Li WB, Long YK, Yan YY et al. Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification. Opto-Electron Adv 8, 240254 (2025). doi: 10.29026/oea.2025.240254
Citation: Li WB, Long YK, Yan YY et al. Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification. Opto-Electron Adv 8, 240254 (2025). doi: 10.29026/oea.2025.240254

Article Open Access

Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification

More Information
  • Personalized health services are of paramount importance for the treatment and prevention of cardiorespiratory diseases, such as hypertension. The assessment of cardiorespiratory function and biometric identification (ID) is crucial for the effectiveness of such personalized health services. To effectively and accurately monitor pulse wave signals, thus achieving the assessment of cardiorespiratory function, a wearable photonic smart wristband based on an all-polymer sensing unit (All-PSU) is proposed. The smart wristband enables the assessment of cardiorespiratory function by continuously monitoring respiratory rate (RR), heart rate (HR), and blood pressure (BP). Furthermore, it can be utilized for biometric ID purposes. Through the analysis of pulse wave signals using power spectral density (PSD), accurate monitoring of RR and HR is achieved. Additionally, utilizing peak detection algorithms for feature extraction from pulse signals and subsequently employing a variety of machine learning methods, accurate BP monitoring and biometric ID have been realized. For biometric ID, the accuracy rate is 98.55%. Aiming to monitor RR, HR, BP, and ID, our solution demonstrates advantages in integration, functionality, and monitoring precision. These enhancements may contribute to the development of personalized health services aimed at the treatment and prevention of cardiorespiratory diseases.
  • 加载中
  • [1] Timmis A, Vardas P, Townsend N et al. European society of cardiology: cardiovascular disease statistics 2021. Eur Heart J 43, 716–799 (2022). doi: 10.1093/eurheartj/ehab892

    CrossRef Google Scholar

    [2] Pelliccia A, Sharma S, Gati S et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: the Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC). Eur Heart J 42, 17–96 (2021). doi: 10.1093/eurheartj/ehaa605

    CrossRef Google Scholar

    [3] Lytras T, Mouratidou E, Andreopoulou A et al. Effect of early oseltamivir treatment on mortality in critically ill patients with different types of influenza: a multiseason cohort study. Clin Infect Dis 69, 1896–1902 (2019). doi: 10.1093/cid/ciz101

    CrossRef Google Scholar

    [4] Torres A, Cilloniz C, Niederman MS et al. Pneumonia. Nat Rev Dis Primers 7, 25 (2021). doi: 10.1038/s41572-021-00259-0

    CrossRef Google Scholar

    [5] Lee JJ, Sundar KM. Evaluation and management of adults with obstructive sleep apnea syndrome. Lung 199, 87–101 (2021). doi: 10.1007/s00408-021-00426-w

    CrossRef Google Scholar

    [6] Fuster V. High blood pressure guidelines: welcomed advice, but let’s not lose the patient amid the numbers. J Am Coll Cardiol 71, 800–801 (2018). doi: 10.1016/j.jacc.2018.01.002

    CrossRef Google Scholar

    [7] Zhang XK, Wang C, He DD et al. Identification of DNA methylation-regulated genes as potential biomarkers for coronary heart disease via machine learning in the Framingham Heart Study. Clin Epigenetics 14, 122 (2022). doi: 10.1186/s13148-022-01343-2

    CrossRef Google Scholar

    [8] Couzin-Frankel J. Anti-inflammatory prevents heart attacks: by vindicating theory, antibody result points to new approaches to protecting the heart. Science 357, 855 (2017). doi: 10.1126/science.357.6354.855

    CrossRef Google Scholar

    [9] Girard M, Deschamps J, Razzaq S et al. Emerging applications of extracardiac ultrasound in critically ill cardiac patients. Can J Cardiol 39, 444–457 (2023). doi: 10.1016/j.cjca.2022.11.015

    CrossRef Google Scholar

    [10] Pujol-López M, San Antonio R, Mont L et al. Electrocardiographic optimization techniques in resynchronization therapy. EP Eur 21, 1286–1296 (2019).

    Google Scholar

    [11] Zhang J, Fletcher JG, Harmsen WS et al. Analysis of heart rate and heart rate variation during cardiac CT examinations. Acad Radiol 15, 40–48 (2008). doi: 10.1016/j.acra.2007.07.023

    CrossRef Google Scholar

    [12] Meng KY, Xiao X, Wei WX et al. Wearable pressure sensors for pulse wave monitoring. Adv Mater 34, 2109357 (2022). doi: 10.1002/adma.202109357

    CrossRef Google Scholar

    [13] Mohapatra D, Byun JE, Ansari MZ et al. Layer engineered MXene empowered wearable pressure sensors for non‐invasive vital human–machine interfacing healthcare monitoring. Adv Mater Technol 8, 2301175 (2023). doi: 10.1002/admt.202301175

    CrossRef Google Scholar

    [14] Meng KY, Xiao X, Liu ZX et al. Kirigami‐inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv Mater 34, 2202478 (2022). doi: 10.1002/adma.202202478

    CrossRef Google Scholar

    [15] Xiang ZH, Han MD, Zhang HX. Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res 16, 3939–3955 (2023). doi: 10.1007/s12274-022-4551-8

    CrossRef Google Scholar

    [16] Han LY, Liang WJ, Xie QS et al. Health monitoring via heart, breath, and korotkoff sounds by wearable piezoelectret patches. Adv Sci 10, 2301180 (2023). doi: 10.1002/advs.202301180

    CrossRef Google Scholar

    [17] Shi X, Zuo Y, Zhai P et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). doi: 10.1038/s41586-021-03295-8

    CrossRef Google Scholar

    [18] Lee S, Franklin S, Hassani FA et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020). doi: 10.1126/science.abc9735

    CrossRef Google Scholar

    [19] Jiang YW, Zhang ZT, Wang YX et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022). doi: 10.1126/science.abj7564

    CrossRef Google Scholar

    [20] Wang DS, Li JP, Memik G. User identification based on finger-vein patterns for consumer electronics devices. IEEE Trans Consum Electron 56, 799–804 (2010). doi: 10.1109/TCE.2010.5506004

    CrossRef Google Scholar

    [21] Xu W, Liu SD, Yang JY et al. Self-powered flexible handwriting input panel with 1D output enabled by convolutional neural network. Nano Energy 101, 107557 (2022). doi: 10.1016/j.nanoen.2022.107557

    CrossRef Google Scholar

    [22] Maddirala G, Searle T, Wang X et al. Multifunctional skin-compliant wearable sensors for monitoring human condition applications. Appl Mater Today 26, 101361 (2022). doi: 10.1016/j.apmt.2021.101361

    CrossRef Google Scholar

    [23] Kireev D, Sel K, Ibrahim B et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat Nanotechnol 17, 864–870 (2022). doi: 10.1038/s41565-022-01145-w

    CrossRef Google Scholar

    [24] Li Z, Chen JX, Li LZ et al. Exceptional-point-enhanced sensing in an all-fiber bending sensor. Opto-Electron Adv 6, 230019 (2023). doi: 10.29026/oea.2023.230019

    CrossRef Google Scholar

    [25] Feng HG, Chen X, Zhu RZ et al. Seeing at a distance with multicore fibers. Opto-Electron Adv 7, 230202 (2024). doi: 10.29026/oea.2024.230202

    CrossRef Google Scholar

    [26] Liu HH, Hu DJJ, Sun QZ et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci 2, 220025 (2023). doi: 10.29026/oes.2023.220025

    CrossRef Google Scholar

    [27] Cai ZH, Li BZ, Bai ZY et al. Encrypted optical fiber tag based on encoded fiber Bragg grating array. Int J Extreme Manuf 5, 035502 (2023). doi: 10.1088/2631-7990/acd825

    CrossRef Google Scholar

    [28] Zhang L, Zhen YQ, Tong LM. Optical micro/nanofiber enabled tactile sensors and soft actuators: a review. Opto-Electron Sci 3, 240005 (2024). doi: 10.29026/oes.2024.240005

    CrossRef Google Scholar

    [29] Pan J, Wang Q, Gao SK et al. Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation. Opto-Electron Adv 6, 230076 (2023). doi: 10.29026/oea.2023.230076

    CrossRef Google Scholar

    [30] Jha R, Mishra P, Kumar S. Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens Bioelectron 254, 116232 (2024). doi: 10.1016/j.bios.2024.116232

    CrossRef Google Scholar

    [31] Min R, Hu XH, Pereira L et al. Polymer optical fiber for monitoring human physiological and body function: a comprehensive review on mechanisms, materials, and applications. Opt Laser Technol 147, 107626 (2022). doi: 10.1016/j.optlastec.2021.107626

    CrossRef Google Scholar

    [32] Guo JJ, Zhou BQ, Zong R et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl Mater Interfaces 11, 33589–33598 (2019). doi: 10.1021/acsami.9b09815

    CrossRef Google Scholar

    [33] Zhu HT, Luo JX, Dai Q et al. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group. Opto-Electron Adv 6, 230018 (2023). doi: 10.29026/oea.2023.230018

    CrossRef Google Scholar

    [34] Chen MH, He YC, Liang HH et al. Stretchable and strain-decoupled fluorescent optical fiber sensor for body temperature and movement monitoring. ACS Photonics 9, 1415–1424 (2022). doi: 10.1021/acsphotonics.2c00249

    CrossRef Google Scholar

    [35] Tan FZ, Lyu WM, Chen SY et al. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv 3, 190034 (2020). doi: 10.29026/oea.2020.190034

    CrossRef Google Scholar

    [36] Guo JJ, Niu MX, Yang CX. Highly flexible and stretchable optical strain sensing for human motion detection. Optica 4, 1285–1288 (2017). doi: 10.1364/OPTICA.4.001285

    CrossRef Google Scholar

    [37] Li LY, Liu YF, Song CY et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Adv Fiber Mater 4, 475–486 (2022). doi: 10.1007/s42765-021-00121-8

    CrossRef Google Scholar

    [38] Zhu HT, Zhan LW, Dai Q et al. Self‐assembled wavy optical microfiber for stretchable wearable sensor. Adv Opt Mater 9, 2002206 (2021). doi: 10.1002/adom.202002206

    CrossRef Google Scholar

    [39] Pang YN, Liu B, Liu J et al. Singlemode-multimode-singlemode optical fiber sensor for accurate blood pressure monitoring. J Light Technol 40, 4443–4450 (2022). doi: 10.1109/JLT.2022.3155194

    CrossRef Google Scholar

    [40] Li LY, Sheng SF, Liu YF et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. PhotoniX 4, 21 (2023). doi: 10.1186/s43074-023-00099-z

    CrossRef Google Scholar

    [41] Wang YK, Yu XL, Jiang CL et al. Micro-nano fiber flexible multimodal sensors for fingerprint recognition. IEEE Sens J 24, 4504–4509 (2024). doi: 10.1109/JSEN.2023.3347201

    CrossRef Google Scholar

    [42] Li JH, Chen L, Yan XP et al. Super-stretchable polymer optical fibers for robot finger posture and pressure recognition. J Light Technol (2024), doi: 10.1109/JLT.2024.3519531.

    Google Scholar

    [43] Wang Z, Chen ZY, Ma L et al. Optical microfiber intelligent sensor: wearable cardiorespiratory and behavior monitoring with a flexible wave-shaped polymer optical microfiber. ACS Appl Mater Interfaces 16, 8333–8345 (2024). doi: 10.1021/acsami.3c16165

    CrossRef Google Scholar

    [44] Kuang RF, Wang Z, Ma L et al. Smart photonic wristband for pulse wave monitoring. Opto-Electron Sci 3, 240009 (2024). doi: 10.29026/oes.2024.240009

    CrossRef Google Scholar

    [45] Leal-Junior A, Avellar L, Biazi V et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

    [46] Wang LL, Zhong C, Ke DN et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv Opt Mater 6, 1800427 (2018). doi: 10.1002/adom.201800427

    CrossRef Google Scholar

    [47] Zha BJ, Wang Z, Ma L et al. Intelligent wearable photonic sensing system for remote healthcare monitoring using stretchable elastomer optical fiber. IEEE Internet Things J 11, 17317–17329 (2024). doi: 10.1109/JIOT.2024.3356574

    CrossRef Google Scholar

    [48] Rendeiro R, Jargus J, Nedoma J et al. The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications. Opto-Electron Adv 7, 240133 (2024). doi: 10.29026/oea.2024.240133

    CrossRef Google Scholar

    [49] Jakubowski K, Huang CS, Boesel LF et al. Recent advances in photoluminescent polymer optical fibers. Curr Opin Solid State Mater Sci 25, 100912 (2021). doi: 10.1016/j.cossms.2021.100912

    CrossRef Google Scholar

    [50] Li TL, Wang QA, Su YF et al. AI-assisted disease monitoring using stretchable polymer-based sensors. ACS Appl Mater Interfaces 15, 30924–30934 (2023). doi: 10.1021/acsami.3c01970

    CrossRef Google Scholar

    [51] Fan XY, Huang Y, Ding XR et al. Alignment‐free liquid‐capsule pressure sensor for cardiovascular monitoring. Adv Funct Mater 28, 1805045 (2018). doi: 10.1002/adfm.201805045

    CrossRef Google Scholar

    [52] Fu Y, Zhao S, Wang LQ et al. A wearable sensor using structured silver‐particle reinforced PDMS for radial arterial pulse wave monitoring. Adv Healthc Mater 8, 1900633 (2019). doi: 10.1002/adhm.201900633

    CrossRef Google Scholar

    [53] Song ZQ, Li WY, Bao Y et al. Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv Electron Mater 4, 1800252 (2018). doi: 10.1002/aelm.201800252

    CrossRef Google Scholar

    [54] Li YJ, Wang ZL, Zhang L et al. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Australas Phys Eng Sci Med 37, 367–376 (2014). doi: 10.1007/s13246-014-0269-6

    CrossRef Google Scholar

    [55] Ding M, Zhou H, Xie H et al. A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting. Neurocomputing 365, 54–61 (2019). doi: 10.1016/j.neucom.2019.07.058

    CrossRef Google Scholar

    [56] Wang YS, Xia ST, Tang QT et al. Novel consistent random forest framework: Bernoulli random forests. IEEE Trans Neural Netw Learn Syst 29, 3510–3523 (2018). doi: 10.1109/TNNLS.2017.2729778

    CrossRef Google Scholar

    [57] Liu YC, Li HY, Liang XP et al. Speech recognition using intelligent piezoresistive sensor based on polystyrene sphere microstructures. Adv Intell Syst 5, 2200427 (2023). doi: 10.1002/aisy.202200427

    CrossRef Google Scholar

    [58] Yu ZC, Xu JH, Gong HX et al. Bioinspired self-powered piezoresistive sensors for simultaneous monitoring of human health and outdoor UV light intensity. ACS Appl Mater Interfaces 14, 5101–5111 (2022). doi: 10.1021/acsami.1c23604

    CrossRef Google Scholar

    [59] Mizuno R, Fujimoto S, Nakano H et al. Atrial conduction abnormalities in patients with systemic progressive sclerosis. Eur Heart J 18, 1995–2001 (1997). doi: 10.1093/oxfordjournals.eurheartj.a015211

    CrossRef Google Scholar

    [60] Mejía-Mejía E, May JM, Elgendi M et al. Differential effects of the blood pressure state on pulse rate variability and heart rate variability in critically ill patients. Npj Digit Med 4, 82 (2021). doi: 10.1038/s41746-021-00447-y

    CrossRef Google Scholar

    [61] Favilla R, Zuccalà VC, Coppini G. Heart rate and heart rate variability from single-channel video and ICA integration of multiple signals. IEEE J Biomed Health Inform 23, 2398–2408 (2019). doi: 10.1109/JBHI.2018.2880097

    CrossRef Google Scholar

    [62] Peetermans M, Guler I, Meersseman P et al. Impact of BMI on outcomes in respiratory ECMO: an ELSO registry study. Intensive Care Med 49, 37–49 (2023). doi: 10.1007/s00134-022-06926-4

    CrossRef Google Scholar

    [63] Boehmer J, Mark G, Wen GZ et al. Impact of body mass index on device measured diagnostic sensor measurements in ambulatory heart failure patients. J Card Fail 24, S128–S129 (2018).

    Google Scholar

    [64] Guo X, Wang Y, Zhou NW et al. Optimal weighted two-sample t-test with partially paired data in a unified framework. J Appl Stat 48, 961–976 (2021). doi: 10.1080/02664763.2020.1753027

    CrossRef Google Scholar

    [65] Dominelli PB, Archiza B, Ramsook AH et al. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp Physiol 102, 1535–1547 (2017). doi: 10.1113/EP086566

    CrossRef Google Scholar

    [66] Chan PY, Ryan NP, Chen D et al. Novel wearable and contactless heart rate, respiratory rate, and oxygen saturation monitoring devices: a systematic review and meta‐analysis. Anaesthesia 77, 1268–1280 (2022). doi: 10.1111/anae.15834

    CrossRef Google Scholar

    [67] Luo H, Yang DY, Barszczyk A et al. Smartphone-based blood pressure measurement using transdermal optical imaging technology. Circ Cardiovasc Imaging 12, e008857 (2019). doi: 10.1161/CIRCIMAGING.119.008857

    CrossRef Google Scholar

    [68] Hermányi Z, Pokoly B, Visolyi G et al. Evaluation of meditech ABPM-06 ambulatory blood pressure measuring device, according to the European Society of Hypertension, the British Hypertension Society and the International Organization for Standardization protocol. Blood Press Monit 24, 208–211 (2019). doi: 10.1097/MBP.0000000000000385

    CrossRef Google Scholar

    [69] Debray A, Ravanelli N, Chenette-Stewart O et al. Effect of exercise training on blood pressure in healthy postmenopausal females: a systematic review with meta-analysis. Med Sci Sports Exerc 55, 1317–1325 (2023). doi: 10.1249/MSS.0000000000003142

    CrossRef Google Scholar

  • Supplementary information for Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint