Ha YL, Luo Y, Pu MB, Zhang F, He Q et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133
Citation: Ha YL, Luo Y, Pu MB, Zhang F, He Q et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv 6, 230133 (2023). doi: 10.29026/oea.2023.230133

Article Open Access

Physics-data-driven intelligent optimization for large-aperture metalenses

More Information
  • These authors contributed equally to this work

  • *Corresponding authors: MB Pu, E-mail:pmb@ioe.ac.cn;  XG Luo, E-mail: lxg@ioe.ac.cn
  • Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging, owing to their lightweight, high-integration, and exceptional-flexibility capabilities. Traditional design methods neglect the coupling effect between adjacent meta-atoms, thus harming the practical performance of meta-devices. The existing physical/data-driven optimization algorithms can solve the above problems, but bring significant time costs or require a large number of data-sets. Here, we propose a physics-data-driven method employing an “intelligent optimizer” that enables us to adaptively modify the sizes of the meta-atom according to the sizes of its surrounding ones. The implementation of such a scheme effectively mitigates the undesired impact of local lattice coupling, and the proposed network model works well on thousands of data-sets with a validation loss of 3×10−3. Based on the “intelligent optimizer”, a 1-cm-diameter metalens is designed within 3 hours, and the experimental results show that the 1-mm-diameter metalens has a relative focusing efficiency of 93.4% (compared to the ideal focusing efficiency) and a Strehl ratio of 0.94. Compared to previous inverse design method, our method significantly boosts designing efficiency with five orders of magnitude reduction in time. More generally, it may set a new paradigm for devising large-aperture meta-devices.
  • 加载中
  • [1] Ren HR, Briere G, Fang XY, Ni PN, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [2] Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [3] Fu R, Chen KX, Li ZL, Yu SH, Zheng GX. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011

    CrossRef Google Scholar

    [4] Zhang XD, Liu YL, Han JC, Kivshar Y, Song QH. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022). doi: 10.1126/science.abq7870

    CrossRef Google Scholar

    [5] Zhou JX, Liu SK, Qian HL, Li YH, Luo HL et al. Metasurface enabled quantum edge detection. Sci Adv 6, eabc4385 (2020). doi: 10.1126/sciadv.abc4385

    CrossRef Google Scholar

    [6] Luo XG, Zhang F, Pu MB, Xu MF. Catenary optics: a perspective of applications and challenges. J Phys:Condens Matter 34, 381501 (2022). doi: 10.1088/1361-648X/ac808e

    CrossRef Google Scholar

    [7] Xie X, Pu MB, Jin JJ, Xu MF, Guo YH et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [8] Shen Y, Luo XG. Efficient bending and focusing of light beam with all-dielectric subwavelength structures. Opt Commun 366, 174–178 (2016). doi: 10.1016/j.optcom.2015.12.043

    CrossRef Google Scholar

    [9] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [10] Ogawa C, Nakamura S, Aso T, Ikezawa S, Iwami K. Rotational varifocal moiré metalens made of single-crystal silicon meta-atoms for visible wavelengths. Nanophotonics 11, 1941–1948 (2022). doi: 10.1515/nanoph-2021-0690

    CrossRef Google Scholar

    [11] Zhang F, Pu MB, Li X, Ma XL, Guo YH et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [12] Georgi P, Wei QS, Sain B, Schlickriede C, Wang YT et al. Optical secret sharing with cascaded metasurface holography. Sci Adv 7, eabf9718 (2021). doi: 10.1126/sciadv.abf9718

    CrossRef Google Scholar

    [13] Khaliq HS, Kim J, Naeem T, Riaz K, Badloe T et al. Broadband chiro‐optical effects for futuristic meta‐holographic displays. Adv Opt Mater 10, 2201175 (2022). doi: 10.1002/adom.202201175

    CrossRef Google Scholar

    [14] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [15] Jin JJ, Pu MB, Wang YQ, Li X, Ma XL et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol 2, 1600201 (2017). doi: 10.1002/admt.201600201

    CrossRef Google Scholar

    [16] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [17] Zhang F, Guo YH, Pu MB, Chen LW, Xu MF et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [18] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [19] Wang SM, Wu PC, Su VC, Lai YC, Hung Chu C et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [20] Liang HW, Lin QL, Xie XS, Sun Q, Wang Y et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett 18, 4460–4466 (2018). doi: 10.1021/acs.nanolett.8b01570

    CrossRef Google Scholar

    [21] Ha YL, Guo YH, Pu MB, Xu MF, Li X et al. Meta-optics-empowered switchable integrated mode converter based on the adjoint method. Nanomaterials 12, 3395 (2022). doi: 10.3390/nano12193395

    CrossRef Google Scholar

    [22] Pan MY, Fu YF, Zheng MJ, Chen H, Zang YJ et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl 11, 195 (2022). doi: 10.1038/s41377-022-00885-7

    CrossRef Google Scholar

    [23] Xu MF, He Q, Pu MB, Zhang F, Li L et al. Emerging long‐range order from a freeform disordered metasurface. Adv Mater 34, 2108709 (2022). doi: 10.1002/adma.202108709

    CrossRef Google Scholar

    [24] Qi HX, Du ZC, Hu XY, Yang JY, Chu SS et al. High performance integrated photonic circuit based on inverse design method. Opto-Electron Adv 5, 210061 (2022). doi: 10.29026/oea.2022.210061

    CrossRef Google Scholar

    [25] Liu XY, Chen MK, Chu CH, Zhang JC, Leng BR et al. Underwater binocular meta-lens. ACS Photonics 10, 2382–2389 (2023). doi: 10.1021/acsphotonics.2c01667

    CrossRef Google Scholar

    [26] Chen MK, Liu XY, Wu YF, Zhang JC, Yuan JQ et al. A meta-device for intelligent depth perception. Adv Mater 35, 2107465 (2023). doi: 10.1002/adma.202107465

    CrossRef Google Scholar

    [27] Chen MK, Liu XY, Sun YN, Tsai DP. Artificial intelligence in meta-optics. Chem. Rev 122, 15356–15413 (2022). doi: 10.1021/acs.chemrev.2c00012

    CrossRef Google Scholar

    [28] Dory C, Vercruysse D, Yang KY, Sapra NV, Rugar AE et al. Inverse-designed diamond photonics. Nat Commun 10, 3309 (2019). doi: 10.1038/s41467-019-11343-1

    CrossRef Google Scholar

    [29] Cai HG, Srinivasan S, Czaplewski DA, Martinson ABF, Gosztola DJ et al. Inverse design of metasurfaces with non-local interactions. npj Comput Mater 6, 116 (2020). doi: 10.1038/s41524-020-00369-5

    CrossRef Google Scholar

    [30] Chung H, Miller OD. High-NA achromatic metalenses by inverse design. Opt Express 28, 6945–6965 (2020). doi: 10.1364/OE.385440

    CrossRef Google Scholar

    [31] Lalau-Keraly CM, Bhargava S, Miller OD, Yablonovitch E. Adjoint shape optimization applied to electromagnetic design. Opt Express 21, 21693–21701 (2013). doi: 10.1364/OE.21.021693

    CrossRef Google Scholar

    [32] Nam SH, Kim M, Kim N, Cho D, Choi M et al. Photolithographic realization of target nanostructures in 3D space by inverse design of phase modulation. Sci Adv 8, eabm6310 (2022). doi: 10.1126/sciadv.abm6310

    CrossRef Google Scholar

    [33] Mansouree M, McClung A, Samudrala S, Arbabi A. Large-scale parametrized metasurface design using adjoint optimization. ACS Photonics 8, 455–463 (2021).

    Google Scholar

    [34] Sang D, Xu MF, Pu MB, Zhang F, Guo YH et al. Toward high-efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization. Laser Photonics Rev 16, 2200265 (2022). doi: 10.1002/lpor.202200265

    CrossRef Google Scholar

    [35] Li ZY, Pestourie R, Park JS, Huang YW, Johnson SG et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat Commun 13, 2409 (2022). doi: 10.1038/s41467-022-29973-3

    CrossRef Google Scholar

    [36] Sell D, Yang JJ, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082

    CrossRef Google Scholar

    [37] Xu MF, Pu MB, Sang D, Zheng YH, Li X et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase. Opt Express 29, 10181–10191 (2021). doi: 10.1364/OE.422112

    CrossRef Google Scholar

    [38] Yang JJ, Fan JA. Topology-optimized metasurfaces: impact of initial geometric layout. Opt Lett 42, 3161–3164 (2017). doi: 10.1364/OL.42.003161

    CrossRef Google Scholar

    [39] Ma TG, Tobah M, Wang HZ, Guo LJ. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron Sci 1, 210012 (2022). doi: 10.29026/oes.2022.210012

    CrossRef Google Scholar

    [40] Zhelyeznyakov MV, Brunton SL, Majumdar A. Deep learning to accelerate Maxwell's equations for inverse design of dielectric metasurfaces. In Proceedings of 2021 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2020).

    Google Scholar

    [41] An SS, Zheng BW, Shalaginov MY, Tang H, Li H et al. Deep convolutional neural networks to predict mutual coupling effects in metasurfaces. Adv Opt Mater 10, 2102113 (2022). doi: 10.1002/adom.202102113

    CrossRef Google Scholar

    [42] Lin Z, Roques-Carmes C, Pestourie R, Soljačić M, Majumdar A et al. End-to-end nanophotonic inverse design for imaging and polarimetry. Nanophotonics 10, 1177–1187 (2021). doi: 10.1515/nanoph-2020-0579

    CrossRef Google Scholar

    [43] Yeung C, Tsai JM, King B, Pham B, Ho D et al. Multiplexed supercell metasurface design and optimization with tandem residual networks. Nanophotonics 10, 1133–1143 (2021). doi: 10.1515/nanoph-2020-0549

    CrossRef Google Scholar

    [44] Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147

    CrossRef Google Scholar

    [45] Ma W, Liu ZC, Kudyshev ZA, Boltasseva A, Cai WS et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [46] Qiu TS, Shi X, Wang JF, Li YF, Qu SB et al. Deep learning: a rapid and efficient route to automatic metasurface design. Adv Sci 6, 1900128 (2019). doi: 10.1002/advs.201900128

    CrossRef Google Scholar

    [47] Jiang JQ, Chen MK, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater 6, 679–700 (2021).

    Google Scholar

    [48] Qian C, Zheng B, Shen YC, Jing L, Li EP et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics 14, 383–390 (2020). doi: 10.1038/s41566-020-0604-2

    CrossRef Google Scholar

    [49] Yang B, Ma DN, Liu WW, Choi DY, Li ZC et al. Deep-learning-based colorimetric polarization-angle detection with metasurfaces. Optica 9, 217–220 (2022). doi: 10.1364/OPTICA.449893

    CrossRef Google Scholar

    [50] Jiang JQ, Fan JA. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett 19, 5366–5372 (2019). doi: 10.1021/acs.nanolett.9b01857

    CrossRef Google Scholar

    [51] Jiang JQ, Sell D, Hoyer S, Hickey J, Yang JJ et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019). doi: 10.1021/acsnano.9b02371

    CrossRef Google Scholar

    [52] Ren HR, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv 6, eaaz4261 (2020). doi: 10.1126/sciadv.aaz4261

    CrossRef Google Scholar

    [53] Ma W, Xu YH, Xiong B, Deng L, Peng RW et al. Pushing the limits of functionality‐multiplexing capability in metasurface design based on statistical machine learning. Adv Mater 34, 2110022 (2022). doi: 10.1002/adma.202110022

    CrossRef Google Scholar

    [54] Ma W, Cheng F, Xu YH, Wen QL, Liu YM. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi‐supervised learning strategy. Adv Mater 31, 1901111 (2019). doi: 10.1002/adma.201901111

    CrossRef Google Scholar

    [55] So S, Rho J. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics 8, 1255–1261 (2019). doi: 10.1515/nanoph-2019-0117

    CrossRef Google Scholar

    [56] Liu ZC, Zhu DY, Lee KT, Kim AS, Raju L et al. Compounding meta‐atoms into metamolecules with hybrid artificial intelligence techniques. Adv Mater 32, 1904790 (2020). doi: 10.1002/adma.201904790

    CrossRef Google Scholar

    [57] Kudyshev ZA, Kildishev AV, Shalaev VM, Boltasseva A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl Phys Rev 7, 021407 (2020). doi: 10.1063/1.5134792

    CrossRef Google Scholar

    [58] Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084

    CrossRef Google Scholar

    [59] Zhu DY, Liu ZC, Raju L, Kim AS, Cai WS. Building multifunctional metasystems via algorithmic construction. ACS Nano 15, 2318–2326 (2021). doi: 10.1021/acsnano.0c09424

    CrossRef Google Scholar

    [60] Phan T, Sell D, Wang EW, Doshay S, Edee K et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci Appl 8, 48 (2019). doi: 10.1038/s41377-019-0159-5

    CrossRef Google Scholar

    [61] Pestourie R, Pérez-Arancibia C, Lin Z, Shin W, Capasso F et al. Inverse design of large-area metasurfaces. Opt Express 26, 33732–33747 (2018). doi: 10.1364/OE.26.033732

    CrossRef Google Scholar

    [62] Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 6, 7069 (2015). doi: 10.1038/ncomms8069

    CrossRef Google Scholar

    [63] Pu MB, Guo YH, Li X, Ma XL, Luo XG. Revisitation of extraordinary young’s interference: from catenary optical fields to spin–orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018). doi: 10.1021/acsphotonics.8b00437

    CrossRef Google Scholar

    [64] Luo XG, Pu MB, Guo YH, Li X, Zhang F et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194

    CrossRef Google Scholar

    [65] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [66] Aiazzi B, Alparone L, Baronti S, Selva M, Stefani L. Unsupervised estimation of signal-dependent CCD camera noise. EURASIP J Adv Signal Process 2012, 231 (2012). doi: 10.1186/1687-6180-2012-231

    CrossRef Google Scholar

  • Supplementary information for Physics-data-driven intelligent optimization for large-aperture metalenses
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(9013) PDF downloads(1202) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint