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Wearable photonic smart wristband for
cardiorespiratory function assessment and
biometric identification
Wenbo Li1,2†, Yukun Long2,3†, Yingyin Yan4, Kun Xiao4, Zhuo Wang4,
Di Zheng1*, Arnaldo Leal-Junior5,6, Santosh Kumar7, Beatriz Ortega8,
Carlos Marques9,10, Xiaoli Li2,3,11 and Rui Min2,3,11*

Personalized  health  services  are  of  paramount  importance  for  the  treatment  and  prevention  of  cardiorespiratory  dis-
eases, such as hypertension. The assessment of cardiorespiratory function and biometric identification (ID) is crucial for
the effectiveness of  such personalized health  services.  To effectively  and accurately  monitor  pulse wave signals,  thus
achieving  the  assessment  of  cardiorespiratory  function,  a  wearable  photonic  smart  wristband based on an all-polymer
sensing unit (All-PSU) is proposed. The smart wristband enables the assessment of cardiorespiratory function by contin-
uously monitoring respiratory rate (RR), heart rate (HR), and blood pressure (BP). Furthermore, it can be utilized for bio-
metric ID purposes. Through the analysis of pulse wave signals using power spectral density (PSD), accurate monitoring
of RR and HR is achieved. Additionally, utilizing peak detection algorithms for feature extraction from pulse signals and
subsequently employing a variety of machine learning methods, accurate BP monitoring and biometric ID have been re-
alized. For biometric ID, the accuracy rate is 98.55%. Aiming to monitor RR, HR, BP, and ID, our solution demonstrates
advantages in integration, functionality,  and monitoring precision. These enhancements may contribute to the develop-
ment of personalized health services aimed at the treatment and prevention of cardiorespiratory diseases.

Keywords: personalized health services; all-polymer sensing unit; respiratory rate; heart rate; blood pressure; biometric
ID; cardiorespiratory diseases
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Introduction
Cardiorespiratory  function  assessment  and  biometric
identification (ID)  contribute  to  the  assessment  of  indi-
vidual respiratory and cardiac diseases to achieve person-
al health management1,2. Respiratory diseases such as dif-
ferent  types  of  influenza3,  pneumonia4,  and  sleep  apnea
syndrome5 and cardiac diseases such as high blood pres-
sure6,  coronary heart  disease7,  and heart  attack8 also oc-
cur  frequently  in  our  lives.  It  is  crucial  to  detect,  diag-
nose,  and  intervene  early  with  respiratory  and  cardiac
disorders  by  monitoring  cardiorespiratory  function  for
personalized  health  assessment  and  significantly  reduc-
ing the risk of mortality related to these diseases.  Tradi-
tional  methods  of  monitoring  cardiorespiratory  func-
tion  typically  require  specialized  and  bulky  types  of
equipment  such  as  cardiac  ultrasound  machines9,  elec-
trocardiographs10,  and  CT  examinations11.  Normally,
these approaches require patients to visit healthcare facil-
ities,  that  cannot  accurately  identify  personal  informa-
tion,  and  record  the  historical  information,  leading  to
difficulties  in  prompt  diagnosis  and  accurate  treatment.
With the advancement of modern society and the grow-
ing need for personalized medicine, the demand for real-
time, accurate, and portable smart health monitoring de-
vices for biometric ID and cardiorespiratory function as-
sessment is increasing significantly12−16.

In  recent  years,  there  has  been  rapid  development  in
flexible electronic devices combined with artificial intelli-
gence (AI) for biometric ID and cardiorespiratory func-
tion assessment, to drive advances for the diagnosis and
precision treatment of individual respiratory and cardiac
diseases17−20.  Xu  et  al.  presented  self-powered  flexible
electronic devices with 1D output for multifunctional in-
put detection, and its functions including letter recogni-
tion,  biometric  ID,  and  digit  pattern  detection.  This  re-
search  constructed  a  1D  convolutional  neural  network
with ID recognition accuracy of 96.3%21. Maddirala et al.
reported flexible  and skin-compliant  capacitive  pressure
devices  with  high  sensitivity,  introducing  air  chambers
into elastomeric polydimethylsiloxane (PDMS) substrate
to  successfully  monitor  cardiorespiratory  function22.
Kireev et al. proposed a wearable continuous blood pres-
sure (BP) monitoring platform based on flexible  electri-
cal  bioimpedance  devices  and  utilized  atomically  thin,
self-adhesive,  lightweight,  and  unobtrusive  graphene
electronic tattoos as a bioelectronic interface for the hu-
man body to monitor arterial BP23.

Although flexible electronic devices have made signifi-
cant  advancements  in  recent  years,  traditional  flexible
electrical devices often encounter difficulties when oper-
ating in specific scenarios. These devices can be suscepti-
ble  to  electromagnetic  field  interference  and  lack  suffi-
cient resistance to electrochemical corrosion. In contrast,
optical  fiber  sensors  have  shown  superior  performance
in  such  specific  scenarios,  owing  to  their  immunity  to
electromagnetic  interference  and  resistance  to  electro-
chemical  corrosion24,25.  Furthermore,  optical  fiber  sen-
sors possess several other advantages in different applica-
tions26−28, including high sensitivity, electrical safety, flex-
ibility,  rapid response time,  and biocompatibility29.  Ow-
ing to the aforementioned advantages,  optical  fiber  sen-
sors are promising for applications in the monitoring of
cardiorespiratory function and biometric ID30−35.  Guo et
al. developed a novel sensor featuring a multimode silica
optical  fiber-stretchable  optical  fiber-multimode  silica
optical  fiber  structure.  This  sensor,  utilizing  the  Beer-
Lambert  Law  as  its  sensing  principle,  successfully
achieved precise human motion detection36.  Li  et  al.  de-
veloped  a  wearable  optical  fiber  sensor  that  integrates  a
U-shaped  micro-nano  optical  fiber  with  a  flexible  soft
liquid sac, enabling precise monitoring of human physi-
ological  signals,  including  pulse  signals  and  respiration
rates37.  Zhu  et  al.  developed  a  stretchable  and  ultrathin
optical  fiber  sensor,  featuring  wavy  ultrafine  optical
fibers  embedded  within  ultra-thin  PDMS  films,  thereby
enabling the creation of a flexible sensor for monitoring
cardiorespiratory functions38. Pang et al. presented a du-
al-channel  single-mode-multimode-single-mode  (SMS)
optical fiber sensor, enclosed in PDMS, which is capable
of  simultaneously  monitoring  brachial  and  radial  arter-
ies for the accurate prediction of BP39. Additionally, Li et
al. designed a smartwatch integrated with an optical fiber
sensor,  utilizing  a  polyethylene  (PE)  tube,  an  air  core,
and  two  multimode  silica  optical  fibers  (MMF)  to  pro-
vide  continuous  and  precise  BP  monitoring40.  Wang  et
al.  introduced  an  optical  micro-nano  fiber  (MNF)  sen-
sor  designed  for  biometric  ID,  which  operates  through
the concurrent measurement of fingerprint signals.  This
sensor  demonstrated  the  ability  to  recognize  400  sets  of
fingerprint  data  with  an  accuracy  of  95.75%41.  In  addi-
tion  to  these  sensors  utilizing  silica  optical  fibers,  other
proposals  employ  polymer  optical  fibers  (POF),  such  as
Li et al. developed stretchable optical waveguides by inte-
grating elastomers of  varying refractive indices into sin-
gle  fibers,  enabling  applications  in  robot  finger  posture
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and  pressure  sensing42.  Wang  et  al.,  who  developed  a
novel  wearable  optical  microfiber  intelligent  sensor
based  on  a  wave-shaped  polymer  optical  microfiber
(WPOMF)  for  enhanced  cardiorespiratory  and  behav-
ioral monitoring, demonstrating high sensitivity,  stabili-
ty,  and  the  potential  for  integration  with  AI  technology
for  applications  in  medical  rehabilitation,  health  moni-
toring,  and  the  Internet  of  Things43.  Kuang  et  al.  devel-
oped a smart photonic wristband that incorporates POF
into  a  sports  wristband.  This  device  achieved  a  pulse
wave measurement error of 3.7% and successfully recog-
nized gestures with an accuracy of 95%44.

While these optical fiber sensors demonstrate impres-
sive performance, there remains significant room for en-
hancement.  The  majority  of  contemporary  optical  fiber
sensors are fabricated using silica optical fibers or POFs.
Silica optical fiber sensors, in contrast to their POF coun-
terparts,  exhibit  limitations  in  adaptability  and  biocom-
patibility,  which consequently  restrict  their  scope of  ap-
plication45.  Furthermore,  damaged  silica  optical  fibers
may  pose  a  potential  harm  to  human  tissue46,  raising
concerns  about  user  safety,  particularly  during  pro-
longed  usage.  Regarding  POF  sensors,  although  they
possess  acceptable  transmission  performance,  their  per-
formance under strain is often suboptimal47. In contrast,
extensible  POFs  demonstrate  favorable  strain  tolerance
and  polymers  doped  with  solid  crystalline  compounds
like  phosphors  can  open  a  large  number  of
applications48.  However,  their  transmission loss  remains
unsatisfactory49. Additionally, many of the existing stud-
ies  lack  comprehensive  functionality  and  integration.
The  development  of  a  device  capable  of  simultaneously
delivering  long-term,  real-time  cardiorespiratory  func-
tion assessment and biometric ID would significantly ad-
vance  its  applicability  in  the  realm  of  personalized
healthcare services.

Targeting all these existing problems, in this work, we
propose and experimentally evaluate a wearable photon-
ic smart wristband with the capability of cardiorespirato-
ry function assessment and biometric ID. The core sens-
ing  unit  of  the  smart  wristband  consists  of  POFs  and  a
Solaris  polymer  optical  fiber  (SPOF),  forming  a  POF-
SPOF-POF (PSP) structure.  The smart  wristband incor-
porates a PSP, Dragon Skin 10 covers (DSCs), and a glyc-
erol-filled  capsule,  all  contributing  to  the  all-polymer
sensing  unit  (ALL-PSU).  This  all-polymer  designed and
integrated sensor manufacturing method merges the ac-
ceptable  transmission  loss  of  POFs  with  the  favorable

strain  tolerance  of  extensible  materials,  ensuring  ultra-
fast response and recovery times of 6 ms and 12 ms, re-
spectively. The wristband exhibits outstanding long-term
stability  and  durability,  maintaining  exceptional  perfor-
mance  under  diverse  conditions,  including  bending,
stretching,  and  repetitive  strain  over  1000  cycles,  along
with  effective  waterproofing  and  minimal  positional
drift,  ensuring  reproducibility  regardless  of  the  wrist-
band’s  position  on  the  wrist.  Upon  acquiring  precise
pulse  wave  signals,  the  power  spectral  density  (PSD)
analysis  method  is  employed  to  estimate  RR  and  HR
with  high  accuracy.  Distinct  features  of  the  pulse  wave
signals  are  extracted  and  used  as  inputs  for  machine
learning  models,  including  gated  recurrent  unit  (GRU)
neural networks and random forest (RF) algorithms, for
BP estimation and biometric ID, respectively. The smart
wristband demonstrated robust performance across vari-
ous  application  scenarios,  including  different  physical
activities such as squatting, burpees, and high-knee exer-
cises, as well as among subjects with different body mass
index (BMI) profiles while offering continuous and real-
time  monitoring  capabilities.  This  wearable  photonic
smart  wristband  not  only  allows  for  precise  estimations
of RR, HR, and BP but also demonstrates significant ca-
pability for biometric ID, highlighting its applicability in
personal health services aimed at the treatment and pre-
vention of cardiorespiratory diseases. 

Methodology
 

Schematic of the smart wristband
The functional  architecture of  the smart  wristband is  il-
lustrated  in Fig. 1,  encompassing  five  primary  compo-
nents: the sensing unit, signal acquisition, signal prepro-
cessing,  machine  learning  analysis,  and  PSD  analysis.
The  ALL-PSU  was  designed  to  detect  the  vibrations  in-
duced by alteration in arterial blood flow within the radi-
al artery, with the sensed signals transmitted to a PC. The
PC  was  equipped  with  data  processing  algorithms,  fea-
ture  extraction  techniques,  and  neural  networks  to  en-
able  accurate  monitoring  of  HR,  RR,  BP,  and  ID.  The
monitoring  results  were  transmitted  wirelessly  in  real
time  back  to  the  smart  wristband  and  displayed  on  the
screen.  Additionally,  the  data  were  wirelessly  sent  to  a
customized mobile app on a cell phone, allowing for re-
al-time and continuous monitoring in daily life.  Specifi-
cally,  with  the  objective  of  obtaining  high-quality  pulse
wave signals, wavelet analysis is employed to analyze the
original  signals  during  the  signal  acquisition  phase.
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Following the initial signal acquisition, the signals under-
go  preprocessing,  involving  the  application  of  a  band-
pass filtering algorithm to purify the acquired signals, re-
sulting in the extraction of clean pulse wave signals. Ad-
ditionally, a peak-seeking algorithm is applied to extract
the RR and HR signals from the pulse wave signals. The
machine learning analysis component is focused on bio-
metric  ID and BP estimation.  Utilizing  features  extract-
ed from the pulse wave signals,  the RF and GRU neural
network models are employed to achieve precise biomet-
ric ID and BP estimation, respectively. The effectiveness
of  the  machine  learning  analysis  component  has  been
demonstrated through its  accurate  ID of  subjects  across
different  BMI  categories  and  precise  monitoring  of  BP
after  various  activities,  including  relaxation,  squatting,
and  burpee  jumping.  Through  the  utilization  of  fast
fourier  transform  (FFT)  techniques  to  extract  the  fre-
quencies of RR and HR from the signals and enable pre-
cise calculation of RR and HR parameters,  PSD analysis
facilitates  continuous  surveillance  of  cardiorespiratory
function.  This  method  demonstrates  robust  perfor-
mance across a spectrum of physical activities, including
squats,  burpee  jumps,  and high  knees.  The  smart  wrist-
band  is  equipped  with  a  display  interface  for  real-time
presentation of  ID,  BP,  RR,  and HR information.  Addi-
tionally, it is capable of transmitting data to a computing
platform,  allowing  healthcare  professionals  to  analyze
the collected physiological information and provide per-
sonalized health services to the users. 

Design and fabrication of the All-PSU
To monitor pulse wave signals, a PSP fiber adapter utiliz-
ing  a  polyurethane  elastomer  known  as  Solaris,  notable
for its high refraction (refer to Table S1), has been devel-
oped. This elastomer is  injected into a silicone tube (in-
ner diameter 300 μm) of specific  dimensions to create a
sensing zone characterized by high elasticity and chemi-
cal  stability.  Following  this,  the  Solaris-filled  silicone
tube is integrated with two POFs which with an inner di-
ameter of 250 μm, as the PSP fiber adapter. This designa-
tion enhances optical coupling and enables the PSP fiber
adapter's integration into wearable devices. The PSP fiber
adapter is depicted in Fig. 2(a), where the light transmis-
sion  process  is  also  depicted  through  the  POF,  passes
through  the  Solaris-filled  silicone  tube,  and  finally
emerges  from  the  opposite  end.  Leveraging  the  princi-
ples  of  the  Beer-Lambert  law50,  the  PSP  fiber  adapter  is
engineered  to  identify  variations  in  strain  through  the
modulation of light intensity loss.  When the light trans-
mits  through  the  Solaris-filled  silicone  tube,  the  reduc-
tion in light intensity can be calculated by: 

A = log10

(
I0
I

)
= εlc , (1)

A I0 I
ε l

c
ε c

A l

where  is the absorbance,  is the initial intensity,  is
the transmitted intensity,  is the molar absorptivity,  is
the length of the light path and  is the concentration of
the solution of the Solaris. Since the parameters  and 
remain constant,  and is directly proportional to .

The shape of the silicone tube will change due to pres-
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preprocessing

PSD
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Heart rate

Blood pressure
Respiratory rate

Biometric
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Fig. 1 | Functional architecture of the proposed wristband, including mainly five primary components: the ALL-PSU sensing unit, signal extraction

and preprocessing, machine learning models, and PSD analysis.
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Δl
sure,  bending  and  strain.  Consequently,  the  length  of
light path will also be affected. Assume  represents the
variation in the length of the light path, the correspond-
ing change in absorbance can be calculated using the fol-
lowing equation:
 

ΔA = log10

(
I

I− ΔI

)
= εΔlc , (2)

ΔA ΔI

P = IS P (mW) S

where  is the variation of the absorbance and  is the
variation of  the  intensity.  To facilitate  the  measurement
of light intensity, a light power meter is utilized in the ex-
periments. Since the power of light can be calculated by:

 (Where  is the light power,  is the area),

the power level (decibel relative to one milliwatt) can be
calculated by 

x = 10 · log10

(
P

1 mW

)
, (3)

x (dBm) P ∝ I log10I
l x

l

where  is  power  level. ，  has  linear
relationship with  (according to Eq. (1)), therefore  has
linear  relationship with ,  as  illustrated by the  following
equations 

− 1
10
x+ log10

(
I0S
1 mw

)
= εlc , (4)

 

x = −10
(
εlc− log10

P0

1 mw

)
, (5)
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Fig. 2 | (a)  The  conceptual  figure  of  the  PSP  fiber  adapter.  (b)  Pressure  simulation  (left)  alongside  the  actual  configuration  of  the  PSP  fiber

adapter (right), demonstrating the adapter's response to pressure. (c) Exploded schematic of the practical All-PSU, including 3D molds, DSCs,

PSP fiber adapter, and a glycerol-filled capsule. (d) Structural diagram of the All-PSU, the entire process of All-PSU is divided into three parts:

the PSP fiber adapter fabrication, the PSP-DSC and liquid capsule base fabrication, and the All-PSU construction and coating.
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x = −10εlc+ x0 , (6)
P0 (mw)

x0 (dBm)

x

Δx = −10εΔlc

where  represents  the  initial  light  power,
 represents the initial power level. Consequent-

ly, when a variation occurs in the length of the light path,
the  variation  in  is  directly  proportional  to  the  varia-
tion in the length of  light  path,  which can be illustrated
as: .

Δx = −10εΔlc+ α(Δl) α(Δl)

This conclusion represents the sensing principle of the
PSP fiber adapter, enabling it to detect vibrations caused
by  the  human  wrist  pulse.  However,  considering  real-
world sensing scenarios, external forces can also deform
the  geometry  of  connection  joints  of  POF  and  stretch-
able  optical  fiber,  as  shown  in Fig. 2(b),  causing  light
coupling  loss  at  these  points.  This  phenomenon  affects
the linear relationship between changes in the light path
length and the resulting light power loss, which can be il-
lustrated  as: ,  where  repre-
sents the light power loss at the connection parts. Guo et
al.  employed  the  dual-wavelength  difference  method  to
mitigate the effect of light coupling loss36. In our work, to
address the same issue, a different approach is employed,
which  an  "ear-type"  structure  was  designed  to  enhance
the  durability  of  the  connection  joints,  thereby  signifi-
cantly  reducing  light  coupling  loss  at  these  joints.  This
design  can  effectively  eliminate  the  light  coupling  loss
and has been proved by the experimentation, which will
be detailed in the characterization testing section.

The  PSP  structure,  which  features  an  all-polymer
structure  with  high  integration  and  inspired  by  several
representative existing works in this area36,40. Inspired by
the  work  of  Guo  et  al.,  our  sensor  choosing  the  Beer-
Lambert  Law  as  our  sensing  principle  due  to  its  highly
linear  relationship  between  external  forces  causing
changes in the length of the light path and the resulting
light  power  loss.  To  achieve  this,  the  Solaris  was  em-
ployed as the macroscopically homogeneous medium to
absorb  light.  As  demonstrated  in Table  S1,  Solaris  was
selected for its superior stretchability compared to other
materials.  Inspired by the work of Li et al.,  we utilized a
silicone tube as the encapsulation structure of the Solaris
materials. As shown in Table S2, silicone was selected for
its  superior stretchability  compared to tubes made from
other  materials.  Consequently,  the  SPOF  in  our  sensor
comprises  a  silicone  tube  filled  with  Solaris  material,
with  POFs  employed  to  transmit  the  input  and  output
beams.  As  aforementioned,  an  "ear-type"  structure  was
designed  to  enhance  the  durability  of  the  connection

joints  of  this  SPOF  and  the  POFs,  thereby  significantly
reducing  light  coupling  loss  at  these  joints.  Liquid  cap-
sule bases are widely used in both electronic and optical
sensors  due  to  their  ability  to  expand  the  sensing  zone
based  on  Pascal's  Principle51.  Consequently,  our  sensor
incorporates a glycerol-filled capsule base to leverage this
advantage.  The  actual  configuration  of  the  PSP  fiber
adapter  is  also  depicted  in Fig. 2(b),  illustrating  its  re-
sponse to pressure, including the resulting strain and re-
laxation. The exploded schematic of the All-PSU is visu-
ally detailed in Fig. 2(c). This unit is designed using two
3D-printed  molds,  dual  DSCs,  a  precision-engineered
PSP fiber adapter, and a glycerol-filled capsule. The com-
bination of  these components  enables  the precise  detec-
tion  of  subtle  skin  surface  strain,  with  the  PSP  fiber
adapter  playing  a  pivotal  role  in  this  function.  Aside
from  the  PSP  fiber  adapter,  the  other  components  also
play  significant  roles  in  the  All-PSU.  The  meticulously
designed  3D-printed  molds  serve  a  dual  purpose:  they
not only provide structural integrity but also protect the
All-PSU  from  any  mechanical  disturbance  caused  by
wrist  movements,  ensuring  the  sensitivity  of  All-PSU
and  the  accuracy  of  extracting  pulse  wave  signals.  The
DSCs  were  designed  using  Dragon  Skin  10  for  its
Young's  modulus,  which  closely  resembles  that  of  hu-
man  tissue,  ensuring  excellent  biocompatibility.  As  for
the glycerol-filled capsule, it is strategically positioned to
extend through a central aperture in the 3D mold, mak-
ing direct contact with the skin. This design allows a sin-
gle  liquid  capsule  to  span 2–3 adjacent  tendons,  enlarg-
ing  the  effective  sensing  area  and  minimizing  crosstalk,
which  results  in  high-fidelity  acquisition  of  pulse  wave
signals.

The  fabrication  of  the  All-PSU,  as  depicted  in Fig.
2(d),  involves  a  series  of  precise  steps.  Initially,  an  inte-
grated preparation process was employed to fabricate the
PSP  structure,  ensuring  the  consistent  performance  of
our  sensors.  Two POFs  are  meticulously  polished  using
grinding  sandpaper  to  attain  flat  end  faces,  after  which
components  Solaris  A and B are  blended,  followed by  a
15 minute degassing process, and the degassed precursor
solution  is  then  injected  into  a  siliconetube.  The  POFs
are then inserted into the tube containing the precursor
solution to assemble the PSP fiber adapter. Following the
assembly  procedure  outlined  above,  the  PSP  fiber
adapter undergoes a 2 hour curing process within a tem-
perature-regulated heating platform maintained at 80 °C,
thereby finalizing its fabrication. To enhance the stability
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of the PSP fiber adapter, ultraviolet glue is applied to seal
the  connection  between  the  POFs  and  the  tube.  Subse-
quent to this, the PSP fiber adapter is encased with DSC,
each  500  μm thick,  to  form the  PSP-DSC.  For  the  glyc-
erol-filled capsule,  equal  parts  of  Dragon Skin 10 A and
B are  mixed,  degassed  for  15  minutes,  and  then  poured
into a custom mold. After curing at 60 °C for 2 hours, the
base  is  demolding  and  filled  with  glycerol, a  chemically
stable and non-toxic material.  Finally,  the glycerol-filled
capsule and the PSP-DSC are meticulously sealed togeth-
er  using  a  high-strength  epoxy adhesive,  culminating  in
the formation of the All-PSU. This sealing technique not
only ensures a robust and waterproof bond but also pre-
serves the integral sensitivity of the All-PSU. 

Signals extraction and processing
During  a  ventricular  beat,  the  heart  undergoes  constant
contraction and relaxation, which causes the walls of the
aortic  vessels  to  dilate  and  contract.  This  periodic  in-
crease  and  decrease  in  blood  volume  creates  waves  of
pressure changes that are transmitted as pulse wave sig-
nals52,53. The characteristics of pulse wave signals such as
shape, period, peak, and waveform are closely related to
the  level  of  cardiorespiratory  fitness54.  When  pathologi-
cal  changes  occur,  the  shape  of  the  pulse  wave  signals
changes,  which  means  the  features  embedded  within
these signals contain a wealth of physiological and patho-
logical  information.  Obtaining  clean  and  accurate  pulse
wave signals  is  therefore a  critical  prerequisite  for  effec-
tively  extracting  these  informative  features.  Moreover,
acquiring  clean  and  accurate  signals  is  critical  for  suc-
cessful  cardiorespiratory  function  assessment,  including
the monitoring of RR and HR. Given the importance of
these  clean  and  accurate  signals,  signals  preprocessing
represents a crucial first step in the overall process of sig-
nals  extraction  and  processing.  The  methods  illustrated
in Fig. 3(a) were  utilized  to  extract  clean  and  accurate
pulse wave signals, as well as respiratory signals. To miti-
gate the high-frequency noise and baseline drift inherent
in  the  raw  signals,  multi-scale  wavelet  decomposition
was  employed.  Following  this  noise  reduction  step,  the
raw signals  undergo further  refinement  through the  ap-
plication  of  bandpass  filters.  These  filters  are  aimed  at
separating  the  respiratory,  spanning  0.15–0.6  Hz,  and
pulse wave signals, spanning 0.6–3.0 Hz. Such signal pre-
processing lays a solid foundation for enhancing the pre-
cision and reliability of estimations for RR, HR, BP, and
biometric  ID.  The  PSD  analysis  method,  which  plays  a

pivotal  role  in  signal  processing,  particularly  within  the
field of physiological information analysis,  has been uti-
lized in our study to facilitate the accurate monitoring of
RR  and  HR.  The  fast  fourier  transform  (FFT)  is  em-
ployed  as  the  fundamental  method  underlying  the  PSD
analysis  to  accurately  determine  the  frequency  compo-
nents present in the preprocessed RR and HR signals, re-
spectively.  Based  on  the  dominant  frequency  compo-
nents identified through the FFT algorithm, the underly-
ing  physiological  frequencies  of  the  RR  and  HR  can  be
determined  from  the  largest  frequency  peaks  present  in
the respective signals. Based on these frequencies, the re-
spective  RR  (breaths  per  minute,  breaths/min)  and  HR
(beats  per  minute,  bpm)  values  can  be  calculated  as
follows: 

HR =
60

1/fHR
, (7)

 

RR =
60
1/fRR

, (8)

fHR (Hz) fRR (Hz)where  is the frequency of HR and  is the
frequency of RR.

The PSD analysis method described above is illustrat-
ed  in Fig. 3(b).  As  explained  above,  the  pulse  wave  sig-
nals  contain  a  wealth  of  physiological  and  pathological
information embedded within their  features.  More  con-
cretely,  as  illustrated  in Fig. 3(c),  seven  distinct  features
have  been  successfully  identified  and  extracted  from
pulse  wave  signals,  with  the  aim  of  estimating  BP  and
biometric  ID.  For  a  comprehensive  understanding  of
these  features,  including  their  definitions  and  interrela-
tions, please refer to Table S3.

Focusing on the BP estimation, the pulse wave signals
constitute  a  one-dimensional  time  series  with  inherent
backward and forward temporal correlations. To adeptly
navigate  this  complexity,  a  GRU network is  introduced,
which is  renowned for its  efficacy in the regression pre-
diction  of  ordered  long  sequences.  The  GRU  network
has the capability to address long-standing issues and en-
hance  global  memory  control  through  its  gating  struc-
ture  updating  mechanism55.  As  illustrated  in Fig. 3(d),
the  GRU  model  architecture  comprises  several  GRU
memory  blocks  that  share  parameters,  as  well  as  fully
connected  layers  which  provide  the  BP  output  values.
Thus,  seven  distinct  features  extracted  from  the  pulse
wave signals, as described previously, serve as the inputs
to  the  model,  while  the  outputs  correspond  to  the  pre-
dicted  SBP  and  DBP.  During  the  training  phase,  the
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predicted SBP and DBP values are compared against the
actual  ground  truth  measurements  by  calculating  a  loss
function, which is then backpropagated through the net-
work  to  optimize  the  model  parameters.  The  perfor-
mance of the trained GRU model is subsequently evalu-
ated in the testing phase by comparing the predicted SBP
and DBP to the measured values.

With  regard  to  finding  the  biometric  ID,  the  selected
RF algorithm is based on multiple decision trees that op-
erate independently, a characteristic that significantly re-
duces the risk of model overfitting. This attribute makes
RF  particularly  effective  for  classification-based  predic-
tive tasks. A notable advantage of employing the RF ap-
proach  is  its  ability  to  handle  a  multitude  of  input  fea-
tures  within  the  data  without  necessitating  manual  fea-
ture selection56. In our study, the input features provided

to the RF model are the same seven distinct features ex-
tracted from the pulse wave signals, analogous to the in-
puts  of  the  GRU  model  described  previously.  The  RF
model itself consists of 500 decision trees specifically de-
signed for  biometric  ID.  The final  prediction results  are
aggregated  from  the  outcomes  of  each  individual  tree,
ensuring a robust and reliable biometric ID process, as il-
lustrated in Fig. 3(e).  However, the details of the experi-
mental procedures and the RR, HR, BP and biometric ID
results will be presented in the next sections.
 

Results and discussion
 

Characterization testing
To assess the performance of both the PSP-DSC and All-
PSU, a series of experiments were conducted as depicted
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in Fig. 4(a),  utilizing  a  Super-Luminescent  Diode  (PER-
LUM, SLD-Mcs-371-HP2-SM) as the light source and ei-
ther  an  optical  power  meter  (Thorlabs  PM100D)  or  a
spectrometer  (THORLABS' CCS175)  for  signal  recep-
tion.  PSP-DSC  was  systematically  positioned  on  a  pres-
sure  platform (HPA,  NK-500),  and pressure  increments
of 10 N within the range of 0–100 N were applied using a
gauge-controlled  probe  (Edingburgh  HP-500),  enabling
the  observation  of  a  correlation  between  light  loss  and
pressure  escalation.  This  experiment  was  conducted
three  times,  and  the  results  are  presented  in Fig. 4(b).
Both the pressure levels and the corresponding transmit-

ted  light  power  intensities  were  meticulously  recorded.
The line  plot  illustrates  the  mean value  of  the  transmit-
ted  light  power  derived  from  the  three  repeated  experi-
ments, while the gray area surrounding the line plot rep-
resents the data distribution across these trials (This ap-
plies  similarly  to Fig. 4(d) and 4(f),  which  illustrated
bending and stretching experiments respectively). As de-
picted  in Fig. 4(b),  a  linear  relationship  between  force
and transmitted light  power  is  observed.  This  finding is
consistency  to  the  afore  mentioned  sensing  principle  of
the PSP adapter (refer to Eq. (7) in the Design and Fabri-
cation  of  the  All-PSU  section  of  this  article),  exhibiting
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an R2 of 0.996 within the range of 0–100 N. The pressure
sensitivity  within  this  interval  is  calculated  to  be −0.279
dBm/N.  Additionally,  three  PSP-DSCs  were  fabricated
using  the  same  methodology  and  subjected  to  identical
pressure  conditions.  The  results,  depicted  in Fig. 4(c),
demonstrated  consistent  pressure  performance,  with  a
maximum  deviation  of  1.51  dBm  in  transmitted  light
power and closely matching R2 under similar conditions.

In our continued exploration, further experiments fo-
cusing on the bending sensitivities of the PSP-DSC were
conducted. Initially, we manually bent the PSP-DSC on a
platform, starting at a 0–90 degree angle and then incre-
mentally increasing the angle by 10 degrees process, uti-
lizing a protractor for accurate angle measurements. This
experiment was also conducted three times. These exper-
imental results, as depicted in Fig. 4(d), reveal a decrease
in  the  transmitted  light  power  of  the  PSP-DSC with  in-
creasing  bending  angles.  Within  the  bending  range  of
0–90 degrees, the R2 was observed to be 0.997, indicating
a  distinct  bending  sensitivity  of −0.228  dBm/°.  A  linear
relationship  between  pressure  and  transmitted  light
power is observed. This finding is also consistency to the
aforementioned  sensing  principle  of  the  PSP  adapter.
Similar  to  the  pressure  condition  experiment,  the  three
aforementioned PSP-DSC samples  were  bent  within the
same  range  of  0–90  degrees. Figure 4(e) shows  the  re-
sults,  indicating  consistent  performance  with  a  maxi-
mum  deviation  of  1.55  dBm  and  closely  matching R2.
Subsequently,  the PSP-DSC's  response in stretching was
examined.  For  the  three  repeated  trials  in  this  test,  the
PSP-DSC  was  positioned  on  stepper  motors
(LPTA01200B  LAIPER),  which  systematically  stretched
it  to  50%  strain,  increasing  the  strain  by  10%  every  30
seconds  until  the  recovery  phase  began.  The  stretching
test  results  illustrated  in Fig. 4(f) showed an  R2 of  0.999
and a stretching sensitivity of −0.411 dBm/% within the
0–50%  strain  range.  During  the  recovery  phase,  the  re-
sults demonstrated an R2 of 0.996 and a stretching sensi-
tivity  of  0.400  dBm/%  within  the  50%–0%  strain  range.
The  linear  relationship  of  strains  and  the  transmitted
power level also remain consistency to the sensing prin-
ciple.  The  experiments  examining  the  PSP-DSC's  re-
sponse  to  pressure,  bending,  and  stretching  not  only
demonstrated  the  sensitivity  of  the  PSP-DSC  but  also
confirmed  the  sensing  principle  in  practice.  Further-
more,  the  response  and  recovery  time  of  the  All-PSU
were assessed through a meticulously conducted experi-
ment involving the use of a ping-pong ball dropped from

a height of 50 mm, thereby creating a transient pulse sig-
nal upon impact with the All-PSU. As illustrated in Fig.
4(g) the All-PSU exhibits a response time of 6 ms and a
recovery time of 12 ms, highlighting the All-PSU's excep-
tional rapidity in both responding and recovering, which
is crucial for real-time vital signs monitoring.

The  PSP-DSC  and  the  glycerol-filled  capsule  have
been  sealed  together,  resulting  in  the  formation  of  the
All-PSU, as described above. The functionality and dura-
bility  of  the  All-PSU  are  evaluated  in  our  experiment.
The  extensive  applicability  of  the  All-PSU  for  monitor-
ing pulse  wave signals  across  subjects  with varying BMI
categories (thin, well-balanced, and fat) and during a va-
riety  of  activities  (e.g.,  rest,  squat,  burpees,  and  high
knee) has been confirmed by the experiments, as depict-
ed in Fig. S1–S2, respectively. Figure S3 displays the radi-
al artery pulse wave signals collected by the All-PSU be-
fore and after  30 days,  showcasing its  consistent  perfor-
mance over  an extended duration.  Additionally,  the  dy-
namic  response  of  the  All-PSU  was  evaluated  across  a
range  of  tensile  velocities  on  stepper  motors,  from  40%
(0.783 mm/s) to 140% (2.693 mm/s), as illustrated in Fig.
5(a). To assess its operational stability and reliability over
time, the All-PSU underwent cyclic tensile strain testing
on  the  stepper  motors.  The  results,  presented  in Fig.
5(b),  demonstrate  a  slight  performance  degradation  af-
ter  1000  cycles  under  a  tensile  strain  of  50%.  This  find-
ing underscores the exceptional robustness and durabili-
ty of the All-PSU. As shown in Fig. 5(c), the All-PSU was
immersed  in  water  at  room  temperature  (23  °C)  for  24
hours, with its response intensity recorded every 2 hours
to  verify  its  waterproofing.  The  results  indicate  a  maxi-
mum  difference  in  response  intensity  change  within  24
hours  of  8%.  Furthermore, Fig. 5(d) demonstrates  the
All-PSU's placement in water at various temperatures to
assess temperature sensitivity. The All-PSU exhibited su-
perior response intensity at 36.2 °C to 38.8 °C, compared
to the other two temperature ranges of 14.9 °C to 21.5 °C
and  54.7  °C  to  60.1  °C,  with  maximum  differences  of
23.1% and 16.6%, respectively. This comprehensive anal-
ysis  does  not  only  highlight  the  capabilities  of  the  PSP-
DSC and All-PSU under various conditions but also un-
derscores their potential applications in physiological in-
formation monitoring. The All-PSU's capability to moni-
tor pulse wave signals at  different locations on the wrist
has  been confirmed by  an experiment  illustrated  in Fig.
5(e).  On the left  side of Fig. 5(e),  a  grid marks the wrist
region, with a black rectangle representing the wrist area
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and a red pentagram indicating the All-PSU's placement.
The right side of the figure confirms the successful detec-
tion  of  pulse  wave  signals  at  different  locations  without
distortion due to positional drift.

The characterization tests have demonstrated that the
All-PSU exhibits  several  notable  advantages  that  under-
score  its  suitability  for  precise  physiological  monitoring
applications.  These  advantages  include  high  sensitivity
and accuracy, ultra-fast response and recovery times, re-
markable long-term stability and durability, effective wa-
terproofing,  and  minimal  positional  drift.  Specifically,
due  to  the  optical  sensing  principle  and  the  unique  all-
polymer sensor design, the All-PSU demonstrates signif-
icantly  faster  response  and  recovery  times  compared  to
traditional  electrically-based  pressure  sensors57,58,  there-
by ensuring reliable real-time pulse monitoring. Further-
more, the strong linear relationship between light power

loss  and  varying  pressures,  bending  angles,  and  tensile
strains confirms the effectiveness of the "ear-type" struc-
ture design in addressing the issue of light coupling loss
at  the  connection  joints,  without  relying  on  the  dual-
wavelength difference method36. 

RR and HR estimation
To  evaluate  the  smart  wristband's  capability  to  monitor
RR and HR under various physiological conditions, three
distinct  experiments  were  designed,  as  outlined  in Fig.
6(a).  These  experimental  procedures  involved  four  sub-
jects exhibiting different BMI values (detailed subject in-
formation  provided  in Table  S4),  wherein  their  resting
state RR and HR were monitored. Since pulse signals are
weak, it is crucial to ensure the standardization and con-
sistency  of  the  measurement  process.  Therefore,
throughout the entire experiment, each subject wore the
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proposed wristband on their wrist, and the ALL-PSU was
securely fixed over the radial artery using a specially de-
signed  3D-printed  mold  to  capture  pulse  wave  signals
precisely.  Additionally,  the  RR  and  HR  of  one  subject
were  continuously  tracked  during  unrestricted  daily  ac-
tivities performed from 14:00 to 18:00 hours. Finally, the
RR and HR of these four subjects were monitored while
they  engaged  in  different  physical  activities  (squats,
burpees, and high-knee).

In  the  initial  experimental  phase,  four  subjects  were
instructed to rest  for  two minutes  prior  to commencing
the data collection. Once the subjects had attained a state
of  calm, their  RR and HR were measured in succession,

and this process was repeated three times to confirm the
accuracy of the measurements. Manual counting was uti-
lized as the reference method for RR assessment, while a
heart  rate  monitoring belt  (POLAR H10) was employed
for HR measurement.  Since the ECG signal is  related to
the  pulse  wave  signal  in  terms  of  temporal  association
and physiological reflections59−61, the ECG signal collect-
ed  by  POLAR  H10  was  employed  as  a  reference  stan-
dard  to  calibrate  the  pulse  signal. Figure 6(b) illustrates
the predicted RR and HR values for the participants. The
mean predicted RR and HR were 11 breaths/min and 63
bpm for individuals  in a  lean condition,  13 breaths/min
and  65  bpm  for  those  in  a  proportionate  condition,
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15  breaths/min  and  68  bpm  for  those  in  an  overweight
condition,  and 17  breaths/min and 75  bpm for  those  in
an obese condition, respectively. These findings corrobo-
rate previous studies suggesting a positive correlation be-
tween  increased  BMI  and  elevated  RR  and  HR62,63.  The
Root  Mean  Squared  Error  (RMSE)  and  Mean  Absolute
Error (MAE) were calculated using Eq. (S1, S2), with the
results  presented  in Table  S5.  The  maximum  and  aver-
age  RMSE  for  RR  monitoring  were  0.655  breaths/min
and  0.423  breaths/min,  respectively,  while  the  corre-
sponding  MAE  were  0.654  breaths/min  and  0.391
breaths/min. For HR monitoring, the maximum and av-
erage RMSE were 0.571 bpm and 0.476 bpm. with MAE
of  0.462  bpm  and  0.411  bpm.  A  paired t-test  was  then
conducted on these data sets64.  As illustrated in Fig. 6(c)
and 6(d), the violin plots for RR and revealed no statisti-
cally  significant  difference  between  the  measured  and
predicted results.

After  the  initial  experiments,  the  study  conducted
continuous  RR  and  HR  monitoring  on  a  male  partici-
pant (height: 178 cm, weight: 70 kg) over a 4 hour peri-
od  (14:00–18:00)  without  restricting  his  activities.  Mea-
surements  were  taken  8  times  per  hour.  Manual  count-
ing and the POLAR H10 device served as reference stan-
dards  for  RR  and  HR,  respectively. Figure 7(a) displays
the  subject's  RR  and  HR  stability  throughout  the  test,
with  average  values  of  14  breaths/min  and  88  bpm,  all
within  the  normal  range  (RR:  12–20  breaths/min,  HR:
60–100 bpm). The MAPE for RR and HR measurements
was  calculated using Eq.  (S3),  with  the  results  shown in
Table S6. The maximum and average MAPE for RR were
0.742%  and  0.694%,  and  for  HR  were  0.712%  and
0.406%.  Violin  plots  in Fig. 7(b) and 7(c) for  measured
and  predicted  results  each  hour,  after  analysis  with
paired t-tests,  demonstrated  no  significant  difference,
confirming  that  the  predicted  results  matched  the  PO-
LAR H10 measurements. In the third set of experiments,
the RR and HR of four subjects performing three differ-
ent  physical  activities:  squats,  burpees,  and  high  knees,
were  monitored.  Each  subject  began  with  ten  squats,
rested for five minutes, then performed ten burpees, rest-
ed  again  for  five  minutes,  and  concluded  with  60  sec-
onds of high knee.

Each  activity  was  timed  for  one  minute  and  repeated
three  times.  The  scatter  and  line  box  plots  of  the  mea-
sured RR and HR are shown in Fig. 7(d) and 7(e). Figure
7(d) indicated an increase in RR and HR with the inten-
sity  of  exercise,  which  is  consistent  with  previous  re-

search65,66. The highest RR and HR were observed during
the  high  knee  exercise,  demonstrating  the  wristband's
ability to detect fluctuations in RR and HR across differ-
ent physical states. Correlation analysis presented in Fig.
7(f) and 7(g) showed correlation coefficients of 0.95 and
0.91 for RR and HR, respectively. The MAPE was calcu-
lated  using Eq.  (S3) for  the  different  activities,  as  illus-
trated  in Fig. 7(h) and 7(i).  The  average  RR,  HR,  and
MAPE across various physical activities are illustrated as
follows:
● Squatting: 15 breaths/min and 92 bpm, max MAPE

of  6.822%  and  average  MAPE  of  5.401%  for  RR;  max
MAPE of 4.112% and average MAPE of 3.545% for HR.
● Burpee: 20  breaths/min  and  108  bpm,  max  MAPE

of  7.838%  and  average  MAPE  of  7.415%  for  RR;  max
MAPE of 4.307% and average MAPE of 4.032% for HR.
● High knee: 27 breaths/min and 123 bpm, max MAPE

of  8.778%  and  average  MAPE  of  8.364%  for  RR;  max
MAPE of 4.725% and average MAPE of 4.181% for HR.

These  results  demonstrate  that  the  smart  wristband
can  effectively  monitor  RR  and  HR  fluctuations  during
various physical activities and across subjects with differ-
ent  BMI values.  The  device's  ability  to  consistently  cap-
ture  accurate  physiological  data  in  both  resting  and  dy-
namic  states  facilitates  comprehensive  health  monitor-
ing during exercise. This capability not only supports fit-
ness tracking but also provides valuable data for the de-
velopment of personalized health plans. The wristband's
high  accuracy,  demonstrated  in  comparison  with  estab-
lished  measurement  methods  such  as  the  POLAR  H10
monitor,  further underscores its reliability and potential
as an essential tool for continuous health assessment and
early detection of health anomalies. 

BP estimation
To  confirm  the  capability  of  the  smart  wristband  to
monitor BP, as illustrated in Fig. 8(a), the validation pro-
cess of three pivotal phases was structured, including BP
monitoring  modeling  continuous  BP  monitoring,  and
BP  monitoring  under  varied  conditions.  In  the  first
phase,  BP  monitoring  modeling,  six  subjects  with  di-
verse  BMI  levels  were  engaged  to  participate  in  the  ex-
periment  (refer  to Table  S7).  This  diversity  in  subjects'
BMI was chosen to enhance the model's generalizability.
The data collection for this phase spanned one week, en-
suring  a  comprehensive  dataset  was  available  for  model
training  and  validation.  In  the  second  phase,  which
consists  of  continuous  BP  monitoring,  a  single  subject
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was selected for an in-depth longitudinal study. BP mea-
surements were taken at three different times of the day-
morning, afternoon, and evening-to observe the fluctua-
tions in the subject's BP over the course of the day. In the
final  phase,  where  BP  estimation  is  done  under  various
conditions, the focus was on capturing the BP variations
of the subjects during different physical states, including
resting,  squatting,  and  burpee.  This  phase  aimed  to  as-
sess the wristband's accuracy in detecting changes in BP
under a range of physical conditions.

In  these  three  phases,  the  seven  distinct  features  ex-
tracted from the  pulse  wave  signals,  as  described above,
were utilized as the input to a GRU neural network. The
objective  of  this  neural  network  was  to  accurately  esti-
mate the subject's SBP and DBP. The smart wristband is

equipped  with  a  display  screen  to  present  the  predicted
BP  values  to  the  user.  To  confirm  the  accuracy  of  our
measurements, SBP and DBP were also collected using a
commercial  sphygmomanometer  (OMRON,  T30J),
which was worn on the radial artery as a reference stan-
dard. This measurement approach allowed us to validate
the  smart  wristband's  performance  against  a  recognized
medical  device,  ensuring  the  reliability  of  our  findings.
During  the  first  experimental  phase,  a  comprehensive
dataset was collected, consisting of 300 sets of pulse wave
signal  features  along  with  their  corresponding  SBP  and
DBP measurements.  This  dataset  was  obtained after  the
signal  acquisition  and  preprocessing  procedures  de-
scribed  above.  To  visually  represent  the  distribution  of
these  BP,  histograms  were  plotted  for  both  SBP  and
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DBP,  as  depicted  in Fig.  S4.  We  allocated  80%  of  the
dataset  as  the  training  set  to  train  the  model,  reserving
the remaining 20% as  the testing dataset  to  evaluate  the
model's  performance. Figure 8(b) and 8(c) illustrate  the
correlation analysis between the measured and reference
BP yielding R2 of 0.93 for SBP and 0.88 for DBP, respec-
tively.  Additionally,  Bland-Altman  analysis  (calculated
by Eqs.  (S4–S6))  is  employed  to  assess  the  consistency
between our wristband and the OMRON, T30J comput-
ing the deviation of measured and reference BP as mean
±1.96 standard deviations. The results of the error analy-
sis are presented in Table S8. Specifically, the mean error
for SBP was recorded at 0.31 mmHg, with a standard de-
viation of 3.45 mmHg, whereas the mean error for DBP

was  noted  at  0.13  mmHg,  with  a  standard  deviation  of
2.89 mmHg. According to the standards set by the Asso-
ciation  for  the  Advancement  of  Medical  Instrumenta-
tion (AAMl), which stipulate that the standard deviation
must be less than 8 mmHg and the mean error must be
less  than  5  mmHg67,  the  performance  of  our  wristband
device  successfully  meets  these  internationally  recog-
nized requirements. Furthermore, according to the crite-
ria  established  by  the  British  Hypertension  Society,  the
error rates observed for our wristband device are compa-
rable  to  those  of  Class  A68,  thereby underscoring its  full
compliance with the relevant international standards.

As illustrated in Fig. 8(d) and 8(e),  the Bland-Altman
plots for both SBP and DBP reveal 95% confidence inter-
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vals  of  (−6.46  mmHg,  7.09  mmHg)  for  SBP  and  (−5.14
mmHg,  5.39  mmHg)  for  DBP.  Crucially,  all  of  the  ob-
served  results  fall  within  these  respective  95%  confi-
dence intervals,  thereby confirming that the blood pres-
sure  measurements  obtained  using  our  proposed  wrist-
band device are both accurate and consistent with those
recorded by the OMRON T30J reference standard.

Subsequently,  the  BP  of  a  subject  (Gender:  male;
Height: 180 cm; Weight: 75 kg; BMI: 23.1) was continu-
ously  monitored  over  the  course  of  the  day,  with  mea-
surements  taken  during  morning,  afternoon,  and
evening  sessions,  each  lasting  two  hours.  This  compre-
hensive  diurnal  monitoring  approach  further  validated
the feasibility of our proposed wristband device to accu-
rately track fluctuations in BP. For the purpose of refer-
ence,  we  compared  the  monitoring  results  obtained  us-
ing  our  wristband  against  those  recorded  by  the  OM-
RON, T30J standard.

Figure 9(a) and 9(b) present  the  line  graph  and  box
chart  of  the  BP  measurement  results,  respectively.  The
line graph revealed that the participant's SBP was higher
in the evening and lower in the morning, while the DBP
was relatively  lower  in  the  evening.  The box chart  illus-
trated  that  the  average  SBP  and  DBP  in  the  morning
(9:00–11:00) were 98 mmHg and 67 mmHg, respectively.
In  the  afternoon  (15:00–17:00),  the  averages  were  104
mmHg for  SBP and 72  mmHg for  DBP,  In  the  evening
(20:00–22:00), the averages were 106 mmHg for SBP and
69 mmHg for DBP, Fig. 9(c) and 9(d) displayed the cor-
relation analysis between the measured and reference BP
at different time points. The R2 for the measured and ref-
erence  SBP  and  DBP  were  0.90  and  0.89,  respectively.
Furthermore, the Bland-Altman analysis, depicted in Fig.
9(e) and 9(f),  evaluated the consistency of the measured
BP. The mean error for SBP was 0.21 mmHg with a stan-
dard  deviation  of  3.52  mmHg  and  the  95%  confidence
intervals were (7.11 mmHg, –6.70 mmHg). For DBP, the
mean error was 0.20 mmHg with a standard deviation of
2.22 mmHg, and the 95% confidence intervals were (4.63
mmHg, –4.22  mmHg).  All  test  results  essentially  fell
within  the  95%  confidence  interval,  indicating  that  our
proposed  wristband  demonstrates  excellent  perfor-
mance  in  continuously  monitoring  BP  fluctuations.
Moreover, the measurement results were consistent with
the reference, showcasing the wristband's potential long-
term,  daily  BP  monitoring,  offering  a  convenient  solu-
tion  for  individuals  seeking  to  maintain  close  observa-
tion of  their  BP.  During the last  experimental  phase,  an

experiment  was  conducted  with  a  subject  to  verify
whether  the  proposed  system  could  effectively  monitor
BP  fluctuations  under  various  conditions.  The  experi-
ment  involved monitoring  the  subject's  BP in  three  dis-
tinct  states:  at  rest,  squats,  and burpees.  After  the initial
BP test of the subject in a relaxed state, he performed ten
squats  within  a  two-minute  interval.  After  completing
the squats, a 15-minute rest period was given to allow the
subject's BP to return to its relaxed state. The final stage
involved the subject performing ten burpees within two-
minute intervals, in which BP measurements were taken.
For  reference,  measured  results  from  OMRON,  T30J
were  used.  This  entire  experimental  procedure  was  re-
peated  five  times.  The  results  are  depicted  in Fig. 9(g)
and 8(h),  which  present  the  line  graph  and  box  plot  of
the  experiment,  respectively. Figure 9(g) illustrates  that,
compared  to  the  resting  state,  BP  gradually  increased
during  the  squatting  exercise  and  also  rose  during  the
jumping exercise. Figure 9(h) shows that the average SBP
and DBP at rest  were 98 mmHg and 63 mmHg, respec-
tively.  During  the  squatting  exercise,  the  averages  in-
creased  to  109  mmHg  for  SBP  and  71  mmHg  for  DBP,
and during the jumping exercise, the averages further in-
creased  to  121  mmHg  for  SBP  and  82  mmHg  for  DBP.
These  differences  highlight  the  impact  of  varying  exer-
cise  intensities  on  BP,  with  more  strenuous  activities
leading  to  higher  BP69.  Additionally, Fig. 9(i) and 9(j)
display  the  correlation  coefficients  for  SBP  and  DBP,
which were 0.91 and 0.93, respectively. The Bland-Altan
analysis,  illustrated  in Fig. 8(k) and 8(l),  evaluated  the
consistency of the measured BP, the mean error for SBP
was −0.64 with a standard deviation of 2.54, and the 95%
confidence  intervals  were  (4.33, −5.62).  For  DBP,  the
mean error was −0.85 with a standard deviation of 2.49,
and the 95% confidence intervals were (4.03, −5.74). The
test  results  predominantly  fell  within  the  95%  confi-
dence  interval,  indicating  that  the  proposed  wristband
device is capable of accurately monitoring BP under dif-
ferent states. This demonstrates the wristband's effective-
ness in capturing BP fluctuations, affirming its potential
for monitoring BP under various conditions.

The  three-phase  experimental  validation  underscores
several significant advantages of the smart wristband, in-
cluding its high accuracy under varied conditions, capa-
bility  for  continuous  monitoring  of  diurnal  BP  varia-
tions, and real-time monitoring functionality. The wrist-
band's  accuracy  aligns  with  international  standards,  as
previously  detailed,  and  its  user-friendly  design  is
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enhanced  by  the  integrated  display  screen.  These  find-
ings indicate that the smart wristband can play a crucial
role  in  continuous  cardiorespiratory  function  assess-
ment and personalized healthcare services. 

Biometric ID
Compared to current research that primarily focuses on
a single aspect of cardiorespiratory function assessment,
our  smart  wristband  emphasizes  functional  diversity.
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ing, afternoon, and evening. (c) Correlation analysis of SBP measured and reference results. (d) Correlation analysis of DBP measured and ref-

erence results. (e) Bland-Altman plot of SBP in the morning, afternoon, and evening. (f) Bland-Altman plot of DBP in the morning, afternoon, and
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Correlation analysis of SBP measured and reference results under different exercise statuses. (j) Correlation analysis of DBP measured and ref-

erence  results  under  different  exercise  states.  (k)  Bland-Altman  plot  of  SBP at  rest,  squat,  and  burpee.  (l)  Bland-Altman  plot  of  DBP at  rest,

squat, and burpee.
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This  work  not  only  introduces  a  high-performance  sys-
tem  for  estimating  RR,  HR,  and  BP,  but  also  incorpo-
rates  biometric  ID  capabilities,  which  are  essential  for
personalized  healthcare  services.  As  depicted  in Fig.
10(a), the smart wristband worn on the left radial artery
of  the  subjects,  successively  collects  pulse  wave  signals.
These high-precision and feature-rich pulse wave signals
were processed through signal denoising and feature ex-
traction  techniques  to  obtain  seven  distinct  pulse  wave
features.  Subsequently,  all  the  collected  pulse  wave  fea-
tures  were  compiled  into  a  personal  database.  By  inte-
grating  the  personal  information  database  with  a  well-
trained classification RF model, the function of ID recog-
nition  was  realized,  with  the  result  displayed  on  the

screen, During the ID recognition process, the influence
of  external  factors,  such  as  body  shape  was  considered.
To acquire more representative pulse wave signals, three
participants  with  different  BMl  values  were  selected  for
the  experiments  (see  Supplementary Table  S9)  and  the
entire signal collection process was repeated over a total
of three days. POLAR H10 was used as a reference device.

After  completing  the  signal  collection,  preprocessing,
and feature  extraction procedures,  a  total  of  345 feature
data sets were obtained. Out of them, 80% were utilized
for  model  training  while  the  remaining  20%  were  re-
served for model performance evaluation. As depicted in
Supplementary Fig. S5, the loss of the RF model used for
biometric  ID  rapidly  converged  after  training  with  300
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decision trees. Figure 10(b) shows the feature weights of
the  seven  pulse  features  during  the  RF  model  training
process, with Stiffness Index (SI) accounting for 30% and
time to Maximum Bubble Burst (TmBB) accounting for
20%  of  the  total  weight.  Furthermore,  two  evaluation
metrics  were  introduced  to  assess  the  test  results:  mean
accuracy and recall, as defined in Eq. (S7–S8), respective-
ly.  The  confusion  matrix  (Fig. 10(c))  and  the  accuracy
bar  chart  (Fig. 10(d))  demonstrated  that  the  ID  model
achieved  an  accuracy  of  98.55%  and  a  recall  of  95.65%.
These experimental results suggest that the proposed ID
recognition  method  has  the  potential  to  prevent  imper-
sonation and effectively utilize intra-personal features for
biometric  identification.  Notably,  the  ID  recognition
process was found to be unaffected by high BIM values,
and the model recognition effects were excellent, laying a
strong  foundation  for  the  development  and  of  practical
application of biometric technologies.

Concurrently, a customized mobile application (APP)
program was  developed to  enhance  user-friendliness,  as
shown  in Fig. 10(e).  This  APP  program  features  three
key interfaces: a personal information interface, a weekly
historical  data  interface,  and  a  real-time  measurement
interface.  These  interfaces  enable  the  real-time  collec-
tion and analysis  of  health data,  as  well  as  biometric  ID
information. Furthermore, this APP holds significant po-
tential in assisting individuals with cardiorespiratory dis-
eases  by  providing  a  reference  for  monitoring  their
health  conditions  and  evaluating  the  efficacy  of  their
medication and treatment plans.  As shown in Fig. 10(f),
the  smart  wristband  provides  digital  and  personalized
health monitoring information during the experiment. 

Conclusion
In  this  work,  we  developed  a  photonic  smart  wristband
based on the All-PSU hardware structure. Utilizing PSD
analysis  and  machine  learning  techniques,  precise  car-
diorespiratory function assessment and biometric identi-
fication  have  been  achieved.  The  All-PSU  hardware
structure, characterized by its optical sensor and all-poly-
mer design, exhibits high sensitivity and accuracy, ultra-
fast  response  and  recovery  times,  remarkable  long-term
stability and durability effective waterproofing, and min-
imal  positional  drift.  Through  PSD  analysis,  the  smart
wristband achieved  high  accuracy  in  estimating  RR and
HR,  with  MAPE  of  0.742%  and  0.712%  respectively.  By
employing  machine  learning  methods,  including  GRU
neural  networks  and  RF  algorithms,  precise  BP  estima-

tion and biometric ID have been achieved. The errors for
SBP  and  DBP  in  daily  conditions  are  0.31±3.45  mmHg
and  0.13±2.89  mmHg,  respectively,  while  the  biometric
ID process achieved a correct rate of 98.55%. Beyond ac-
curacy,  the  smart  wristband  demonstrated  robustness
across  various  application conditions  and different  BMI
subjects,  with  continuous  and  real-time  monitoring  ca-
pabilities.  Overall,  in  comparison  to  the  existing  work
(presented  in Table  S10),  the  photonic  smart  wristband
is a high-performance, functionally diverse wearable de-
vice, and we believe it can play a crucial role in personal-
ized health  services  for  the  treatment  and prevention of
cardiorespiratory diseases in the future.
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