doi: 10.1364/OL.433955 |
[68] | Lin X, Huang Y, Shimura T, Fujimura R, Tanaka Y et al. Fast non-interferometric iterative phase retrieval for holographic data storage. Opt Express 25, 30905–30915 (2017). doi: 10.1364/OE.25.030905 |
[69] | Lin X, Huang Y, Li Y, Liu JY, Liu JP et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage. Chin Opt Lett 16, 032101 (2018). doi: 10.3788/COL201816.032101 |
[70] | Tao SM, Xu M. Spatioangularly-multiplexed Three-dimensional holographic disks. Acta Opt Sin 17, 1015–1020 (1997). |
[71] | Mok FH. Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt Lett 18, 915–917 (1993). doi: 10.1364/OL.18.000915 |
[72] | Yuan CJ, Situ GH, Pedrini G, Ma J, Osten W. Resolution improvement in digital holography by angular and polarization multiplexing. Appl Opt 50, B6–B11 (2011). doi: 10.1364/AO.50.0000B6 |
[73] | Su WC, Chen CM, Ouyang Y. Orthogonal polarization simultaneous readout for volume holograms with hybrid angle and polarization multiplexing in LiNbO3. Appl Opt 46, 3233–3238 (2007). doi: 10.1364/AO.46.003233 |
[74] | Katano Y, Muroi T, Kinoshita N, Ishii N. Highly efficient dual page reproduction in holographic data storage. Opt Express 29, 33257–33268 (2021). doi: 10.1364/OE.438081 |
[75] | Barbastathis G, Levene M, Psaltis D. Shift multiplexing with spherical reference waves. Appl Opt 35, 2403–2417 (1996). doi: 10.1364/AO.35.002403 |
[76] | Steckman GJ, Pu A, Psaltis D. Storage density of shift-multiplexed holographic memory. Appl Opt 40, 3387–3394 (2001). doi: 10.1364/AO.40.003387 |
[77] | Takabayashi M, Okamoto A, Eto T, Okamoto T. Shift-multiplexed self-referential holographic data storage. Appl Opt 53, 4375–4381 (2014). doi: 10.1364/AO.53.004375 |
[78] | Lande D, Heanue JF, Bashaw MC, Hesselink L. Digital wavelength-multiplexed holographic data storage system. Opt Lett 21, 1780–1782 (1996). doi: 10.1364/OL.21.001780 |
[79] | Tan Y, Wu H, Dai DX. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J Lightw Technol 36, 2051–2058 (2018). doi: 10.1109/JLT.2017.2771352 |
[80] | Bashaw MC, Singer RC, Heanue JF, Hesselink L. Coded-wavelength multiplex volume holography. Opt Lett 20, 1916–1918 (1995). doi: 10.1364/OL.20.001916 |
[81] | Li CMY, Cao LX, Wang Z, Jin GF. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer. Opt Lett 39, 6891–6894 (2014). doi: 10.1364/OL.39.006891 |
[82] | Koek WD, Bhattacharya N, Braat JJM, Chan VSS, Westerweel J. Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin. Opt Lett 29, 101–103 (2004). doi: 10.1364/OL.29.000101 |
[83] | Todorov T, Nikolova L, Stoyanova K, Tomova N. Polarization holography. 3: some applications of polarization holographic recording. Appl Opt 24, 785–788 (1985). doi: 10.1364/AO.24.000785 |
[84] | Parigi V, D’Ambrosio V, Arnold C, Marrucci L, Sciarrino F et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat Commun 6, 7706 (2015). doi: 10.1038/ncomms8706 |
[85] | Ruiz U, Pagliusi P, Provenzano C, Cipparrone G. Highly efficient generation of vector beams through polarization holograms. Appl Phys Lett 102, 161104 (2013). doi: 10.1063/1.4801317 |
[86] | Matharu AS, Jeeva S, Ramanujam PS. Liquid crystals for holographic optical data storage. Chem Soc Rev 36, 1868–1880 (2007). doi: 10.1039/b706242g |
[87] | Huang K, Shi P, Cao GW, Li K, Zhang XB et al. Vector-vortex bessel–gauss beams and their tightly focusing properties. Opt Lett 36, 888–890 (2011). doi: 10.1364/OL.36.000888 |
[88] | Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt Express 18, 10828–10833 (2010). doi: 10.1364/OE.18.010828 |
[89] | Min CJ, Shen Z, Shen JF, Zhang YQ, Fang H et al. Focused plasmonic trapping of metallic particles. Nat Commun 4, 2891 (2013). doi: 10.1038/ncomms3891 |
[90] | Zhao YF, Wang J. High-base vector beam encoding/decoding for visible-light communications. Opt Lett 40, 4843–4846 (2015). doi: 10.1364/OL.40.004843 |
[91] | Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 40, 4887–4890 (2015). doi: 10.1364/OL.40.004887 |
[92] | Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl Opt 51, C1–C6 (2012). doi: 10.1364/AO.51.0000C1 |
[93] | Rumala YS, Milione G, Nguyen TA, Pratavieira S, Hossain Z et al. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt Lett 38, 5083–5086 (2013). doi: 10.1364/OL.38.005083 |
[94] | Viswanathan NK, Inavalli VVG. Generation of optical vector beams using a two-mode fiber. Opt Lett 34, 1189–1191 (2009). doi: 10.1364/OL.34.001189 |
[95] | Ramachandran S, Kristensen P, Yan MF. Generation and propagation of radially polarized beams in optical fibers. Opt Lett 34, 2525–2527 (2009). doi: 10.1364/OL.34.002525 |
[96] | Chen H, Hao JJ, Zhang BF, Xu J, Ding JP et al. Generation of vector beam with space-variant distribution of both polarization and phase. Opt Lett 36, 3179–3181 (2011). doi: 10.1364/OL.36.003179 |
[97] | Zhan QW. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 1, 1–57 (2009). doi: 10.1364/AOP.1.000001 |
[98] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[99] | Wen DD, Yue FY, Liu WW, Chen SQ, Chen XZ. Geometric metasurfaces for ultrathin optical devices. Adv Opt Mater 6, 1800348 (2018). doi: 10.1002/adom.201800348 |
[100] | Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). doi: 10.1038/35003523 |
[101] | Schultz SM, Glytsis EN, Gaylord TK. Design, fabrication, and performance of preferential-order volume grating waveguide couplers. Appl Opt 39, 1223–1232 (2000). doi: 10.1364/AO.39.001223 |
[102] | Hao JY, Ren YH, Zhang YY, Wang K, Li H et al. Non-interferometric phase retrieval for collinear phase-modulated holographic data storage. Opt Rev 27, 419–426 (2020). doi: 10.1007/s10043-020-00611-x |
[103] | Zhao JY, Jin YX, Kong FY, He DB, Cao HC et al. Optical vortex switch based on multiplexed volume gratings with high diffraction efficiency. Opt Express 29, 34293–34301 (2021). doi: 10.1364/OE.434584 |
Schematic of polarization holography: (a) recording process; (b) reconstruction process.
The definition of the orientation of the polarized wave under two orthogonal basic unit vectors p and s coordination.
The definition of basic unit p vectors in the process of (a) recording and (b) reconstruction.
The relationship between NDE and the polarization angle of reading wave. The double arrow symbol represents the polarization angle of reading wave. Figure reproduced with permission from ref.32, The Optical Society.
The variation of NDE and polarization angle of the reconstructed wave with the polarization angle of reading wave under different recording conditions. The polarization angles of the signal wave are: 0°, 45° and 90°, respectively. (a) The variation of NDE of reconstructed wave. The theoretical value is cos2γ curve. (b) The variation of polarization angle of the reconstructed wave. Figure reproduced with permission from ref.29, Chinese Laser Press.
The simulated value of reconstructed wave changes with the polarization angle of reading wave under different recording conditions. All the polarization angles of the reference wave are p-polarized. (a) The variation of polarization angle of the reconstructed wave. (b) The variation of NDE of the reconstructed wave.
The variation of polarization angle of the reconstructed wave with the polarization angle of reference and reading waves. Figure reproduced with permission from ref. 31, The Optical Society.
The variation of the s- and p-polarized components in the reconstructed wave with the HWP2 angle under different interference angles. The interference angles are 15.8°, 26.2°, 38.1° and 58.5°, respectively, which are distinguished by lines of different colors. The polarization angle of the reading wave is twice the fast-axis angle of HWP2. Figure reproduced with permission from ref. 34, Chinese Laser Press.
Optical setup of linear polarization holography. SF, spatial filter; PBS, polarization beam splitter; SH, shutters; HWP, half-wave plates. Figure reproduced with permission from ref.19, The Optical Society.
The variation of the s- and p-polarized components in the reconstructed wave with the HWP1 angle. Figure reproduced with permission from ref.19, The Optical Society.
Optical setup for four-channel polarization holographic recording. SF, spatial filter; PBS, polarization beam splits; SH, shutters; HWP, half-wave plates; BS, beam splitter; SLM, spatial light modulator. Figure reproduced with permission from ref.32, The Optical Society.
Images reconstructed in four-channel holographic image recording. (a–d) Original transmitted images before holographic recording. (e) and (f) reconstructed image of the p-polarized reading wave. (g) and (h) reconstructed image of the s-polarized reading wave. Figure reproduced with permission from ref.32, The Optical Society.
Schematic of experiment. PBS, polarization beam splitter; M, mirror; P, polarizer; HWP, half wave plate; L, lens. Figure reproduced with permission from ref.33, The Optical Society.
The intensity and polarization distributions of the vector beams with azimuthal index of m=2, θ0=30°. (a–e) The simulation of reconstructed wave intensity distribution after changing the transmission axis of polarizer (30°, 120°, 150°, 180°). (f–j) The corresponding experimental results. Figure reproduced with permission from ref.33, The Optical Society.
Experimental results. (a) Signal wave is s-polarized. (b) Signal wave is p-polarized. (c) Signal wave is 45°-polarized. All reference and reading waves are s-polarized. Notice that the vertical scale in different graphs is different. Figure reproduced with permission from ref.21, The Springer Nature.
Simulated variation of NDE of reconstructed wave with polarization angle of reading wave. (a) The variation of the s- and p-polarized components in the reconstructed wave with polarization angle of reading wave. (b) The variation of the polarization angle of reconstructed wave with polarization angle of reading wave.
Simulated variation of NDE of reconstructed wave with polarization angle of reading wave. (a) The variation of the s- and p-polarized components in the reconstructed wave with polarization angle of reading wave. (b) The variation of the polarization angle of reconstructed wave with polarization angle of reading wave.
Simulated variation of NDE of reconstructed wave with polarization angle of reading wave. (a) The variation of the s- and p-polarized components in the reconstructed wave with polarization angle of reading wave. (b) The variation of the polarization angle of reconstructed wave with polarization angle of reading wave.
The variation of reconstructed wave with exposure energy under different recording conditions. (a) The variation of polarization angle of reconstructed wave with exposure energy, where polarization angles of signal wave are 0°, 15°, 30°, 45°, 60°, 75°, and 90°. (b) The variation of exposure response coefficient A/B with exposure energy for different linearly polarized signal wave, where polarization angles of signal wave are 15°, 30°, 45°, 60°, 75°. Figure reproduced with permission from ref.27, The Optical Society.
The variation of diffraction efficiency with exposure energy. Figure reproduced with permission from ref.27, The Optical Society.