Jing XL, Liao QM, Liang MS et al. Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem. Opto-Electron Adv 8, 240299 (2025). doi: 10.29026/oea.2025.240299
Citation: Jing XL, Liao QM, Liang MS et al. Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem. Opto-Electron Adv 8, 240299 (2025). doi: 10.29026/oea.2025.240299

Article Open Access

Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem

More Information
  • Optical three-dimensional (3D) measurement is a critical tool in micro-nano manufacturing, the automotive industry, and medical technology due to its nondestructive nature, high precision, and sensitivity. However, passive light field system still requires a refractive primary lens to collect light of the scene, and structured light can not work well with the highly refractive object. Meta-optics, known for being lightweight, compact, and easily integrable, has enabled advancements in passive metalens-array light fields and active structured light techniques. Here, we propose and experimentally validate a novel 3D measurement metasystem. It features a transmitting metasurface generating chromatic line focuses as depth markers and a symmetrically arranged receiving metasurface collecting depth-dependent spectral responses. A lightweight, physically interpretable algorithm processes these data to yield high-precision depth information efficiently. Experiments on metallic and wafer materials demonstrate a depth accuracy of ±20 µm and lateral accuracy of ±10 µm. This single-layer optical metasystem, characterized by simplicity, micro-level accuracy, easy installation and scalability, shows potential for diverse applications, including process control, surface morphology analysis, and production measurement.
  • 加载中
  • [1] Zhang QY, Wen W, Hu SX et al. Nothosaur foraging tracks from the Middle Triassic of southwestern China. Nat Commun 5, 3973 (2014). doi: 10.1038/ncomms4973

    CrossRef Google Scholar

    [2] Liu WW, Ma DN, Li ZC et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica 7, 1706–1713 (2020). doi: 10.1364/OPTICA.406039

    CrossRef Google Scholar

    [3] Shaked NT, Boppart SA, Wang LV et al. Label-free biomedical optical imaging. Nat Photonics 17, 1031–1041 (2023). doi: 10.1038/s41566-023-01299-6

    CrossRef Google Scholar

    [4] Kim K. Single-shot light-field microscopy: an emerging tool for 3D biomedical imaging. BioChip J 16, 397–408 (2022). doi: 10.1007/s13206-022-00077-w

    CrossRef Google Scholar

    [5] Zang HF, Xi Z, Zhang ZY et al. Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface. Sci Adv 8, eadd1973 (2022). doi: 10.1126/sciadv.add1973

    CrossRef Google Scholar

    [6] Zang HF, Zhang ZY, Huang ZT et al. High-precision two-dimensional displacement metrology based on matrix metasurface. Sci Adv 10, eadk2265 (2024). doi: 10.1126/sciadv.adk2265

    CrossRef Google Scholar

    [7] Ferreras Paz V, Peterhänsel S, Frenner K et al. Solving the inverse grating problem by white light interference Fourier scatterometry. Light Sci Appl 1, e36 (2012). doi: 10.1038/lsa.2012.36

    CrossRef Google Scholar

    [8] Shimizu Y, Chen LC, Kim DW et al. An insight into optical metrology in manufacturing. Meas Sci Technol 32, 042003 (2021).

    Google Scholar

    [9] Wu ZJ, Wang HR, Chen FF et al. Dynamic 3D shape reconstruction under complex reflection and transmission conditions using multi-scale parallel single-pixel imaging. Light Adv Manuf 5, 373–384 (2024).

    Google Scholar

    [10] Choi E, Kim G, Yun J et al. 360° structured light with learned metasurfaces. Nat Photonics 18, 848–855 (2024). doi: 10.1038/s41566-024-01450-x

    CrossRef Google Scholar

    [11] Kim G, Kim Y, Yun J et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat Commun 13, 5920 (2022). doi: 10.1038/s41467-022-32117-2

    CrossRef Google Scholar

    [12] Georgiev T, Lumsdaine A. Reducing plenoptic camera artifacts. Comput Graphics Forum 29, 1955–1968 (2010). doi: 10.1111/j.1467-8659.2010.01662.x

    CrossRef Google Scholar

    [13] Zeller N, Quint F, Stilla U. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry. ISPRS J Photogramm Remote Sens 118, 83–100 (2016). doi: 10.1016/j.isprsjprs.2016.04.010

    CrossRef Google Scholar

    [14] Kim I, Martins RJ, Jang J et al. Nanophotonics for light detection and ranging technology. Nat Nanotechnol 16, 508–524 (2021). doi: 10.1038/s41565-021-00895-3

    CrossRef Google Scholar

    [15] Hu XM, Xu WZ, Fan QB et al. Metasurface-based computational imaging: a review. Adv Photonics 6, 014002 (2024).

    Google Scholar

    [16] Zhu WM, Song QH, Yan LB et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv Mater 27, 4739–4743 (2015). doi: 10.1002/adma.201501943

    CrossRef Google Scholar

    [17] Tseng ML, Hsiao HH, Chu CH et al. Metalenses: advances and applications. Adv Opt Mater 6, 1800554 (2018). doi: 10.1002/adom.201800554

    CrossRef Google Scholar

    [18] Xiong B, Liu Y, Xu YH et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023). doi: 10.1126/science.ade5140

    CrossRef Google Scholar

    [19] So S, Mun J, Park J et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater 35, 2206399 (2023). doi: 10.1002/adma.202206399

    CrossRef Google Scholar

    [20] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [21] Xie YY, Ni PN, Wang QH et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat Nanotechnol 15, 125–130 (2020). doi: 10.1038/s41565-019-0611-y

    CrossRef Google Scholar

    [22] Wang QH, Ni PN, Xie YY et al. On‐chip generation of structured light based on metasurface optoelectronic integration. Laser Photonics Rev 15, 2000385 (2021). doi: 10.1002/lpor.202000385

    CrossRef Google Scholar

    [23] Jing XL, Li Y, Li JJ et al. Active 3D positioning and imaging modulated by single fringe projection with compact metasurface device. Nanophotonics 12, 1923–1930 (2023). doi: 10.1515/nanoph-2023-0112

    CrossRef Google Scholar

    [24] Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024). doi: 10.29026/oes.2024.230033

    CrossRef Google Scholar

    [25] Yang Y, Seong J, Choi M et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl 12, 152 (2023). doi: 10.1038/s41377-023-01169-4

    CrossRef Google Scholar

    [26] Xiong YF, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv Photonics 2, 064001 (2020).

    Google Scholar

    [27] Liu MZ, Zhu WQ, Huo PC et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl 10, 107 (2021). doi: 10.1038/s41377-021-00552-3

    CrossRef Google Scholar

    [28] Gao H, Fan XH, Wang YX et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026

    CrossRef Google Scholar

    [29] Jung C, Lee E, Rho J. The rise of electrically tunable metasurfaces. Sci Adv 10, eado8964 (2024). doi: 10.1126/sciadv.ado8964

    CrossRef Google Scholar

    [30] Wen DD, Yue FY, Ardron M et al. Multifunctional metasurface lens for imaging and Fourier transform. Sci Rep 6, 27628 (2016). doi: 10.1038/srep27628

    CrossRef Google Scholar

    [31] Jiang SB, Deng WJ, Wang ZS et al. Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm. Opto-Electron Sci 3, 240014 (2024). doi: 10.29026/oes.2024.240014

    CrossRef Google Scholar

    [32] Engay E, Huo DW, Malureanu R et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett 21, 3820–3826 (2021). doi: 10.1021/acs.nanolett.1c00190

    CrossRef Google Scholar

    [33] Zhou JX, Tian FL, Hu J et al. Eagle‐eye inspired meta‐device for phase imaging. Adv Mater 36, 2402751 (2024). doi: 10.1002/adma.202402751

    CrossRef Google Scholar

    [34] Guo Q, Shi ZJ, Huang YW et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc Natl Acad Sci USA 116, 22959–22965 (2019). doi: 10.1073/pnas.1912154116

    CrossRef Google Scholar

    [35] Lin RJ, Su VC, Wang SM et al. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol 14, 227–231 (2019). doi: 10.1038/s41565-018-0347-0

    CrossRef Google Scholar

    [36] Fan QB, Xu WZ, Hu XM et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat Commun 13, 2130 (2022). doi: 10.1038/s41467-022-29568-y

    CrossRef Google Scholar

    [37] Liang HW, Martins A, Borges BHV et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6, 1461–1470 (2019). doi: 10.1364/OPTICA.6.001461

    CrossRef Google Scholar

    [38] Engelberg J, Levy U. Achromatic flat lens performance limits. Optica 8, 834–845 (2021). doi: 10.1364/OPTICA.422843

    CrossRef Google Scholar

    [39] Shrestha S, Overvig AC, Lu M et al. Broadband achromatic dielectric metalenses. Light Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [40] Li ZL, Dai Q, Mehmood MQ et al. Full-space cloud of random points with a scrambling metasurface. Light Sci Appl 7, 63 (2018). doi: 10.1038/s41377-018-0064-3

    CrossRef Google Scholar

    [41] Jing XL, Zhao RZ, Li X et al. Single-shot 3D imaging with point cloud projection based on metadevice. Nat Commun 13, 7842 (2022). doi: 10.1038/s41467-022-35483-z

    CrossRef Google Scholar

    [42] Chen R, Shao YF, Zhou Y et al. A semisolid micromechanical beam steering system based on micrometa-lens arrays. Nano Lett 22, 1595–1603 (2022). doi: 10.1021/acs.nanolett.1c04493

    CrossRef Google Scholar

    [43] Park J, Jeong BG, Kim SI et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol 16, 69–76 (2021). doi: 10.1038/s41565-020-00787-y

    CrossRef Google Scholar

    [44] Blinn JF. Models of light reflection for computer synthesized pictures. ACM SIGGRAPH Comput Graphics 11, 192–198 (1977). doi: 10.1145/965141.563893

    CrossRef Google Scholar

  • Supplementary information for Three-dimensional measurement enabled bysingle-layer all-in-one transmitting-receiptingoptical metasystem
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint