Citation: | Serpetzoglou E, Konidakis I, Kourmoulakis G, Demeridou I, Chatzimanolis K et al. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron Sci 1, 210005 (2022). doi: 10.29026/oes.2022.210005 |
[1] | Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10, 391–402 (2015). doi: 10.1038/nnano.2015.90 |
[2] | Zhao XY, Deng WW. Printing photovoltaics by electrospray. Opto-Electron Adv 3, 190038 (2020). doi: 10.29026/oea.2020.190038 |
[3] | Wang YS, Arumugam GM, Mahmoudi T, Mai YH, Hahn YB et al. A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy 87, 106141 (2021). doi: 10.1016/j.nanoen.2021.106141 |
[4] | Lee Y, Kwon J, Hwang E, Ra CH, Yoo WJ et al. High-performance perovskite-graphene hybrid photodetector. Adv Mater 27, 41–46 (2015). doi: 10.1002/adma.201402271 |
[5] | Wang F, Zou X, Xu M, Wang H, Wang H et al. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Adv Sci 8, 2100569 (2021). doi: 10.1002/advs.202100569 |
[6] | Xing GC, Mathews N, Lim SS, Yantara N, Liu XF et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13, 476–480 (2014). doi: 10.1038/nmat3911 |
[7] | Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9, 687–692 (2014). doi: 10.1038/nnano.2014.149 |
[8] | Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019 |
[9] | Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131, 6050–6051 (2009). doi: 10.1021/ja809598r |
[10] | Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4, 3623–3630 (2013). doi: 10.1021/jz4020162 |
[11] | Gao P, Grätzel M, Nazeeruddin MK. Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 7, 2448–2463 (2014). doi: 10.1039/C4EE00942H |
[12] | NREL best research-cell photovoltaic efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html |
[13] | Xing GC, Mathews N, Sun SY, Lim SS, Lam YM et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). doi: 10.1126/science.1243167 |
[14] | Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi: 10.1126/science.1243982 |
[15] | Nie ZH, Gao XZ, Ren YJ, Xia SY, Wang YH et al. Harnessing hot phonon bottleneck in metal halide perovskite nanocrystals via interfacial electron–phonon coupling. Nano Lett 20, 4610–4617 (2020). doi: 10.1021/acs.nanolett.0c01452 |
[16] | Chen JS, Messing ME, Zheng KB, Pullerits T. Cation-dependent hot carrier cooling in halide perovskite nanocrystals. J Am Chem Soc 141, 3532–3540 (2019). doi: 10.1021/jacs.8b11867 |
[17] | Chung H, Jung SI, Kim HJ, Cha W, Sim E et al. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X = Br and I) perovskite nanocrystals. Angew Chem Int Ed 56, 4160–4164 (2017). doi: 10.1002/anie.201611916 |
[18] | Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779 |
[19] | Liu YC, Yang Z, Liu SZ. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv Sci 5, 1700471 (2018). doi: 10.1002/advs.201700471 |
[20] | Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87, 6373–6378 (1987). doi: 10.1063/1.453467 |
[21] | Wasylishen RE, Knop O, Macdonald JB. Cation rotation in methylammonium lead halides. Solid State Commun 56, 581–582 (1985). doi: 10.1016/0038-1098(85)90959-7 |
[22] | Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J Phys Chem C 118, 11566–11572 (2014). doi: 10.1021/jp503337a |
[23] | D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun 5, 3586 (2014). doi: 10.1038/ncomms4586 |
[24] | Yi HT, Wu XX, Zhu XY, Podzorov V. Intrinsic charge transport across phase transitions in hybrid organo-inorganic perovskites. Adv Mater 28, 6509–6514 (2016). doi: 10.1002/adma.201600011 |
[25] | Chin XY, Cortecchia D, Yin J, Bruno A, Soci C. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun 6, 7383 (2015). doi: 10.1038/ncomms8383 |
[26] | Biewald A, Giesbrecht N, Bein T, Docampo P, Hartschuh A et al. Temperature-dependent ambipolar charge carrier mobility in large-crystal hybrid halide perovskite thin films. ACS Appl Mater Interfaces 11, 20838–20844 (2019). doi: 10.1021/acsami.9b04592 |
[27] | Etienne T, Mosconi E, De Angelis F. Dynamical origin of the rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells. J Phys Chem Lett 7, 1638–1645 (2016). doi: 10.1021/acs.jpclett.6b00564 |
[28] | Eperon GE, Jedlicka E, Ginger DS. Biexciton auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J Phys Chem Lett 9, 104–109 (2018). doi: 10.1021/acs.jpclett.7b02805 |
[29] | Zhu HM, Trinh MT, Wang J, Fu YP, Joshi PP et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv Mater 29, 1603072 (2017). doi: 10.1002/adma.201603072 |
[30] | Milot RL, Eperon GE, Snaith HJ, Johnston MB, Herz LM. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater 25, 6218–6227 (2015). doi: 10.1002/adfm.201502340 |
[31] | Diroll BT. Temperature-dependent intraband relaxation of hybrid perovskites. J Phys Chem Lett 10, 5623–5628 (2019). doi: 10.1021/acs.jpclett.9b02320 |
[32] | Zhu HM, Miyata K, Fu YP, Wang J, Joshi PP, Niesner D et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016). doi: 10.1126/science.aaf9570 |
[33] | Serpetzoglou E, Konidakis I, Kakavelakis G, Maksudov T, Kymakis E et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl Mater Interfaces 9, 43910–43919 (2017). doi: 10.1021/acsami.7b15195 |
[34] | Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G et al. Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer. Adv Energy Mater 7, 1602120 (2016). |
[35] | Ishioka K, Barker BG Jr, Yanagida M, Shirai Y, Miyano K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J Phys Chem Lett 8, 3902–3907 (2017). doi: 10.1021/acs.jpclett.7b01663 |
[36] | Zhu ZL, Ma JN, Wang ZL, Mu C, Fan ZT et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136, 3760–3763 (2014). doi: 10.1021/ja4132246 |
[37] | Corani A, Li MH, Shen PS, Chen P, Guo TF et al. Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode. J Phys Chem Lett 7, 1096–1101 (2016). doi: 10.1021/acs.jpclett.6b00238 |
[38] | Draguta S, Christians JA, Morozov YV, Mucunzi A, Manser JS et al. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy Environ Sci 11, 960–969 (2018). doi: 10.1039/C7EE03654J |
[39] | Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26, 1584–1589 (2014). doi: 10.1002/adma.201305172 |
[40] | Wehrenfennig C, Liu MZ, Snaith HJ, Johnston MB, Herz LM. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx. J Phys Chem Lett 5, 1300–1306 (2014). doi: 10.1021/jz500434p |
[41] | Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967). doi: 10.1016/0031-8914(67)90062-6 |
[42] | Wright AD, Verdi C, Milot RL, Eperon GE, Pérez-Osorio MA et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat Commun 7, 11755 (2016). doi: 10.1038/ncomms11755 |
[43] | Ma J, Wang LW. The nature of electron mobility in hybrid perovskite CH3NH3PbI3. Nano Lett 17, 3646–3654 (2017). doi: 10.1021/acs.nanolett.7b00832 |
[44] | Wehrenfennig C, Liu MZ, Snaith HJ, Johnston MB, Herz LM. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ Sci 7, 2269–2275 (2014). doi: 10.1039/C4EE01358A |
[45] | Phuong LQ, Nakaike Y, Wakamiya A, Kanemitsu, Y. Free excitons and exciton–phonon coupling in CH3NH3PbI3 single crystals revealed by photocurrent and photoluminescence measurements at low temperatures. J Phys Chem Lett 7, 4905–4910 (2016). doi: 10.1021/acs.jpclett.6b02432 |
[46] | Fang HH, Raissa R, Abdu‐Aguye M, Adjokatse S, Blake GR et al. Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Adv Funct Mater 25, 2378–2385 (2015). doi: 10.1002/adfm.201404421 |
[47] | Kong WG, Ye ZY, Qi Z, Zhang BP, Wang M et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys Chem Chem Phys 17, 16405–16411 (2015). doi: 10.1039/C5CP02605A |
[48] | Wehrenfennig C, Liu MZ, Snaith HJ, Johnston MB, Herz LM. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater 2, 081513 (2014). doi: 10.1063/1.4891595 |
[49] | Serpetzoglou E, Konidakis I, Maksudov T, Panagiotopoulos A, Kymakis E et al. In situ monitoring of the charge carrier dynamics of CH3NH3PbI3 perovskite crystallization process. J Mater Chem C 7, 12170–12179 (2019). doi: 10.1039/C9TC04335G |
[50] | Dar MI, Jacopin G, Meloni S, Mattoni A, Arora N et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci Adv 2, e1601156 (2016). doi: 10.1126/sciadv.1601156 |
[51] | Baikie T, Fang YN, Kadro JM, Schreyer M, Wei FX et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1, 5628–5641 (2013). doi: 10.1039/c3ta10518k |
[52] | Even J, Pedesseau L, Katan C, Kepenekian M, Lauret JS et al. Solid-state physics perspective on hybrid perovskite semiconductors. J Phys Chem C 119, 10161–10177 (2015). doi: 10.1021/acs.jpcc.5b00695 |
[53] | Even J, Pedesseau L, Jancu JM, Katan C. DFT and k•p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys Status Solidi RRL 8, 31–35 (2014). doi: 10.1002/pssr.201308183 |
[54] | Filippetti A, Delugas P, Saba MI, Mattoni A. Entropy-suppressed ferroelectricity in hybrid lead-iodide perovskites. J Phys Chem Lett 6, 4909–4915 (2015). doi: 10.1021/acs.jpclett.5b02117 |
[55] | Ghosh T, Aharon S, Etgar L, Ruhman S. Free carrier emergence and onset of electron–phonon coupling in methylammonium lead halide perovskite films. J Am Chem Soc 139, 18262–18270 (2017). doi: 10.1021/jacs.7b09508 |
[56] | Zhai YX, Sheng CX, Zhang C, Vardeny ZV. Ultrafast spectroscopy of photoexcitations in organometal trihalide perovskites. Adv Funct Mater 26, 1617–1627 (2016). doi: 10.1002/adfm.201505115 |
[57] | Konidakis I, Maksudov T, Serpetzoglou E, Kakavelakis G, Kymakis E et al. Improved charge carrier dynamics of CH3NH3PbI3 perovskite films synthesized by means of laser- assisted crystallization. ACS Appl Energy Mater 1, 5101–5111 (2018). |
[58] | Klein JR, Flender O, Scholz M, Oum K, Lenzer T. Charge carrier dynamics of methylammonium lead iodide: from PbI2-rich to low-dimensional broadly emitting perovskites. Phys Chem Chem Phys 18, 10800–10808 (2016). doi: 10.1039/C5CP07167D |
[59] | Manser JS, Kamat PV. Band filling with free charge carriers in organometal halide perovskites. Nat Photon 8, 737–743 (2014). doi: 10.1038/nphoton.2014.171 |
[60] | Stranks SD, Burlakov VM, Leijtens T, Ball JM, Goriely A et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys Rev Appl 2, 034007 (2014). doi: 10.1103/PhysRevApplied.2.034007 |
[61] | Piatkowski P, Cohen B, Ramos FJ, Di Nunzio M, Nazeeruddin MK et al. Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Phys Chem Chem Phys 17, 14674–14684 (2015). doi: 10.1039/C5CP01119A |
[62] | La-o-vorakiat C, Salim T, Kadro J, Khuc MT, Haselsberger R et al. Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat Commun 6, 7903 (2015). doi: 10.1038/ncomms8903 |
Supplementary information for Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite |
![]() |
μPL spectra following excitation at 543 nm of the (a) Glass/CH3NH3PbI3, (b) Glass/ITO/PEDOT:PSS/CH3NH3PbI3 and (c) Glass/ITO/PTAA/CH3NH3PbI3 architectures.
Shift of the μPL emission peak as a function of temperature for (a) Glass/CH3NH3PbI3, (b) Glass/ITO/PEDOT:PSS/CH3NH3PbI3 and (c) Glass/ITO/PTAA/CH3NH3PbI3 architectures for the orthorhombic (red solid circles) and tetragonal (blue solid circles) perovskite crystal phases.
FWHM of the PL peaks corresponding to the orthorhombic (black diamonds) and tetragonal (red circles) phases of CH3NH3PbI3 as a function of temperature (a) Glass/CH3NH3PbI3, (b) Glass/ITO/PEDOT:PSS/CH3NH3PbI3 and (c) Glass/ITO/PTAA/CH3NH3PbI3. Green solid lines show the fitting acquired by the temperature-independent inhomogeneous broadening (Γ0) and the interaction between charge carriers and longitudinal optical phonons (LO-phonons), as described by the Fröhlich Hamiltonian.
Optical density (ΔOD) vs. wavelength at various delay times for Glass/ITO/PEDOT:PSS/CH3NH3PbI3 architecture at (a) 85 K, (b) 120 K and (c) 180 K.
Optical density ΔOD vs. wavelength at various delay times for Glass/ITO/PTAA/CH3NH3PbI3 configuration at (a) 85 K, (b) 120 K and (c) 180 K.
Optical density (ΔOD) peaks wavelength as a function of temperature for Glass/ITO/PEDOT:PSS/CH3NH3PbI3 architecture and Glass/ITO/PTAA/CH3NH3PbI3 configurations, as extracted from TAS spectra at t = 0 ps (see Fig. 4 and Fig. 5 blue lines).
Normalized optical density (ΔOD) vs. delay time for Glass/ITO/PEDOT:PSS/CH3NH3PbI3 and Glass/ITO/PTAA/CH3NH3PbI3 configurations for the orthorhombic phase at (a) 85 K, (b) 120 K and for the tetragonal phase at (c) 120 K and (d) 180 K. Symbols present the transient band edge bleach kinetics, while solid lined present the decay exponential fitting. Insets are shown the initial time scale for Glass/ITO/PTAA/CH3NH3PbI3.