Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009
Citation: Wang JY, Tan XD, Qi PL, Wu CH, Huang L et al. Linear polarization holography. Opto-Electron Sci 1, 210009 (2022). doi: 10.29026/oes.2022.210009

Review Open Access

Linear polarization holography

More Information
  • Polarization holography is a newly researched field, that has gained traction with the development of tensor theory. It primarily focuses on the interaction between polarization waves and photosensitive materials. The extraordinary capabilities in modulating the amplitude, phase, and polarization of light have resulted in several new applications, such as holographic storage technology, multichannel polarization multiplexing, vector beams, and optical functional devices. In this paper, fundamental research on polarization holography with linear polarized wave, a component of the theory of polarization holography, has been reviewed. Primarily, the effect of various polarization changes on the linear and nonlinear polarization characteristics of reconstructed wave under continuous exposure and during holographic recording and reconstruction have been focused upon. The polarization modulation realized using these polarization characteristics exhibits unusual functionalities, rendering polarization holography as an attractive research topic in many fields of applications. This paper aims to provide readers with new insights and broaden the application of polarization holography in more scientific and technological research fields.
  • 加载中
  • [1] Gabor D. A new microscopic principle. Nature 161, 777–778 (1948). doi: 10.1038/161777a0

    CrossRef Google Scholar

    [2] Lohmann AW. Reconstruction of vectorial wavefronts. Appl Opt 4, 1667–1668 (1965). doi: 10.1364/AO.4.001667

    CrossRef Google Scholar

    [3] Rogers GL. Polarization effects in holography. J Opt Soc Am 56, 831 (1966). doi: 10.1364/JOSA.56.000831

    CrossRef Google Scholar

    [4] Carter W, Engeling P, Dougal A. Polarization selection for reconstructed wavefronts and application to polarizing microholography. IEEE J Quant Electron 2, 44–46 (1966). doi: 10.1109/JQE.1966.1073774

    CrossRef Google Scholar

    [5] Bryngdahl O. Polarizing holography. J Opt Soc Am 57, 545–546 (1967). doi: 10.1364/JOSA.57.000545

    CrossRef Google Scholar

    [6] Fourney ME, Waggoner AP, Mate KV. Recording polarization effects via holography. J Opt Soc Am 58, 701–702 (1968). doi: 10.1364/JOSA.58.000701

    CrossRef Google Scholar

    [7] Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst Tech J 48, 2909–2947 (1969). doi: 10.1002/j.1538-7305.1969.tb01198.x

    CrossRef Google Scholar

    [8] Kakichashvili SD. On polarization recording of holograms. Opt Spectrosc 32, 324–327 (1972).

    Google Scholar

    [9] Nikolova L, Ramanujam PS. Polarization Holography (Cambridge University Press, Cambridge, 2009).

    Google Scholar

    [10] Todorov T, Nikolova L, Tomova N. Polarization holography. 2: polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence. Appl Opt 23, 4588–4591 (1984). doi: 10.1364/AO.23.004588

    CrossRef Google Scholar

    [11] Kuroda K, Matsuhashi Y, Fujimura R, Shimura T. Theory of polarization holography. Opt Rev 18, 374 (2011). doi: 10.1007/s10043-011-0072-5

    CrossRef Google Scholar

    [12] Barada D, Ochiai T, Fukuda T, Kawata S, Kuroda K et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave. Opt Lett 37, 4528–4530 (2012). doi: 10.1364/OL.37.004528

    CrossRef Google Scholar

    [13] Ochiai T, Barada D, Fukuda T, Hayasaki Y, Kuroda K et al. Angular multiplex recording of data pages by dual-channel polarization holography. Opt Lett 38, 748–750 (2013). doi: 10.1364/OL.38.000748

    CrossRef Google Scholar

    [14] Wu A N, Kang G G, Zang J L, Liu Y, Tan X D et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle. Opt Express 23, 8880–8887 (2015). doi: 10.1364/OE.23.008880

    CrossRef Google Scholar

    [15] Todorov T, Nikolova L, Tomova N, Dragostinova V. Photoinduced anisotropy in rigid dye solutions for transient polarization holography. IEEE J Quant Electron 22, 1262–1267 (1986). doi: 10.1109/JQE.1986.1073138

    CrossRef Google Scholar

    [16] Huang T, Wagner KH. Coupled mode analysis of polarization volume hologram. IEEE J Quant Electron 31, 372–390 (1995). doi: 10.1109/3.348069

    CrossRef Google Scholar

    [17] Lin SH, Cho SL, Chou SF, Lin JH, Lin CM et al. Volume polarization holographic recording in thick photopolymer for optical memory. Opt Express 22, 14944–14957 (2014). doi: 10.1364/OE.22.014944

    CrossRef Google Scholar

    [18] Wang J, Kang G, Wu A, Liu Y, Zang J et al. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram. Opt Express 24, 1641–1647 (2016). doi: 10.1364/OE.24.001641

    CrossRef Google Scholar

    [19] Zang JL, Kang GG, Li P, Liu Y, Fan FL et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography. Opt Lett 42, 1377–1380 (2017). doi: 10.1364/OL.42.001377

    CrossRef Google Scholar

    [20] Shao L, Zang JL, Fan FL, Liu Y, Tan XD. Investigation of the null reconstruction effect of an orthogonal elliptical polarization hologram at a large recording angle. Appl Opt 58, 9983–9989 (2019). doi: 10.1364/AO.58.009983

    CrossRef Google Scholar

    [21] Zang JL, Wu AA, Liu Y, Wang J, Lin X et al. Characteristics of volume polarization holography with linear polarization light. Opt Rev 22, 829–831 (2015). doi: 10.1007/s10043-015-0122-5

    CrossRef Google Scholar

    [22] Qi PL, Wang JY, Yuan XY, Chen YX, Lin AY et al. Diffraction characteristics of a linear polarization hologram in coaxial recording. Opt Express 29, 6947–6956 (2021). doi: 10.1364/OE.416444

    CrossRef Google Scholar

    [23] Xu XM, Zhang YY, Song HY, Lin X, Huang ZY et al. Generation of circular polarization with an arbitrarily polarized reading wave. Opt Express 29, 2613–2623 (2021). doi: 10.1364/OE.414531

    CrossRef Google Scholar

    [24] Zhang YY, Kang GG, Zang JL, Wang J, Liu Y et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle. Opt Lett 41, 4126–4129 (2016). doi: 10.1364/OL.41.004126

    CrossRef Google Scholar

    [25] Huang ZY, He YW, Dai TG, Zhu LL, Tan XD. Null reconstruction in orthogonal elliptical polarization holography read by non-orthogonal reference wave. Opt Lasers Eng 131, 106144 (2020). doi: 10.1016/j.optlaseng.2020.106144

    CrossRef Google Scholar

    [26] Huang ZY, Wu CH, Chen YX, Lin X, Tan XD. Faithful reconstruction in orthogonal elliptical polarization holography read by different polarized waves. Opt Express 28, 23679–23689 (2020). doi: 10.1364/OE.399704

    CrossRef Google Scholar

    [27] Wang JY, Qi PL, Lin AY, Chen YX, Zhang YY et al. Exposure response coefficient of polarization-sensitive media using tensor theory of polarization holography. Opt Lett 46, 4789–4792 (2021). doi: 10.1364/OL.431637

    CrossRef Google Scholar

    [28] Hong YF, Kang GG, Zang JL, Fan FL, Liu Y et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography. Appl Opt 56, 10024–10029 (2017). doi: 10.1364/AO.56.010024

    CrossRef Google Scholar

    [29] Qi PL, Wang JY, Song HY, Chen YX, Zhu LL et al. Faithful reconstruction condition of linear polarization holography. Acta Opt Sin 40, 2309001 (2020). doi: 10.3788/AOS202040.2309001

    CrossRef Google Scholar

    [30] Huang ZY, Chen YX, Song HY, Tan XD. Faithful reconstruction in polarization holography suitable for high-speed recording and reconstructing. Opt Lett 45, 6282–6285 (2020). doi: 10.1364/OL.405354

    CrossRef Google Scholar

    [31] Wang JY, Qi PL, Chen YX, Lin AY, Huang ZY et al. Faithful reconstruction of linear polarization wave without dielectric tensor constraint. Opt Express 29, 14033–14040 (2021). doi: 10.1364/OE.418519

    CrossRef Google Scholar

    [32] Zang JL, Fan FL, Liu Y, Wei R, Tan XD. Four-channel volume holographic recording with linear polarization holography. Opt Lett 44, 4107–4110 (2019). doi: 10.1364/OL.44.004107

    CrossRef Google Scholar

    [33] Huang L, Zhang YY, Zhang Q, Chen YX, Chen X et al. Generation of a vector light field based on polarization holography. Opt Lett 46, 4542–4545 (2021). doi: 10.1364/OL.438070

    CrossRef Google Scholar

    [34] Wu CH, Chen YX, Huang ZY, Song HY, Tan XD. Orthogonal reconstruction in linear polarization holography. Laser Optoelect Prog 58, 0409001 (2021). doi: 10.3788/LOP202158.0409001

    CrossRef Google Scholar

    [35] Tan XD, Matoba O, Okada-Shudo Y, Ide M, Shimura T et al. Secure optical memory system with polarization encryption. Appl Opt 40, 2310–2315 (2001). doi: 10.1364/AO.40.002310

    CrossRef Google Scholar

    [36] Horimai H, Tan XD, Li J. Collinear holography. Appl Opt 44, 2575–2579 (2005). doi: 10.1364/AO.44.002575

    CrossRef Google Scholar

    [37] Lin X, Liu JP, Hao JY, Wang K, Zhang YY et al. Collinear holographic data storage technologies. Opto-Electron Adv 3, 190004 (2020).

    Google Scholar

    [38] Hong YF, Zang JL, Liu Y, Fan FL, Wu AA et al. Review and prospect of polarization holography. Chin Opt 10, 588–602 (2017). doi: 10.3788/co.20171005.0588

    CrossRef Google Scholar

    [39] Wei R, Zang JL, Liu Y, Fan FL, Huang ZY et al. Review on polarization holography for high density storage. Opto-Electron Eng 46, 180598 (2019).

    Google Scholar

    [40] Su WJ, Hu Q, Zhao M, Yuan XP, Guo XJ et al. Development status and prospect of optical storage technology. Opto-Electron Eng 46, 180560 (2019).

    Google Scholar

    [41] Lin X, Hao JY, Zheng MJ, Dai TG, Li H et al. Optical holographic data storage—The time for new development. Opto-Electron Eng 46, 180642 (2019).

    Google Scholar

    [42] Li JH, Liu JP, Lin X, Liu JQ, Tan XD. Volume holographic data storage. Chin J Lasers 44, 1–12 (2017). doi: 10.3788/CJL201744.01

    CrossRef Google Scholar

    [43] Li JH, Cao LC, Tan XD, He QS, Jin GF. Transmission type of collinear volume holographic storage technology based on LiNbO3 crystal. Acta Opt Sin 32, 0409001 (2012). doi: 10.3788/AOS201232.0409001

    CrossRef Google Scholar

    [44] Chen YX, Hu P, Huang ZY, Wang JY, Song HY et al. Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide. ACS Appl Mater Interfaces 13, 27500–27512 (2021). doi: 10.1021/acsami.1c07390

    CrossRef Google Scholar

    [45] Liu Y, Li ZZ, Zang JL, Wu AA, Wang J et al. The optical polarization properties of phenanthrenequinone-doped Poly(methyl methacrylate) photopolymer materials for volume holographic storage. Opt Rev 22, 837–840 (2015). doi: 10.1007/s10043-015-0108-3

    CrossRef Google Scholar

    [46] Lin SH, Chen PL, Chuang CI, Chao YF, Hsu KY. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer. Opt Lett 36, 3039–3041 (2011). doi: 10.1364/OL.36.003039

    CrossRef Google Scholar

    [47] Liu P, Chang FW, Zhao Y, Li ZR, Sun XD. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures. Opt Express 26, 1072–1082 (2018). doi: 10.1364/OE.26.001072

    CrossRef Google Scholar

    [48] Jian JL, Cao L, Wei XQ, Guo JX, Wang DY et al. A review of photopolymers on holography volume data storage. Opto-Electron Eng 46, 180552 (2019).

    Google Scholar

    [49] Zang JL. Fundamental research on polarization holography based on tensor theory (Beijing Institute of Technology, Beijing, 2017).

    Google Scholar

    [50] Hao JY, Wang K, Zhang YY, Li H, Lin X et al. Collinear non-interferometric phase retrieval for holographic data storage. Opt Express 28, 25795–25805 (2020). doi: 10.1364/OE.400599

    CrossRef Google Scholar

    [51] Liu JP, Xu K, Liu JY, Cai JY, He YW et al. Phase modulated collinear holographic storage. Opto-Electron Eng 46, 180596 (2019).

    Google Scholar

    [52] Wang JY, Qi PL, Lin AY, Chen YX, Huang ZY et al. Faithful reconstruction of linear polarization holography independent of exposure energy. Pro SPIE 11709, 1170909 (2021).

    Google Scholar

    [53] Van Heerden PJ. Theory of optical information storage in solids. Appl Opt 2, 393–400 (1963). doi: 10.1364/AO.2.000393

    CrossRef Google Scholar

    [54] Tan XD. Optical data storage technologies for big data era. Infrared Laser Eng 45, 0935001 (2016). doi: 10.3788/IRLA201645.0935001

    CrossRef Google Scholar

    [55] Horimai H, Tan XD. Collinear technology for a holographic versatile disk. Appl Opt 45, 910–914 (2006). doi: 10.1364/AO.45.000910

    CrossRef Google Scholar

    [56] Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). doi: 10.1038/nature08053

    CrossRef Google Scholar

    [57] Dhar L, Curtis K, Fäcke T. Coming of age. Nat Photonics 2, 403–405 (2008). doi: 10.1038/nphoton.2008.120

    CrossRef Google Scholar

    [58] Li XP, Lan TH, Tien CH, Gu M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3, 998 (2012). doi: 10.1038/ncomms2006

    CrossRef Google Scholar

    [59] Ouyang X, Xu Y, Feng ZW, Tang WY, Cao YY et al. Polychromatic and polarized multilevel optical data storage. Nanoscale 11, 2447–2452 (2019). doi: 10.1039/C8NR09192G

    CrossRef Google Scholar

    [60] Chen WL, Zhang JY. Dimension expansion of high-capacity optical data storage. Opto-Electron Eng 46, 180571 (2019).

    Google Scholar

    [61] Zhang JY, Gecevičius M, Beresna M, Kazansky PG. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901

    CrossRef Google Scholar

    [62] Schnoes M, Ihas B, Dhar L, Michaels D, Setthachayanon S et al. Photopolymer use for holographic data storage. Proc SPIE 4988, 68–76 (2003). doi: 10.1117/12.474791

    CrossRef Google Scholar

    [63] Tan XD, Matoba O, Shimura T, Kuroda K, Javidi B. Secure optical storage that uses fully phase encryption. Appl Opt 39, 6689–6694 (2000). doi: 10.1364/AO.39.006689

    CrossRef Google Scholar

    [64] Wang Z, Chen YF, Jiang ZQ. Dual-wavelength digital holographic phase reconstruction based on a polarization-multiplexing configuration. Chin Opt Lett 14, 010008 (2016). doi: 10.3788/COL201614.010008

    CrossRef Google Scholar

    [65] Liu JP, Horimai H, Lin X, Huang Y, Tan XD. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding. Opt Express 26, 3828–3838 (2018). doi: 10.1364/OE.26.003828

    CrossRef Google Scholar

    [66] Nobukawa T, Nomura T. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator. Appl Opt 55, 2565–2573 (2016). doi: 10.1364/AO.55.002565

    CrossRef Google Scholar

    [67] Hao JY, Lin X, Lin YK, Song HY, Chen RX et al. Lensless phase retrieval based on deep learning used in holographic data storage. Opt Lett 46, 4168–4171 (2021). doi: 10.1364/OL.433955

    CrossRef Google Scholar

    [68] Lin X, Huang Y, Shimura T, Fujimura R, Tanaka Y et al. Fast non-interferometric iterative phase retrieval for holographic data storage. Opt Express 25, 30905–30915 (2017). doi: 10.1364/OE.25.030905

    CrossRef Google Scholar

    [69] Lin X, Huang Y, Li Y, Liu JY, Liu JP et al. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage. Chin Opt Lett 16, 032101 (2018). doi: 10.3788/COL201816.032101

    CrossRef Google Scholar

    [70] Tao SM, Xu M. Spatioangularly-multiplexed Three-dimensional holographic disks. Acta Opt Sin 17, 1015–1020 (1997).

    Google Scholar

    [71] Mok FH. Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt Lett 18, 915–917 (1993). doi: 10.1364/OL.18.000915

    CrossRef Google Scholar

    [72] Yuan CJ, Situ GH, Pedrini G, Ma J, Osten W. Resolution improvement in digital holography by angular and polarization multiplexing. Appl Opt 50, B6–B11 (2011). doi: 10.1364/AO.50.0000B6

    CrossRef Google Scholar

    [73] Su WC, Chen CM, Ouyang Y. Orthogonal polarization simultaneous readout for volume holograms with hybrid angle and polarization multiplexing in LiNbO3. Appl Opt 46, 3233–3238 (2007). doi: 10.1364/AO.46.003233

    CrossRef Google Scholar

    [74] Katano Y, Muroi T, Kinoshita N, Ishii N. Highly efficient dual page reproduction in holographic data storage. Opt Express 29, 33257–33268 (2021). doi: 10.1364/OE.438081

    CrossRef Google Scholar

    [75] Barbastathis G, Levene M, Psaltis D. Shift multiplexing with spherical reference waves. Appl Opt 35, 2403–2417 (1996). doi: 10.1364/AO.35.002403

    CrossRef Google Scholar

    [76] Steckman GJ, Pu A, Psaltis D. Storage density of shift-multiplexed holographic memory. Appl Opt 40, 3387–3394 (2001). doi: 10.1364/AO.40.003387

    CrossRef Google Scholar

    [77] Takabayashi M, Okamoto A, Eto T, Okamoto T. Shift-multiplexed self-referential holographic data storage. Appl Opt 53, 4375–4381 (2014). doi: 10.1364/AO.53.004375

    CrossRef Google Scholar

    [78] Lande D, Heanue JF, Bashaw MC, Hesselink L. Digital wavelength-multiplexed holographic data storage system. Opt Lett 21, 1780–1782 (1996). doi: 10.1364/OL.21.001780

    CrossRef Google Scholar

    [79] Tan Y, Wu H, Dai DX. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J Lightw Technol 36, 2051–2058 (2018). doi: 10.1109/JLT.2017.2771352

    CrossRef Google Scholar

    [80] Bashaw MC, Singer RC, Heanue JF, Hesselink L. Coded-wavelength multiplex volume holography. Opt Lett 20, 1916–1918 (1995). doi: 10.1364/OL.20.001916

    CrossRef Google Scholar

    [81] Li CMY, Cao LX, Wang Z, Jin GF. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer. Opt Lett 39, 6891–6894 (2014). doi: 10.1364/OL.39.006891

    CrossRef Google Scholar

    [82] Koek WD, Bhattacharya N, Braat JJM, Chan VSS, Westerweel J. Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin. Opt Lett 29, 101–103 (2004). doi: 10.1364/OL.29.000101

    CrossRef Google Scholar

    [83] Todorov T, Nikolova L, Stoyanova K, Tomova N. Polarization holography. 3: some applications of polarization holographic recording. Appl Opt 24, 785–788 (1985). doi: 10.1364/AO.24.000785

    CrossRef Google Scholar

    [84] Parigi V, D’Ambrosio V, Arnold C, Marrucci L, Sciarrino F et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat Commun 6, 7706 (2015). doi: 10.1038/ncomms8706

    CrossRef Google Scholar

    [85] Ruiz U, Pagliusi P, Provenzano C, Cipparrone G. Highly efficient generation of vector beams through polarization holograms. Appl Phys Lett 102, 161104 (2013). doi: 10.1063/1.4801317

    CrossRef Google Scholar

    [86] Matharu AS, Jeeva S, Ramanujam PS. Liquid crystals for holographic optical data storage. Chem Soc Rev 36, 1868–1880 (2007). doi: 10.1039/b706242g

    CrossRef Google Scholar

    [87] Huang K, Shi P, Cao GW, Li K, Zhang XB et al. Vector-vortex bessel–gauss beams and their tightly focusing properties. Opt Lett 36, 888–890 (2011). doi: 10.1364/OL.36.000888

    CrossRef Google Scholar

    [88] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt Express 18, 10828–10833 (2010). doi: 10.1364/OE.18.010828

    CrossRef Google Scholar

    [89] Min CJ, Shen Z, Shen JF, Zhang YQ, Fang H et al. Focused plasmonic trapping of metallic particles. Nat Commun 4, 2891 (2013). doi: 10.1038/ncomms3891

    CrossRef Google Scholar

    [90] Zhao YF, Wang J. High-base vector beam encoding/decoding for visible-light communications. Opt Lett 40, 4843–4846 (2015). doi: 10.1364/OL.40.004843

    CrossRef Google Scholar

    [91] Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 40, 4887–4890 (2015). doi: 10.1364/OL.40.004887

    CrossRef Google Scholar

    [92] Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl Opt 51, C1–C6 (2012). doi: 10.1364/AO.51.0000C1

    CrossRef Google Scholar

    [93] Rumala YS, Milione G, Nguyen TA, Pratavieira S, Hossain Z et al. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt Lett 38, 5083–5086 (2013). doi: 10.1364/OL.38.005083

    CrossRef Google Scholar

    [94] Viswanathan NK, Inavalli VVG. Generation of optical vector beams using a two-mode fiber. Opt Lett 34, 1189–1191 (2009). doi: 10.1364/OL.34.001189

    CrossRef Google Scholar

    [95] Ramachandran S, Kristensen P, Yan MF. Generation and propagation of radially polarized beams in optical fibers. Opt Lett 34, 2525–2527 (2009). doi: 10.1364/OL.34.002525

    CrossRef Google Scholar

    [96] Chen H, Hao JJ, Zhang BF, Xu J, Ding JP et al. Generation of vector beam with space-variant distribution of both polarization and phase. Opt Lett 36, 3179–3181 (2011). doi: 10.1364/OL.36.003179

    CrossRef Google Scholar

    [97] Zhan QW. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 1, 1–57 (2009). doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [98] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [99] Wen DD, Yue FY, Liu WW, Chen SQ, Chen XZ. Geometric metasurfaces for ultrathin optical devices. Adv Opt Mater 6, 1800348 (2018). doi: 10.1002/adom.201800348

    CrossRef Google Scholar

    [100] Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000). doi: 10.1038/35003523

    CrossRef Google Scholar

    [101] Schultz SM, Glytsis EN, Gaylord TK. Design, fabrication, and performance of preferential-order volume grating waveguide couplers. Appl Opt 39, 1223–1232 (2000). doi: 10.1364/AO.39.001223

    CrossRef Google Scholar

    [102] Hao JY, Ren YH, Zhang YY, Wang K, Li H et al. Non-interferometric phase retrieval for collinear phase-modulated holographic data storage. Opt Rev 27, 419–426 (2020). doi: 10.1007/s10043-020-00611-x

    CrossRef Google Scholar

    [103] Zhao JY, Jin YX, Kong FY, He DB, Cao HC et al. Optical vortex switch based on multiplexed volume gratings with high diffraction efficiency. Opt Express 29, 34293–34301 (2021). doi: 10.1364/OE.434584

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(20)

Tables(7)

Article Metrics

Article views(20031) PDF downloads(1509) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint