Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1, 210003 (2022). doi: 10.29026/oes.2022.210003
Citation: Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron Sci 1, 210003 (2022). doi: 10.29026/oes.2022.210003

Review Open Access

Optical near-field imaging and nanostructuring by means of laser ablation

More Information
  • In this review we consider the development of optical near-field imaging and nanostructuring by means of laser ablation since its early stages around the turn of the century. The interaction of short, intense laser pulses with nanoparticles on a surface leads to laterally tightly confined, strongly enhanced electromagnetic fields below and around the nano-objects, which can easily give rise to nanoablation. This effect can be exploited for structuring substrate surfaces on a length scale well below the diffraction limit, one to two orders smaller than the incident laser wavelength. We report on structure formation by the optical near field of both dielectric and metallic nano-objects, the latter allowing even stronger and more localized enhancement of the electromagnetic field due to the excitation of plasmon modes. Structuring with this method enables one to nanopattern large areas in a one-step parallel process with just one laser pulse irradiation, and in the course of time various improvements have been added to this technique, so that also more complex and even arbitrary structures can be produced by means of nanoablation. The near-field patterns generated on the surface can be read out with high resolution techniques like scanning electron microscopy and atomic force microscopy and provide thus a valuable tool—in conjunction with numerical calculations like finite difference time domain (FDTD) simulations—for a deeper understanding of the optical and plasmonic properties of nanostructures and their applications.
  • 加载中
  • [1] Gargini P. The International Technology Roadmap for Semiconductors (ITRS): past, present and future. In 22nd Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium 3–5 (IEEE, 2000); http://doi.org/10.1109/GAAS.2000.906261.

    Google Scholar

    [2] Zapka W, Ziemlich W, Tam AC. Efficient pulsed laser removal of 0.2 μm sized particles from a solid surface. Appl Phys Lett 58, 2217–2219 (1991). doi: 10.1063/1.104931

    CrossRef Google Scholar

    [3] Tam AC, Leung WP, Zapka W, Ziemlich W. Laser-cleaning techniques for removal of surface particulates. J Appl Phys 71, 3515–3523 (1992). doi: 10.1063/1.350906

    CrossRef Google Scholar

    [4] Imen K, Lee SJ, Allen SD. Laser-assisted micron scale particle removal. Appl Phys Lett 58, 203–205 (1991). doi: 10.1063/1.104923

    CrossRef Google Scholar

    [5] Yavas O, Leiderer P, Park HK, Grigoropoulos CP, Poon CC et al. Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating. Phys Rev Lett 70, 1830–1833 (1993). doi: 10.1103/PhysRevLett.70.1830

    CrossRef Google Scholar

    [6] Yavas O, Leiderer P, Park HK, Grigoropoulos CP, Poon CC et al. Enhanced acoustic cavitation following laser-induced bubble formation: long-term memory effect. Phys Rev Lett 72, 2021–2024 (1994). doi: 10.1103/PhysRevLett.72.2021

    CrossRef Google Scholar

    [7] Yavas O, Leiderer P, Park HK, Grigoropoulos CP, Poon CC et al. Optical and acoustic study of nucleation and growth of bubbles at a liquid-solid interface induced by nanosecond-pulsed-laser heating. Appl Phys A 58, 407–415 (1994). doi: 10.1007/BF00323618

    CrossRef Google Scholar

    [8] Yavas O, Schilling A, Bischof J, Boneberg J, Leiderer P. Bubble nucleation and pressure generation during laser cleaning of surfaces. Appl Phys A 64, 331–339 (1997). doi: 10.1007/s003390050487

    CrossRef Google Scholar

    [9] Dobler V, Oltra R, Boquillon JP, Mosbacher M, Boneberg J et al. Surface acceleration during dry laser cleaning of silicon. Appl Phys A 69, S335–S337 (1999). doi: 10.1007/s003390051412

    CrossRef Google Scholar

    [10] Arnold N, Schrems G, Mühlberger T, Bertsch M, Mosbacher M et al. Dynamic Particle removal by nanosecond dry laser cleaning: theory. Proc SPIE 4426, 340–346 (2002). doi: 10.1117/12.456828

    CrossRef Google Scholar

    [11] Oltra R, Arenholz E, Leiderer P, Kautek W, Fotakis C et al. Modeling and diagnostics of pulsed laser-solid interactions: Applications to laser cleaning. Proc SPIE 3885, 499–508 (2000). doi: 10.1117/12.377000

    CrossRef Google Scholar

    [12] Mosbacher M, Chaoui N, Siegel J, Dobler V, Solis J et al. A comparison of NS and PS steam laser cleaning of Si surfaces. Appl Phys A 69, S331–S334 (1999). doi: 10.1007/s003390051411

    CrossRef Google Scholar

    [13] Leiderer P, Boneberg J, Mosbacher M, Schilling A, Yavas O. Laser cleaning of silicon surfaces. Proc SPIE 3274, 68–78 (1998). doi: 10.1117/12.309495

    CrossRef Google Scholar

    [14] Chaoui N, Solis J, Afonso CN, Fourrier T, Muehlberger T et al. A high-sensitivity in situ optical diagnostic technique for laser cleaning of transparent substrates. Appl Phys A 76, 767–771 (2003). doi: 10.1007/s00339-002-2032-1

    CrossRef Google Scholar

    [15] Leiderer P, Boneberg J, Dobler V, Mosbacher M, Münzer HJ et al. Laser-induced particle removal from Silicon wafers. Proc SPIE 4065, 249–259 (2000). doi: 10.1117/12.407353

    CrossRef Google Scholar

    [16] Vereecke G, Röhr E, Heyns MM. Laser-assisted removal of particles on silicon wafers. J Appl Phys 85, 3837–3843 (1999). doi: 10.1063/1.369754

    CrossRef Google Scholar

    [17] Lu YF, Zheng YW, Song WD. Laser induced removal of spherical particles from silicon wafers. J Appl Phys 87, 1534–1539 (2000). doi: 10.1063/1.372045

    CrossRef Google Scholar

    [18] Wu X, Sacher E, Meunier M. The modeling of excimer laser particle removal from hydrophilic silicon surfaces. J Appl Phys 87, 3618–3627 (2000). doi: 10.1063/1.372391

    CrossRef Google Scholar

    [19] Zheng YW, Luk’yanchuk BS, Lu YF, Song WD, Mai ZH. Dry laser cleaning of particles from solid substrates: experiments and theory. J Appl Phys 90, 2135–2142 (2001). doi: 10.1063/1.1389477

    CrossRef Google Scholar

    [20] Grojo D, Delaporte P, Sentis M, Pakarinen OH, Foster AS. The so-called dry laser cleaning governed by humidity at the nanometer scale. Appl Phys Lett 92, 033108 (2008). doi: 10.1063/1.2832766

    CrossRef Google Scholar

    [21] Halfpenny DR, Kane DM. A quantitative analysis of single pulse ultraviolet dry laser cleaning. J Appl Phys 86, 6641–6646 (1999). doi: 10.1063/1.371737

    CrossRef Google Scholar

    [22] Kane DM, Halfpenny DR. Reduced threshold ultraviolet laser ablation of glass substrates with surface particle coverage: a mechanism for systematic surface laser damage. J Appl Phys 87, 4548–4552 (2000). doi: 10.1063/1.373100

    CrossRef Google Scholar

    [23] Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330, 377–445 (1908). doi: 10.1002/andp.19083300302

    CrossRef Google Scholar

    [24] Mosbacher M, Münzer HJ, Zimmermann J, Solis J, Boneberg J et al. Optical field enhancement effects in laser-assisted particle removal. Appl Phys A 72, 41–44 (2001). doi: 10.1007/s003390000715

    CrossRef Google Scholar

    [25] Kühler P, Puerto D, Mosbacher M, Leiderer P, de Abajo FJG et al. Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle. Beilstein J Nanotechnol 4, 501–509 (2013). doi: 10.3762/bjnano.4.59

    CrossRef Google Scholar

    [26] Lu YF, Zhang L, Song WD, Zheng YW, Luk’yanchuk BS. Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation. J Exp Theor Phys Lett 72, 457–459 (2000). doi: 10.1134/1.1339899

    CrossRef Google Scholar

    [27] Münzer HJ, Mosbacher M, Bertsch M, Zimmermann J, Leiderer P et al. Local field enhancement effects for nanostructuring of surfaces. J Microsc 202, 129–135 (2001). doi: 10.1046/j.1365-2818.2001.00876.x

    CrossRef Google Scholar

    [28] Fischer CU, Zingsheim HP. Submicroscopic pattern replication with visible light. J Vac Sci Technol 19, 881–885 (1981). doi: 10.1116/1.571227

    CrossRef Google Scholar

    [29] Deckman HW, Dunsmuir JH. Natural lithography. Appl Phys Lett 41, 377–379 (1982). doi: 10.1063/1.93501

    CrossRef Google Scholar

    [30] Burmeister F, Schäfle C, Keilhofer B, Bechinger C, Boneberg J et al. From mesoscopic to nanoscopic surface structures: lithography with colloid monolayers. Adv Mater 10, 495–497 (1998). doi: 10.1002/(SICI)1521-4095(199804)10:6<495::AID-ADMA495>3.0.CO;2-A

    CrossRef Google Scholar

    [31] Kosiorek A, Kandulski W, Chudzinski P, Kempa K, Giersig M. Shadow nanosphere lithography: simulation and experiment. Nano Lett 4, 1359–1363 (2004). doi: 10.1021/nl049361t

    CrossRef Google Scholar

    [32] Watanabe O, Ikawa T, Hasegawa M, Tsuchimori M, Kawata Y. Nanofabrication induced by near-field exposure from a nanosecond laser pulse. Appl Phys Lett 79, 1366–1368 (2001). doi: 10.1063/1.1398326

    CrossRef Google Scholar

    [33] Münzer HJ, Mosbacher M, Bertsch M, Dubbers O, Burmeister F et al. Optical near-field effects in surface nanostructuring and laser cleaning. Proc SPIE 4426, 180–183 (2002). doi: 10.1117/12.456827

    CrossRef Google Scholar

    [34] Piglmayer K, Denk R, Bäuerle D. Laser-induced surface patterning by means of microspheres. Appl Phys Lett 80, 4693–4695 (2002). doi: 10.1063/1.1489085

    CrossRef Google Scholar

    [35] Denk R, Piglmayer K, Bäuerle D. Laser-induced nanopatterning of PET using a-SiO2 microspheres. Appl Phys A 74, 825–826 (2002). doi: 10.1007/s003390201295

    CrossRef Google Scholar

    [36] Huang SM, Hong MH, Luk’yanchuk BS, Zheng YW, Song WD et al. Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J Appl Phys 92, 2495–2500 (2002). doi: 10.1063/1.1501768

    CrossRef Google Scholar

    [37] Lu Y, Chen SC. Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14, 505–508 (2003). doi: 10.1088/0957-4484/14/5/305

    CrossRef Google Scholar

    [38] Huang SM, Sun Z, Luk’yanchuk BS, Hong MH, Shi LP. Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon. Appl Phys Lett 86, 161911 (2005). doi: 10.1063/1.1886896

    CrossRef Google Scholar

    [39] Takada H, Obara M. Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array. Jpn J Appl Phys 44, 7993–7997 (2005). doi: 10.1143/JJAP.44.7993

    CrossRef Google Scholar

    [40] Zhou Y, Hong MH, Fuh JYH, Lu L, Luk’yanchuk BS et al. Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement. Appl Phys Lett 88, 023110 (2006). doi: 10.1063/1.2163988

    CrossRef Google Scholar

    [41] Brodoceanu D, Landström L, Bäuerle D. Laser-induced nanopatterning of silicon with colloidal monolayers. Appl Phys A 86, 313–314 (2007). doi: 10.1007/s00339-006-3781-z

    CrossRef Google Scholar

    [42] Huang SM, Sun Z, Lu YF. Nanofabrication by laser irradiation of polystyrene particle layers on silicon. Nanotechnology 18, 025302 (2007). doi: 10.1088/0957-4484/18/2/025302

    CrossRef Google Scholar

    [43] Ulmeanu M, Zamfirescu M, Rusen L, Luculescu C, Moldovan A et al. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation. J Appl Phys 106, 114908 (2009). doi: 10.1063/1.3264833

    CrossRef Google Scholar

    [44] Wang XC, Zheng HY, Tan CW, Wang F, Yu HY et al. Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation. Appl Phys Lett 96, 084101 (2010). doi: 10.1063/1.3327513

    CrossRef Google Scholar

    [45] Deepak KLN, Grojo D, Charmasson L, Delaporte P, Utéza O et al. Fabrication of microcraters on silicon substrate by UV nanosecond photonic nanojets from microspheres. UVX 2012, 02003 (2013). doi: 10.1051/uvx/201302003

    CrossRef Google Scholar

    [46] Juodkazis S, Nishi Y, Misawa H, Mizeikis V, Schecker O et al. Optical transmission and laser structuring of silicon membranes. Opt Express 17, 15308–15317 (2009). doi: 10.1364/OE.17.015308

    CrossRef Google Scholar

    [47] Mosbacher M, Dobler V, Bertsch M, Münzer HJ, Boneberg J et al. Laser cleaning of silicon wafers: prospects and problems. Surface Contamination and Cleaning, Vol. 1 311 (VSP 2003); http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-27803.

    Google Scholar

    [48] Wysocki G, Denk R, Piglmayer K, Arnold N, Bäuerle D. Single-step fabrication of silicon-cone arrays. Appl Phys Lett 82, 692–693 (2003). doi: 10.1063/1.1538347

    CrossRef Google Scholar

    [49] Lang F, Mosbacher M, Leiderer P. Near field induced defects and influence of the liquid layer thickness in Steam Laser Cleaning of silicon wafers. Appl Phys A 77, 117–123 (2003). doi: 10.1007/s00339-003-2101-0

    CrossRef Google Scholar

    [50] Ulmeanu M, Petkov P, Ursescu D, Maraloiu VA, Jipa F et al. Pattern formation on silicon by laser-initiated liquid-assisted colloidal lithography. Nanotechnology 26, 455303 (2015). doi: 10.1088/0957-4484/26/45/455303

    CrossRef Google Scholar

    [51] Ulmeanu M, Petkov P, Ursescu D, Jipa F, Harniman R et al. Substrate surface patterning by optical near field modulation around colloidal particles immersed in a liquid. Opt Express 24, 27340–27351 (2016). doi: 10.1364/OE.24.027340

    CrossRef Google Scholar

    [52] Guo W, Wang ZB, Li L, Whitehead DJ, Luk’yanchuk BS et al. Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl Phys Lett 90, 243101 (2007). doi: 10.1063/1.2748035

    CrossRef Google Scholar

    [53] McLeod E, Arnold CB. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat Nanotechnol 3, 413–417 (2008). doi: 10.1038/nnano.2008.150

    CrossRef Google Scholar

    [54] McLeod E, Arnold CB. Array-based optical nanolithography using optically trapped microlenses. Opt Express 17, 3640–3650 (2009). doi: 10.1364/OE.17.003640

    CrossRef Google Scholar

    [55] Fardel R, McLeod E, Tsai YC, Arnold CB. Nanoscale ablation through optically trapped microspheres. Appl Phys A 101, 41–46 (2010). doi: 10.1007/s00339-010-5792-z

    CrossRef Google Scholar

    [56] Chen ZG, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Express 12, 1214–1220 (2004). doi: 10.1364/OPEX.12.001214

    CrossRef Google Scholar

    [57] Karakurt I, Boneberg J, Leiderer P, Lopez R, Halabica A, Haglund RF. Transmission increase upon switching of VO2 thin films on microstructured surfaces. Appl Phys Lett 91, 091907 (2007). doi: 10.1063/1.2776368

    CrossRef Google Scholar

    [58] Karakurt I, Adams CH, Leiderer P, Boneberg J, Haglund RF. Nonreciprocal switching of VO2 thin films on microstructured surfaces. Opt Lett 35, 1506–1509 (2010). doi: 10.1364/OL.35.001506

    CrossRef Google Scholar

    [59] Chen LW, Zheng XR, Du ZR, Jia BH, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale 7, 14982–14988 (2015). doi: 10.1039/C5NR03304G

    CrossRef Google Scholar

    [60] Soh JH, Wu MX, Gu GQ, Chen LW, Hong MH. Temperature-controlled photonic nanojet via VO2 coating. Appl Opt 55, 3751–3756 (2016). doi: 10.1364/AO.55.003751

    CrossRef Google Scholar

    [61] Jin YJ, Chen LW, Wu MX, Lu XZ, Zhou R et al. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express 6, 1114–1121 (2016). doi: 10.1364/OME.6.001114

    CrossRef Google Scholar

    [62] Heifetz A, Kong SC, Sahakian AV, Taflove A, Backman V. Photonic nanojets. J Comput Theor Nanosci 6, 1979–1992 (2009). doi: 10.1166/jctn.2009.1254

    CrossRef Google Scholar

    [63] Luk’yanchuk BS, Paniagua-Domínguez R, Minin I, Minin O, Wang ZB. Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited]. Opt Mater Express 7, 1820–1847 (2017). doi: 10.1364/OME.7.001820

    CrossRef Google Scholar

    [64] Surdo S, Duocastella M, Diaspro A. Nanopatterning with photonic nanojets: review and perspectives in biomedical research. Micromachines 12, 256 (2021). doi: 10.3390/mi12030256

    CrossRef Google Scholar

    [65] Wang ZB, Guo W, Li L, Luk’yanchuk B, Khan A et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun 2, 218 (2011). doi: 10.1038/ncomms1211

    CrossRef Google Scholar

    [66] Chen LW, Zhou Y, Wu MX, Hong MH. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv 1, 170001 (2018).

    Google Scholar

    [67] Chen LW, Zhou Y, Zhou R, Hong MH. Microsphere - toward future of optical microscopes. iScience 23, 101211 (2020). doi: 10.1016/j.isci.2020.101211

    CrossRef Google Scholar

    [68] Decker M, Staude I. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J Opt 18, 103001 (2016). doi: 10.1088/2040-8978/18/10/103001

    CrossRef Google Scholar

    [69] Zenhausern F, Martin Y, Wickramasinghe HK. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995). doi: 10.1126/science.269.5227.1083

    CrossRef Google Scholar

    [70] Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999). doi: 10.1038/20154

    CrossRef Google Scholar

    [71] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002). doi: 10.1038/nature00899

    CrossRef Google Scholar

    [72] Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J. Coherent imaging of nanoscale Plasmon patterns with a carbon nanotube optical probe. Appl Phys Lett 83, 368–370 (2003). doi: 10.1063/1.1592629

    CrossRef Google Scholar

    [73] Esteban R, Vogelgesang R, Dorfmüller J, Dmitriev A, Rockstuhl C et al. Direct Near-field optical imaging of higher order plasmonic resonances. Nano Lett 8, 3155–3159 (2008). doi: 10.1021/nl801396r

    CrossRef Google Scholar

    [74] Jersch J, Dickmann K. Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl Phys Lett 68, 868–870 (1996). doi: 10.1063/1.116527

    CrossRef Google Scholar

    [75] Boneberg J, Tresp M, Ochmann M, Münzer HJ, Leiderer P. Time-resolved measurements of the response of a STM tip upon illumination with a nanosecond laser pulse. Appl Phys A 66, 615–619 (1998). doi: 10.1007/s003390050722

    CrossRef Google Scholar

    [76] Huber R, Koch M, Feldmann J. Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever. Appl Phys Lett 73, 2521–2523 (1998). doi: 10.1063/1.122502

    CrossRef Google Scholar

    [77] Boneberg J, Münzer HJ, Tresp M, Ochmann M, Leiderer P. The mechanism of nanostructuring upon nanosecond laser irradiation of a STM tip. Appl Phys A 67, 381–384 (1998). doi: 10.1007/s003390050789

    CrossRef Google Scholar

    [78] Mai ZH, Lu YF, Huang SM, Chim WK. Mechanism of laser-induced nanomodification on hydrogen-passivated Si(100) surfaces underneath the tip of a scanning tunneling microscope. J Vac Sci Technol B 18, 1853–1853 (2000).

    Google Scholar

    [79] Lu YF, Mai ZH Zheng YW, Song WD. Nanostructure fabrication using pulsed lasers in combination with a scanning tunneling microscope: mechanism investigation. Appl Phys Lett 76, 1200–1202 (2000). doi: 10.1063/1.125982

    CrossRef Google Scholar

    [80] Huang SM, Hong MH, Lu YF, Lukỳanchuk BS, Song WD et al. Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy. J Appl Phys 91, 3268–3274 (2002). doi: 10.1063/1.1448882

    CrossRef Google Scholar

    [81] Chimmalgi A, Choi TY, Grigoropoulos CP, Komvopoulos K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl Phys Lett 82, 1146–1148 (2003). doi: 10.1063/1.1555693

    CrossRef Google Scholar

    [82] Chimmalgi A, Grigoropoulos CP, Komvopoulos K. Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy. J Appl Phys 97, 104319 (2005). doi: 10.1063/1.1899245

    CrossRef Google Scholar

    [83] Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J. Imaging optical near-fields of nanostructures. Appl Phys Lett 85, 5370–5372 (2004). doi: 10.1063/1.1819990

    CrossRef Google Scholar

    [84] Nedyalkov NN, Takada H, Obara M. Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles. Appl Phys A 85, 163–168 (2006). doi: 10.1007/s00339-006-3679-9

    CrossRef Google Scholar

    [85] Nedyalkov N, Sakai T, Miyanishi T, Obara M. Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate. Appl Phys Lett 90, 123106 (2007). doi: 10.1063/1.2715103

    CrossRef Google Scholar

    [86] Imamova S, Nedyalkov N, Dikovska A, Atanasov P, Sawczak M et al. Near field properties of nanoparticle arrays fabricated by laser annealing of thin Au and Ag films. Appl Surf Sci 257, 1075–1079 (2010). doi: 10.1016/j.apsusc.2010.08.016

    CrossRef Google Scholar

    [87] Huang WY, Qian W, El-Sayed MA. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface Plasmon resonance. J Am Chem Soc 128, 13330–13331 (2006). doi: 10.1021/ja064328p

    CrossRef Google Scholar

    [88] Jamali AA, Witzigmann B, Morarescu R, Baumert T, Träger F et al. Local near field assisted ablation of fused silica: an experimental and theoretical study. Appl Phys A 110, 743–749 (2013). doi: 10.1007/s00339-012-7135-8

    CrossRef Google Scholar

    [89] Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J Am Chem Soc 130, 6928–6929 (2008). doi: 10.1021/ja801262r

    CrossRef Google Scholar

    [90] Murazawa N, Ueno K, Mizeikis V, Juodkazis S, Misawa H. Spatially Selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods. J Phys Chem C 113, 1147–1149 (2009). doi: 10.1021/jp809623y

    CrossRef Google Scholar

    [91] Geldhauser T, Ikegaya S, Kolloch A, Murazawa N, Ueno K et al. Visualization of near-field enhancements of gold triangles by nonlinear photopolymerization. Plasmonics 6, 207–212 (2011). doi: 10.1007/s11468-010-9189-9

    CrossRef Google Scholar

    [92] Hubert C, Rumyantseva A, Lerondel G, Grand J, Kostcheev S et al. Near-field photochemical imaging of noble metal nanostructures. Nano Lett 5, 615–619 (2005). doi: 10.1021/nl047956i

    CrossRef Google Scholar

    [93] Kühler P, de Abajo FJG, Solis J, Mosbacher M, Leiderer P et al. Imprinting the optical near field of microstructures with nanometer resolution. Small 5, 1825–1829 (2009). doi: 10.1002/smll.200900393

    CrossRef Google Scholar

    [94] Kühler P, de Abajo FJG, Leiprecht P, Kolloch A, Solis J et al. Quantitative imaging of the optical near field. Opt Express 20, 22063–22078 (2012). doi: 10.1364/OE.20.022063

    CrossRef Google Scholar

    [95] Hennemann LE, Kolloch A, Kern A, Mihaljevic J, Boneberg J et al. Assessing the plasmonics of gold nano-triangles with higher order laser modes. Beilstein J Nanotechnol 3, 674–683 (2012). doi: 10.3762/bjnano.3.77

    CrossRef Google Scholar

    [96] Hanke T, Cesar J, Knittel V, Trügler A, Hohenester U et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett 12, 992–996 (2012). doi: 10.1021/nl2041047

    CrossRef Google Scholar

    [97] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y et al. Direct imaging of the near field and dynamics of surface Plasmon resonance on gold nanostructures using photoemission electron microscopy. Light:Sci Appl 2, e118 (2013). doi: 10.1038/lsa.2013.74

    CrossRef Google Scholar

    [98] Aeschlimann M, Bauer M, Bayer D, Brixner T, de Abajo FJG et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007). doi: 10.1038/nature05595

    CrossRef Google Scholar

    [99] Fiutowski J, Maibohm C, Kjelstrup-Hansen J, Rubahn HG. Laser ablation of polymer coatings allows for electromagnetic field enhancement mapping around nanostructures. Appl Phys Lett 98, 193117 (2011). doi: 10.1063/1.3591972

    CrossRef Google Scholar

    [100] Metzger B, Hentschel M, Giessen H. Probing the near-field of second-harmonic light around plasmonic nanoantennas. Nano Lett 17, 1931–1937 (2017). doi: 10.1021/acs.nanolett.6b05285

    CrossRef Google Scholar

    [101] Gonçalves MR, Marti O. Experimental observation of the scattering of light by planar metallic nanoparticles. New J Phys 5, 160.1–160.14 (2003).

    Google Scholar

    [102] Kolloch A, Leiderer P, Ibrahimkutty S, Issenmann D, Plech A. Structural study of near-field ablation close to Plasmon-resonant nanotriangles. J Laser Appl 24, 042015 (2012). doi: 10.2351/1.4731304

    CrossRef Google Scholar

    [103] Boneberg J, König-Birk J, Münzer HJ, Leiderer P, Shuford KL et al. Optical near-fields of triangular nanostructures. Appl Phys A 89, 299–303 (2007). doi: 10.1007/s00339-007-4138-y

    CrossRef Google Scholar

    [104] Kolloch A, Geldhauser T, Ueno K, Misawa H, Boneberg J et al. Femtosecond and picosecond near-field ablation of gold nanotriangles: nanostructuring and nanomelting. Appl Phys A 104, 793–799 (2011). doi: 10.1007/s00339-011-6443-8

    CrossRef Google Scholar

    [105] Kolloch A. Plasmon resonances for sub-100 nm silicon ablation: quantitative measurement and nanometer-scale ablation mechanism (University of Konstanz, Konstanz, 2012); http://kops.uni-konstanz.de/handle/123456789/23193.

    Google Scholar

    [106] Dickreuter S, Gleixner J, Kolloch A, Boneberg J, Scheer E et al. Mapping of plasmonic resonances in nanotriangles. Beilstein J Nanotechnol 4, 588–602 (2013). doi: 10.3762/bjnano.4.66

    CrossRef Google Scholar

    [107] Perassi EM, Hernandez-Garrido JC, Moreno MS, Encina ER, Coronado EA et al. Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. Nano Lett 10, 2097–2104 (2010). doi: 10.1021/nl1005492

    CrossRef Google Scholar

    [108] Nagy BJ, Pápa Z, Péter L, Prietl C, Krenn JR et al. Near-field-induced femtosecond breakdown of plasmonic nanoparticles. Plasmonics 15, 335–340 (2020). doi: 10.1007/s11468-019-01043-3

    CrossRef Google Scholar

    [109] Scheffler CM, Word RC, Könenkamp R. Controlling electric field and photoemission at the tips of triangular gold antennas. Plasmonics 16, 371–377 (2021). doi: 10.1007/s11468-020-01292-7

    CrossRef Google Scholar

    [110] Eversole D, Luk’yanchuk B, Ben-Yakar A. Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl Phys A 89, 283–291 (2007). doi: 10.1007/s00339-007-4166-7

    CrossRef Google Scholar

    [111] Hubenthal F, Morarescu R, Englert L, Haag L, Baumert T et al. Parallel generation of nanochannels in fused silica with a single femtosecond laser pulse: exploiting the optical near fields of triangular nanoparticles. Appl Phys Lett 95, 063101 (2009). doi: 10.1063/1.3186787

    CrossRef Google Scholar

    [112] Morarescu R, Englert L, Kolaric B, Damman P, Vallée RAL et al. Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach. J Mater Chem 21, 4076–4081 (2011). doi: 10.1039/c0jm03829f

    CrossRef Google Scholar

    [113] Habenicht A, Olapinski M, Burmeister F, Leiderer P, Boneberg J. Jumping nanodroplets. Science 309, 2043–2045 (2005). doi: 10.1126/science.1116505

    CrossRef Google Scholar

    [114] Vogelgesang R, Dmitriev A. Real-space imaging of nanoplasmonic resonances. Analyst 135, 1175–1181 (2010). doi: 10.1039/c000887g

    CrossRef Google Scholar

    [115] Schuller JA, Barnard ES, Cai WS, Jun YC, White JS et al. Plasmonics for extreme light concentration and manipulation. Nat Mater 9, 193–204 (2010). doi: 10.1038/nmat2630

    CrossRef Google Scholar

    [116] Hashimoto S, Werner D, Uwada T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem Photobiol C:Photochem Rev 13, 28–54 (2012). doi: 10.1016/j.jphotochemrev.2012.01.001

    CrossRef Google Scholar

    [117] Boulais E, Lachaine R, Hatef A, Meunier M. Plasmonics for pulsed-laser cell nanosurgery: fundamentals and applications. J Photochem Photobiol C:Photochem Rev 17, 26–49 (2013). doi: 10.1016/j.jphotochemrev.2013.06.001

    CrossRef Google Scholar

    [118] Merlen A, Lagugné-Labarthet F. Imaging the optical near field in plasmonic nanostructures. Appl Spectrosc 68, 1307–1326 (2014). doi: 10.1366/14-07699

    CrossRef Google Scholar

    [119] Terakawa M, Nedyalkov NN. Near-field optics for nanoprocessing. Adv Opt Technol 5, 17–28 (2016). doi: 10.5937/savteh1601017D

    CrossRef Google Scholar

    [120] Nedyalkov N, Sakai T, Miyanishi T, Obara M. Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J Phys D:Appl Phys 39, 5037–5042 (2006). doi: 10.1088/0022-3727/39/23/021

    CrossRef Google Scholar

    [121] Hashimoto S, Uwada T, Hagiri M, Takai H, Ueki T. Gold nanoparticle-assisted laser surface modification of borosilicate glass substrates. J Phys Chem C 113, 20640–20647 (2009). doi: 10.1021/jp905291h

    CrossRef Google Scholar

    [122] Hashimoto S, Uwada T, Hagiri M, Shiraishi R. Mechanistic aspect of surface modification on glass substrates assisted by single shot pulsed laser-induced fragmentation of gold Nanoparticles. J Phys Chem C 115, 4986–4993 (2011). doi: 10.1021/jp106830x

    CrossRef Google Scholar

    [123] Harrison RK, Ben-Yakar A. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate. Opt Express 18, 22556–22571 (2010). doi: 10.1364/OE.18.022556

    CrossRef Google Scholar

    [124] Harrison RK, Ben-Yakar A. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: reply. Opt Express 19, 6179–6181 (2011). doi: 10.1364/OE.19.006179

    CrossRef Google Scholar

    [125] Boulais E, Robitaille A, Desjeans-Gauthier P, Meunier M. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate: comment. Opt Express 19, 6177–6178 (2011). doi: 10.1364/OE.19.006177

    CrossRef Google Scholar

    [126] Robitaille A, Boulais É, Meunier M. Mechanisms of plasmon-enhanced femtosecond laser nanoablation of silicon. Opt Express 21, 9703–9710 (2013). doi: 10.1364/OE.21.009703

    CrossRef Google Scholar

    [127] von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime. Appl Surf Sci 109/110, 1–10 (1997). doi: 10.1016/S0169-4332(96)00611-3

    CrossRef Google Scholar

    [128] Bonse J, Baudach S, Krüger J, Kautek W, Lenzner M. Femtosecond laser ablation of silicon—modification thresholds and morphology. Appl Phys A 74, 19–25 (2002). doi: 10.1007/s003390100893

    CrossRef Google Scholar

    [129] Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics 5, 349–356 (2011). doi: 10.1038/nphoton.2011.56

    CrossRef Google Scholar

    [130] Kotsifaki DG, Chormaic SN. Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects. Nanophotonics 8, 1227–1245 (2019). doi: 10.1515/nanoph-2019-0151

    CrossRef Google Scholar

    [131] Wang ZB, Hong MH, Luk BS'yanchuk, Lin Y, Wang QF et al. Angle effect in laser nanopatterning with particle-mask. J Appl Phys 96, 6845–6850 (2004). doi: 10.1063/1.1786652

    CrossRef Google Scholar

    [132] Pena A, Wang ZB, Whitehead D, Li L. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd: YVO4 laser. Appl Phys A 101, 287–295 (2010). doi: 10.1007/s00339-010-5819-5

    CrossRef Google Scholar

    [133] Tanaka Y, Obara G, Zenidaka A, Terakawa M, Obara M. Femtosecond laser near-field nanoablation patterning using Mie resonance high dielectric constant particle with small size parameter. Appl Phys Lett 96, 261103 (2010). doi: 10.1063/1.3458704

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(31)

Tables(2)

Article Metrics

Article views(13837) PDF downloads(798) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint