Anand V, Han ML, Maksimovic J, Ng SH, Katkus T et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci 1, 210006 (2022). doi: 10.29026/oes.2022.210006
Citation: Anand V, Han ML, Maksimovic J, Ng SH, Katkus T et al. Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm. Opto-Electron Sci 1, 210006 (2022). doi: 10.29026/oes.2022.210006

Original Article Open Access

Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm

More Information
  • In recent years, there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional (3D) information into a two-dimensional intensity distribution without two-beam interference (TBI). Most of the incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting sharp autocorrelation and low cross-correlation along the depth. Consequently, during reconstruction, high lateral and axial resolutions are obtained. Imaging based on scattering requires an astronomical photon budget and is therefore precluded in many power-sensitive applications. In this study, a proof-of-concept 3D imaging method without TBI using deterministic fields has been demonstrated. A new reconstruction method called the Lucy-Richardson-Rosen algorithm has been developed for this imaging concept. We believe that the proposed approach will cause a paradigm-shift in the current state-of-the-art incoherent imaging, fluorescence microscopy, mid-infrared fingerprinting, astronomical imaging, and fast object recognition applications.
  • 加载中
  • [1] Rosen J, Vijayakumar A, Kumar M, Rai MR, Kelner R et al. Recent advances in self-interference incoherent digital holography. Adv Opt Photonics 11, 1–66 (2019). doi: 10.1364/AOP.11.000001

    CrossRef Google Scholar

    [2] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography. Opt Lett 32, 912–914 (2007). doi: 10.1364/OL.32.000912

    CrossRef Google Scholar

    [3] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photonics 2, 190–195 (2008). doi: 10.1038/nphoton.2007.300

    CrossRef Google Scholar

    [4] Siegel N, Lupashin V, Storrie B, Brooker G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. Nat Photonics 10, 802–808 (2016). doi: 10.1038/nphoton.2016.207

    CrossRef Google Scholar

    [5] Ables JG. Fourier transform photography: a new method for X-ray astronomy. Publ Astron Soc Aust 1, 172–173 (1968). doi: 10.1017/S1323358000011292

    CrossRef Google Scholar

    [6] Dicke RH. Scatter-hole cameras for X-rays and gamma rays. Astrophys J 153, L101–L106 (1968). doi: 10.1086/180230

    CrossRef Google Scholar

    [7] Wagadarikar A, John R, Willett R, Brady D. Single disperser design for coded aperture snapshot spectral imaging. Appl Opt 47, B44–B51 (2008). doi: 10.1364/AO.47.000B44

    CrossRef Google Scholar

    [8] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nat Commun 7, 13359 (2016). doi: 10.1038/ncomms13359

    CrossRef Google Scholar

    [9] Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt Express 25, 13883–13896 (2017). doi: 10.1364/OE.25.013883

    CrossRef Google Scholar

    [10] Antipa N, Kuo G, Heckel R, Mildenhall B, Bostan E et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018). doi: 10.1364/OPTICA.5.000001

    CrossRef Google Scholar

    [11] Park JH, Park J, Lee K, Park Y. Disordered optics: exploiting multiple light scattering and wavefront shaping for nonconventional optical elements. Adv Mater 32, 1903457 (2020). doi: 10.1002/adma.201903457

    CrossRef Google Scholar

    [12] Anand V, Ng SH, Maksimovic J, Linklater D, Katkus T et al. Single shot multispectral multidimensional imaging using chaotic waves. Sci Rep 10, 13902 (2020). doi: 10.1038/s41598-020-70849-7

    CrossRef Google Scholar

    [13] Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8, 413–416 (2021). doi: 10.1038/nmeth.1585

    CrossRef Google Scholar

    [14] Ong L, Pax AP, Ong A, Vongsvivut J, Tobin MJ et al. The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties. Food Chem 332, 127327 (2020). doi: 10.1016/j.foodchem.2020.127327

    CrossRef Google Scholar

    [15] Osmond G, Boon JJ, Puskar L, Drennan J. Metal stearate distributions in modern artists' oil paints: surface and cross-sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy. Appl Spectrosc 66, 1136–1144 (2012). doi: 10.1366/12-06659

    CrossRef Google Scholar

    [16] Dainty JC. Stellar speckle interferometry. In Dainty JC. Laser Speckle and Related Phenomena 255–280 (Springer, 1975)

    Google Scholar

    [17] Rai MR, Rosen J. Resolution-enhanced imaging using interferenceless coded aperture correlation holography with sparse point response. Sci Rep 10, 5033 (2020). doi: 10.1038/s41598-020-61754-0

    CrossRef Google Scholar

    [18] Lohman AW. Optical Information Processing (Physikalisches Institut der Universitat, 8520 Erlangen, EDR, 1978).

    Google Scholar

    [19] Wu JC, Zhang H, Zhang WH, Jin GF, Cao LC et al. Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination. Light Sci Appl 9, 53 (2020). doi: 10.1038/s41377-020-0289-9

    CrossRef Google Scholar

    [20] Wu JC, Cao LC, Barbastathis G. DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging. Opt Lett 46, 130–133 (2021). doi: 10.1364/OL.411228

    CrossRef Google Scholar

    [21] Horner J L, Gianino PD. Phase-only matched filtering. Appl Opt 23, 812–816 (1984). doi: 10.1364/AO.23.000812

    CrossRef Google Scholar

    [22] Rai MR, Vijayakumar A, Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt Express 26, 18143–18154 (2018). doi: 10.1364/OE.26.018143

    CrossRef Google Scholar

    [23] Richardson WH. Bayesian-based iterative method of image restoration. J Opt Soc Am 62, 55–59 (1972). doi: 10.1364/JOSA.62.000055

    CrossRef Google Scholar

    [24] Lucy LB. An iterative technique for the rectification of observed distributions. Astron J 79, 745–754 (1974). doi: 10.1086/111605

    CrossRef Google Scholar

    [25] Anand V, Ng SH, Katkus T, Maksimovic J, Klein AR et al. Exploiting spatio-spectral aberrations for rapid synchrotron infrared imaging. J Synchrotron Radiat 28, 1616–1619 (2021). doi: 10.1107/S1600577521007104

    CrossRef Google Scholar

    [26] Murty MVRK, Hagerott EC. Rotational-shearing interferometry. Appl Opt 5, 615–619 (1966). doi: 10.1364/AO.5.000615

    CrossRef Google Scholar

    [27] Sirat GY. Conoscopic holography. I. Basic principles and physical basis. J Opt Soc Am A 9, 70–83 (1992). doi: 10.1364/JOSAA.9.000070

    CrossRef Google Scholar

    [28] Ravaro M, Locatelli M, Pugliese E, Di Leo I, de Cumis MS et al. Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser. Opt Lett 39, 4843–4846 (2014). doi: 10.1364/OL.39.004843

    CrossRef Google Scholar

    [29] Shi KB, Li HF, Xu Q, Psaltis D, Liu ZW. Coherent anti-stokes Raman holography for chemically selective single-shot nonscanning 3D imaging. Phys Rev Lett 104, 093902 (2010). doi: 10.1103/PhysRevLett.104.093902

    CrossRef Google Scholar

    [30] Shaffer E, Moratal C, Magistretti P, Marquet P, Depeursinge C. Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy. Opt Lett 35, 4102–4104 (2010). doi: 10.1364/OL.35.004102

    CrossRef Google Scholar

  • Supplementary information for Single-shot mid-infrared incoherent holography using Lucy-Richardson-Rosen algorithm
    oes-2021-0006-supplementary video 1
    oes-2021-0006-supplementary video 2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(19635) PDF downloads(1102) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint