Serpetzoglou E, Konidakis I, Kourmoulakis G, Demeridou I, Chatzimanolis K et al. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron Sci 1, 210005 (2022). doi: 10.29026/oes.2022.210005
Citation: Serpetzoglou E, Konidakis I, Kourmoulakis G, Demeridou I, Chatzimanolis K et al. Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite. Opto-Electron Sci 1, 210005 (2022). doi: 10.29026/oes.2022.210005

Original Article Open Access

Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite

More Information
  • Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years, the influence of temperature and the type of the employed hole transport layer (HTL) on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored. In particular, significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations, as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation. Herein, we perform micro photoluminescence (μPL) and ultrafast time resolved transient absorption spectroscopy (TAS) in Glass/Perovskite and two different Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature, in order to probe the charge carrier dynamics of different perovskite crystalline phases, while considering also the effect of the employed HTL polymer. Namely, CH3NH3PbI3 films were deposited on Glass, PEDOT:PSS and PTAA polymers, and the developed Glass/CH3NH3PbI3 and Glass/ITO/HTL/CH3NH3PbI3 architectures were studied from 85 K up to 215 K in order to explore the charge extraction dynamics of the CH3NH3PbI3 orthorhombic and tetragonal crystalline phases. It is observed an unusual blueshift of the bandgap with temperature and the dual emission at temperature below of 100 K and also, that the charge carrier dynamics, as expressed by hole injection times and free carrier recombination rates, are strongly depended on the actual pervoskite crystal phase, as well as, from the selected hole transport material.
  • 加载中
  • [1] Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10, 391–402 (2015). doi: 10.1038/nnano.2015.90

    CrossRef Google Scholar

    [2] Zhao XY, Deng WW. Printing photovoltaics by electrospray. Opto-Electron Adv 3, 190038 (2020). doi: 10.29026/oea.2020.190038

    CrossRef Google Scholar

    [3] Wang YS, Arumugam GM, Mahmoudi T, Mai YH, Hahn YB et al. A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy 87, 106141 (2021). doi: 10.1016/j.nanoen.2021.106141

    CrossRef Google Scholar

    [4] Lee Y, Kwon J, Hwang E, Ra CH, Yoo WJ et al. High-performance perovskite-graphene hybrid photodetector. Adv Mater 27, 41–46 (2015). doi: 10.1002/adma.201402271

    CrossRef Google Scholar

    [5] Wang F, Zou X, Xu M, Wang H, Wang H et al. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Adv Sci 8, 2100569 (2021). doi: 10.1002/advs.202100569

    CrossRef Google Scholar

    [6] Xing GC, Mathews N, Lim SS, Yantara N, Liu XF et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13, 476–480 (2014). doi: 10.1038/nmat3911

    CrossRef Google Scholar

    [7] Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9, 687–692 (2014). doi: 10.1038/nnano.2014.149

    CrossRef Google Scholar

    [8] Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021). doi: 10.29026/oea.2021.200019

    CrossRef Google Scholar

    [9] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131, 6050–6051 (2009). doi: 10.1021/ja809598r

    CrossRef Google Scholar

    [10] Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4, 3623–3630 (2013). doi: 10.1021/jz4020162

    CrossRef Google Scholar

    [11] Gao P, Grätzel M, Nazeeruddin MK. Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 7, 2448–2463 (2014). doi: 10.1039/C4EE00942H

    CrossRef Google Scholar

    [12] NREL best research-cell photovoltaic efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html

    Google Scholar

    [13] Xing GC, Mathews N, Sun SY, Lim SS, Lam YM et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). doi: 10.1126/science.1243167

    CrossRef Google Scholar

    [14] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi: 10.1126/science.1243982

    CrossRef Google Scholar

    [15] Nie ZH, Gao XZ, Ren YJ, Xia SY, Wang YH et al. Harnessing hot phonon bottleneck in metal halide perovskite nanocrystals via interfacial electron–phonon coupling. Nano Lett 20, 4610–4617 (2020). doi: 10.1021/acs.nanolett.0c01452

    CrossRef Google Scholar

    [16] Chen JS, Messing ME, Zheng KB, Pullerits T. Cation-dependent hot carrier cooling in halide perovskite nanocrystals. J Am Chem Soc 141, 3532–3540 (2019). doi: 10.1021/jacs.8b11867

    CrossRef Google Scholar

    [17] Chung H, Jung SI, Kim HJ, Cha W, Sim E et al. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X = Br and I) perovskite nanocrystals. Angew Chem Int Ed 56, 4160–4164 (2017). doi: 10.1002/anie.201611916

    CrossRef Google Scholar

    [18] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [19] Liu YC, Yang Z, Liu SZ. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv Sci 5, 1700471 (2018). doi: 10.1002/advs.201700471

    CrossRef Google Scholar

    [20] Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87, 6373–6378 (1987). doi: 10.1063/1.453467

    CrossRef Google Scholar

    [21] Wasylishen RE, Knop O, Macdonald JB. Cation rotation in methylammonium lead halides. Solid State Commun 56, 581–582 (1985). doi: 10.1016/0038-1098(85)90959-7

    CrossRef Google Scholar

    [22] Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J Phys Chem C 118, 11566–11572 (2014). doi: 10.1021/jp503337a

    CrossRef Google Scholar

    [23] D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun 5, 3586 (2014). doi: 10.1038/ncomms4586

    CrossRef Google Scholar

    [24] Yi HT, Wu XX, Zhu XY, Podzorov V. Intrinsic charge transport across phase transitions in hybrid organo-inorganic perovskites. Adv Mater 28, 6509–6514 (2016). doi: 10.1002/adma.201600011

    CrossRef Google Scholar

    [25] Chin XY, Cortecchia D, Yin J, Bruno A, Soci C. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun 6, 7383 (2015). doi: 10.1038/ncomms8383

    CrossRef Google Scholar

    [26] Biewald A, Giesbrecht N, Bein T, Docampo P, Hartschuh A et al. Temperature-dependent ambipolar charge carrier mobility in large-crystal hybrid halide perovskite thin films. ACS Appl Mater Interfaces 11, 20838–20844 (2019). doi: 10.1021/acsami.9b04592

    CrossRef Google Scholar

    [27] Etienne T, Mosconi E, De Angelis F. Dynamical origin of the rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells. J Phys Chem Lett 7, 1638–1645 (2016). doi: 10.1021/acs.jpclett.6b00564

    CrossRef Google Scholar

    [28] Eperon GE, Jedlicka E, Ginger DS. Biexciton auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J Phys Chem Lett 9, 104–109 (2018). doi: 10.1021/acs.jpclett.7b02805

    CrossRef Google Scholar

    [29] Zhu HM, Trinh MT, Wang J, Fu YP, Joshi PP et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv Mater 29, 1603072 (2017). doi: 10.1002/adma.201603072

    CrossRef Google Scholar

    [30] Milot RL, Eperon GE, Snaith HJ, Johnston MB, Herz LM. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater 25, 6218–6227 (2015). doi: 10.1002/adfm.201502340

    CrossRef Google Scholar

    [31] Diroll BT. Temperature-dependent intraband relaxation of hybrid perovskites. J Phys Chem Lett 10, 5623–5628 (2019). doi: 10.1021/acs.jpclett.9b02320

    CrossRef Google Scholar

    [32] Zhu HM, Miyata K, Fu YP, Wang J, Joshi PP, Niesner D et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016). doi: 10.1126/science.aaf9570

    CrossRef Google Scholar

    [33] Serpetzoglou E, Konidakis I, Kakavelakis G, Maksudov T, Kymakis E et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl Mater Interfaces 9, 43910–43919 (2017). doi: 10.1021/acsami.7b15195

    CrossRef Google Scholar

    [34] Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G et al. Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer. Adv Energy Mater 7, 1602120 (2016).

    Google Scholar

    [35] Ishioka K, Barker BG Jr, Yanagida M, Shirai Y, Miyano K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J Phys Chem Lett 8, 3902–3907 (2017). doi: 10.1021/acs.jpclett.7b01663

    CrossRef Google Scholar

    [36] Zhu ZL, Ma JN, Wang ZL, Mu C, Fan ZT et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136, 3760–3763 (2014). doi: 10.1021/ja4132246

    CrossRef Google Scholar

    [37] Corani A, Li MH, Shen PS, Chen P, Guo TF et al. Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode. J Phys Chem Lett 7, 1096–1101 (2016). doi: 10.1021/acs.jpclett.6b00238

    CrossRef Google Scholar

    [38] Draguta S, Christians JA, Morozov YV, Mucunzi A, Manser JS et al. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells. Energy Environ Sci 11, 960–969 (2018). doi: 10.1039/C7EE03654J

    CrossRef Google Scholar

    [39] Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26, 1584–1589 (2014). doi: 10.1002/adma.201305172

    CrossRef Google Scholar

    [40] Wehrenfennig C, Liu MZ, Snaith HJ, Johnston MB, Herz LM. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx. J Phys Chem Lett 5, 1300–1306 (2014). doi: 10.1021/jz500434p

    CrossRef Google Scholar

    [41] Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967). doi: 10.1016/0031-8914(67)90062-6

    CrossRef Google Scholar

    [42] Wright AD, Verdi C, Milot RL, Eperon GE, Pérez-Osorio MA et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat Commun 7, 11755 (2016). doi: 10.1038/ncomms11755

    CrossRef Google Scholar

    [43] Ma J, Wang LW. The nature of electron mobility in hybrid perovskite CH3NH3PbI3. Nano Lett 17, 3646–3654 (2017). doi: 10.1021/acs.nanolett.7b00832

    CrossRef Google Scholar

    [44] Wehrenfennig C, Liu MZ, Snaith HJ, Johnston MB, Herz LM. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ Sci 7, 2269–2275 (2014). doi: 10.1039/C4EE01358A

    CrossRef Google Scholar

    [45] Phuong LQ, Nakaike Y, Wakamiya A, Kanemitsu, Y. Free excitons and exciton–phonon coupling in CH3NH3PbI3 single crystals revealed by photocurrent and photoluminescence measurements at low temperatures. J Phys Chem Lett 7, 4905–4910 (2016). doi: 10.1021/acs.jpclett.6b02432

    CrossRef Google Scholar

    [46] Fang HH, Raissa R, Abdu‐Aguye M, Adjokatse S, Blake GR et al. Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Adv Funct Mater 25, 2378–2385 (2015). doi: 10.1002/adfm.201404421

    CrossRef Google Scholar

    [47] Kong WG, Ye ZY, Qi Z, Zhang BP, Wang M et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys Chem Chem Phys 17, 16405–16411 (2015). doi: 10.1039/C5CP02605A

    CrossRef Google Scholar

    [48] Wehrenfennig C, Liu MZ, Snaith HJ, Johnston MB, Herz LM. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater 2, 081513 (2014). doi: 10.1063/1.4891595

    CrossRef Google Scholar

    [49] Serpetzoglou E, Konidakis I, Maksudov T, Panagiotopoulos A, Kymakis E et al. In situ monitoring of the charge carrier dynamics of CH3NH3PbI3 perovskite crystallization process. J Mater Chem C 7, 12170–12179 (2019). doi: 10.1039/C9TC04335G

    CrossRef Google Scholar

    [50] Dar MI, Jacopin G, Meloni S, Mattoni A, Arora N et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci Adv 2, e1601156 (2016). doi: 10.1126/sciadv.1601156

    CrossRef Google Scholar

    [51] Baikie T, Fang YN, Kadro JM, Schreyer M, Wei FX et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1, 5628–5641 (2013). doi: 10.1039/c3ta10518k

    CrossRef Google Scholar

    [52] Even J, Pedesseau L, Katan C, Kepenekian M, Lauret JS et al. Solid-state physics perspective on hybrid perovskite semiconductors. J Phys Chem C 119, 10161–10177 (2015). doi: 10.1021/acs.jpcc.5b00695

    CrossRef Google Scholar

    [53] Even J, Pedesseau L, Jancu JM, Katan C. DFT and k•p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys Status Solidi RRL 8, 31–35 (2014). doi: 10.1002/pssr.201308183

    CrossRef Google Scholar

    [54] Filippetti A, Delugas P, Saba MI, Mattoni A. Entropy-suppressed ferroelectricity in hybrid lead-iodide perovskites. J Phys Chem Lett 6, 4909–4915 (2015). doi: 10.1021/acs.jpclett.5b02117

    CrossRef Google Scholar

    [55] Ghosh T, Aharon S, Etgar L, Ruhman S. Free carrier emergence and onset of electron–phonon coupling in methylammonium lead halide perovskite films. J Am Chem Soc 139, 18262–18270 (2017). doi: 10.1021/jacs.7b09508

    CrossRef Google Scholar

    [56] Zhai YX, Sheng CX, Zhang C, Vardeny ZV. Ultrafast spectroscopy of photoexcitations in organometal trihalide perovskites. Adv Funct Mater 26, 1617–1627 (2016). doi: 10.1002/adfm.201505115

    CrossRef Google Scholar

    [57] Konidakis I, Maksudov T, Serpetzoglou E, Kakavelakis G, Kymakis E et al. Improved charge carrier dynamics of CH3NH3PbI3 perovskite films synthesized by means of laser- assisted crystallization. ACS Appl Energy Mater 1, 5101–5111 (2018).

    Google Scholar

    [58] Klein JR, Flender O, Scholz M, Oum K, Lenzer T. Charge carrier dynamics of methylammonium lead iodide: from PbI2-rich to low-dimensional broadly emitting perovskites. Phys Chem Chem Phys 18, 10800–10808 (2016). doi: 10.1039/C5CP07167D

    CrossRef Google Scholar

    [59] Manser JS, Kamat PV. Band filling with free charge carriers in organometal halide perovskites. Nat Photon 8, 737–743 (2014). doi: 10.1038/nphoton.2014.171

    CrossRef Google Scholar

    [60] Stranks SD, Burlakov VM, Leijtens T, Ball JM, Goriely A et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys Rev Appl 2, 034007 (2014). doi: 10.1103/PhysRevApplied.2.034007

    CrossRef Google Scholar

    [61] Piatkowski P, Cohen B, Ramos FJ, Di Nunzio M, Nazeeruddin MK et al. Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. Phys Chem Chem Phys 17, 14674–14684 (2015). doi: 10.1039/C5CP01119A

    CrossRef Google Scholar

    [62] La-o-vorakiat C, Salim T, Kadro J, Khuc MT, Haselsberger R et al. Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat Commun 6, 7903 (2015). doi: 10.1038/ncomms8903

    CrossRef Google Scholar

  • Supplementary information for Charge carrier dynamics in different crystal phases of CH3NH3PbI3 perovskite
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(11114) PDF downloads(602) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint