Zhou L, Wang YD, Kang JL et al. Observation of polaronic state assisted sub-bandgap saturable absorption. Opto-Electron Adv 8, 240312 (2025). doi: 10.29026/oea.2025.240312
Citation: Zhou L, Wang YD, Kang JL et al. Observation of polaronic state assisted sub-bandgap saturable absorption. Opto-Electron Adv 8, 240312 (2025). doi: 10.29026/oea.2025.240312

Article Open Access

Observation of polaronic state assisted sub-bandgap saturable absorption

More Information
  • In soft-lattice lead-halide perovskites, the polaronic effects involving stabilization of localized charge character by structural deformations and polarizations have an important effect on the properties of functional materials such as the band gap, which has attracted considerable investigations. However, the concept of polaron assisted nonlinear photonics remains largely unexplored, which has a wide range of applications from optoelectronics to telecommunications and quantum technologies. Here, we report the first observation of the polaronic state assisted saturable absorption through sub-bandgap excitation with a redshift exceeding 60 meV. By combining photoluminescence, transient absorption measurements and density functional theory calculations, we explicate that the anomalous nonlinear saturable absorption under sub-bandgap excitation is caused by the transient picosecond timescale polaronic state formed by strong carrier/exciton-phonon coupling effect. The bandgap fluctuation caused by polaron formation can be further tuned through exciton-phonon coupling of perovskites with different Young’s modulus. This suggests that we can design targeted soft lattice lead-halide perovskite with a specific structure to effectively manipulate exciton-phonon coupling and exciton-polaron formation. These findings profoundly expand our understanding of exciton-polaronic nonlinear optics physics and provide an ideal platform for developing actively tunable nonlinear photonics applications.
  • 加载中
  • [1] Boyd RW, Masters BR. Nonlinear optics, third edition. J Biomed Opt 14, 029902 (2009). doi: 10.1117/1.3115345

    CrossRef Google Scholar

    [2] Guo QB, Qi XZ, Zhang LS et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023). doi: 10.1038/s41586-022-05393-7

    CrossRef Google Scholar

    [3] Chang DE, Vuletić V, Lukin MD. Quantum nonlinear optics—photon by photon. Nat Photonics 8, 685–694 (2014). doi: 10.1038/nphoton.2014.192

    CrossRef Google Scholar

    [4] Guo QS, Sekine R, Ledezma L et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat Photonics 16, 625–631 (2022). doi: 10.1038/s41566-022-01044-5

    CrossRef Google Scholar

    [5] Guo QS, Gutierrez BK, Sekine R et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023). doi: 10.1126/science.adj5438

    CrossRef Google Scholar

    [6] Hu YW, Yu MJ, Zhu D et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021). doi: 10.1038/s41586-021-03999-x

    CrossRef Google Scholar

    [7] Cui CH, Zhang L, Fan LR. In situ control of effective Kerr nonlinearity with Pockels integrated photonics. Nat Phys 18, 497–501 (2022). doi: 10.1038/s41567-022-01542-x

    CrossRef Google Scholar

    [8] Chen Z, Li JF, Li TZ et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 9, nwac104 (2022). doi: 10.1093/nsr/nwac104

    CrossRef Google Scholar

    [9] Chen Z, Huang H, Deng J et al. Light‐guided genetic scissors based on phosphorene quantum dot. Laser Photonics Rev 18, 2400777 (2024). doi: 10.1002/lpor.202400777

    CrossRef Google Scholar

    [10] Chen Z, Meng CL, Wang XL et al. Ultrasensitive DNA origami plasmon sensor for accurate detection in circulating tumor DNAs. Laser Photonics Rev 18, 2400035 (2024). doi: 10.1002/lpor.202400035

    CrossRef Google Scholar

    [11] Bao QL, Zhang H, Wang Y et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19, 3077–3083 (2009). doi: 10.1002/adfm.200901007

    CrossRef Google Scholar

    [12] Wang KP, Zhang XY, Kislyakov IM et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat Commun 10, 3985 (2019). doi: 10.1038/s41467-019-11898-z

    CrossRef Google Scholar

    [13] Dong YC, Chertopalov S, Maleski K et al. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv Mater 30, 1705714 (2018). doi: 10.1002/adma.201705714

    CrossRef Google Scholar

    [14] Zhou L, Kang JL, Dong YL et al. Solvent-stabilized few-layer violet phosphorus and its ultrafast nonlinear optics. Nano Res 16, 5843–5849 (2023). doi: 10.1007/s12274-022-5224-3

    CrossRef Google Scholar

    [15] Wang YW, Huang GH, Mu HR et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl Phys Lett 107, 091905 (2015). doi: 10.1063/1.4930077

    CrossRef Google Scholar

    [16] Jiang T, Huang D, Cheng JL et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat Photonics 12, 430–436 (2018). doi: 10.1038/s41566-018-0175-7

    CrossRef Google Scholar

    [17] Hong H, Wu CC, Zhao ZX et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nat Photonics 15, 510–515 (2021). doi: 10.1038/s41566-021-00801-2

    CrossRef Google Scholar

    [18] Wang YD, Wang YW, Lan CY et al. Interfacial charge transfer for enhancing nonlinear saturable absorption in WS2/graphene heterostructure. Adv Sci 11, 2306096 (2024). doi: 10.1002/advs.202306096

    CrossRef Google Scholar

    [19] Dirnberger F, Quan JM, Bushati R et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023). doi: 10.1038/s41586-023-06275-2

    CrossRef Google Scholar

    [20] Tang YX, Zhang YB, Liu QR et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci Appl 11, 94 (2022). doi: 10.1038/s41377-022-00754-3

    CrossRef Google Scholar

    [21] Gu LX, Zhang LF, Ni RH et al. Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors. Nat Photonics 18, 816–822 (2024). doi: 10.1038/s41566-024-01434-x

    CrossRef Google Scholar

    [22] Puppin M, Polishchuk S, Colonna N et al. Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3. Phys Rev Lett 124, 206402 (2020). doi: 10.1103/PhysRevLett.124.206402

    CrossRef Google Scholar

    [23] Qian Q, Wan Z, Takenaka H et al. Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. Nat Nanotechnol 18, 357–364 (2023). doi: 10.1038/s41565-022-01306-x

    CrossRef Google Scholar

    [24] Yaffe O, Guo YS, Tan LZ et al. Local polar fluctuations in lead halide perovskite crystals. Phys Rev Lett 118, 136001 (2017). doi: 10.1103/PhysRevLett.118.136001

    CrossRef Google Scholar

    [25] Tao WJ, Zhang C, Zhou QH et al. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat Commun 12, 1400 (2021). doi: 10.1038/s41467-021-21721-3

    CrossRef Google Scholar

    [26] Biswas S, Zhao RY, Alowa F et al. Exciton polaron formation and hot-carrier relaxation in rigid Dion–Jacobson-type two-dimensional perovskites. Nat Mater 23, 937–943 (2024). doi: 10.1038/s41563-024-01895-z

    CrossRef Google Scholar

    [27] Guzelturk B, Winkler T, Van de Goor TWJ et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat Mater 20, 618–623 (2021). doi: 10.1038/s41563-020-00865-5

    CrossRef Google Scholar

    [28] Luo TC, Ilyas B, von Hoegen A et al. Time-of-flight detection of terahertz phonon-polariton. Nat Commun 15, 2276 (2024). doi: 10.1038/s41467-024-46515-1

    CrossRef Google Scholar

    [29] Kim D, Jung HJ, Park IJ et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020). doi: 10.1126/science.aba3433

    CrossRef Google Scholar

    [30] Ren XX, Wang JF, Lin Y et al. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat Mater 23, 810–817 (2024). doi: 10.1038/s41563-024-01876-2

    CrossRef Google Scholar

    [31] Zhu HM, Fu YP, Meng F et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14, 636–642 (2015). doi: 10.1038/nmat4271

    CrossRef Google Scholar

    [32] Chen QS, Wu J, Ou XY et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). doi: 10.1038/s41586-018-0451-1

    CrossRef Google Scholar

    [33] Anantharaman SB, Lynch J, Stevens CE et al. Dynamics of self-hybridized exciton–polaritons in 2D halide perovskites. Light Sci Appl 13, 1 (2024). doi: 10.1038/s41377-023-01334-9

    CrossRef Google Scholar

    [34] Gong YY, Yue S, Liang Y et al. Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden−Popper perovskites by anchoring the organic cation. Nat Commun 15, 1893 (2024). doi: 10.1038/s41467-024-45740-y

    CrossRef Google Scholar

    [35] Wu B, Wang AC, Fu J et al. Uncovering the mechanisms of efficient upconversion in two-dimensional perovskites with anti-Stokes shift up to 220 meV. Sci Adv 9, eadi9347 (2023). doi: 10.1126/sciadv.adi9347

    CrossRef Google Scholar

    [36] Dai ZB, Lian C, Lafuente-Bartolome J et al. Theory of excitonic polarons: from models to first-principles calculations. Phys Rev B 109, 045202 (2024).

    Google Scholar

    [37] Miyata K, Meggiolaro D, Trinh MT et al. Large polarons in lead halide perovskites. Sci Adv 3, e1701217 (2017). doi: 10.1126/sciadv.1701217

    CrossRef Google Scholar

    [38] Li W, Vasenko AS, Tang JF et al. Anharmonicity extends carrier lifetimes in lead halide perovskites at elevated temperatures. J Phys Chem Lett 10, 6219–6226 (2019). doi: 10.1021/acs.jpclett.9b02553

    CrossRef Google Scholar

    [39] Shao Y, Gao W, Yan HJ et al. Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat Commun 13, 138 (2022). doi: 10.1038/s41467-021-27747-x

    CrossRef Google Scholar

    [40] Gu T, Scarbrough T, Yang YR et al. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Phys Rev Lett 120, 197602 (2018). doi: 10.1103/PhysRevLett.120.197602

    CrossRef Google Scholar

    [41] Zhong YG, Liao K, Du WN et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: toward laser array application. ACS Nano 14, 15605–15615 (2020). doi: 10.1021/acsnano.0c06380

    CrossRef Google Scholar

    [42] Mushtaq A, Kushavah D, Ghosh S et al. Nonlinear optical properties of benzylamine lead(II) bromide perovskite microdisks in femtosecond regime. Appl Phys Lett 114, 051902 (2019). doi: 10.1063/1.5082376

    CrossRef Google Scholar

    [43] Zhang XY, Zhang SF, Xie YF et al. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale 10, 17924–17932 (2018). doi: 10.1039/C8NR05653F

    CrossRef Google Scholar

    [44] Yamada Y, Kanemitsu Y. Electron-phonon interactions in halide perovskites. NPG Asia Mater 14, 48 (2022). doi: 10.1038/s41427-022-00394-4

    CrossRef Google Scholar

    [45] Wright AD, Verdi C, Milot RL et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat Commun 7, 11755 (2016). doi: 10.1038/ncomms11755

    CrossRef Google Scholar

    [46] Wang YD, Wang YW, Chen KQ et al. Niobium carbide MXenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 14, 10492–10502 (2020). doi: 10.1021/acsnano.0c04390

    CrossRef Google Scholar

    [47] Mushtaq A, Yang XD, Gao J. Unveiling room temperature upconversion photoluminescence in monolayer WSe2. Opt Express 30, 45212–45220 (2022). doi: 10.1364/OE.471027

    CrossRef Google Scholar

    [48] Roy S, Yang XD, Gao J. Uniaxial strain tuning of upconversion photoluminescence in monolayer WSe2. Adv Photonics Res 5, 2300220 (2024). doi: 10.1002/adpr.202300220

    CrossRef Google Scholar

    [49] Akizuki N, Aota S, Mouri S et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun 6, 8920 (2015). doi: 10.1038/ncomms9920

    CrossRef Google Scholar

    [50] Ma YZ, Valkunas L, Dexheimer SL et al. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation. Phys Rev Lett 94, 157402 (2005). doi: 10.1103/PhysRevLett.94.157402

    CrossRef Google Scholar

    [51] Wang LL, Liu H, Zhang YH et al. Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite. ACS Energy Lett 5, 87–99 (2020). doi: 10.1021/acsenergylett.9b02275

    CrossRef Google Scholar

    [52] Thouin F, Valverde-Chávez DA, Quarti C et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat Mater 18, 349–356 (2019). doi: 10.1038/s41563-018-0262-7

    CrossRef Google Scholar

    [53] Giovanni D, Chong WK, Dewi HA et al. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci Adv 2, e1600477 (2016). doi: 10.1126/sciadv.1600477

    CrossRef Google Scholar

    [54] Wu XX, Trinh MT, Zhu XY. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J Phys Chem C 119, 14714–14721 (2015). doi: 10.1021/acs.jpcc.5b00148

    CrossRef Google Scholar

    [55] deQuilettes DW, Frohna K, Emin D et al. Charge-carrier recombination in halide perovskites. Chem Rev 119, 11007–11019 (2019). doi: 10.1021/acs.chemrev.9b00169

    CrossRef Google Scholar

  • Supplementary information for Observation of polaronic state assisted sub-bandgap saturable absorption
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint