Zhang L, Tong LM. A bioinspired flexible optical sensor for force and orientation sensing. Opto-Electron Adv 6, 230051 (2023). doi: 10.29026/oea.2023.230051
Citation: Zhang L, Tong LM. A bioinspired flexible optical sensor for force and orientation sensing. Opto-Electron Adv 6, 230051 (2023). doi: 10.29026/oea.2023.230051

News & Views Open Access

A bioinspired flexible optical sensor for force and orientation sensing

More Information
  • Flexible optical sensors have been an emerging paradigm for applications in robotics, healthcare, and human–machine interfaces due to their high sensitivity, fast response, and anti-electromagnetic interference. Recently, Marques reports a bioinspired multifunctional flexible optical sensor (BioMFOS), achieving a forces sensitivity of 13.28 μN, and a spatial resolution of 0.02 mm. The BioMFOS has a small dimension (around 2 cm) and a light weight (0.8 g), making it suitable for wearable application and clothing integration. As proof-of-concept demonstrations, monitoring of finger position, trunk movements, and respiration rate are realized, implying their prominent applications in remote healthcare, intelligent robots, assistance devices teleoperation, and human-machine interfaces.
  • 加载中
  • [1] Kim J, Campbell AS, de Ávila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol 37, 389–406 (2019). doi: 10.1038/s41587-019-0045-y

    CrossRef Google Scholar

    [2] Shih B, Shah D, Li JX, Thuruthel TG, Park YL et al. Electronic skins and machine learning for intelligent soft robots. Sci Robot 5, eaaz9239 (2020). doi: 10.1126/scirobotics.aaz9239

    CrossRef Google Scholar

    [3] Ko SH, Rogers J. Functional materials and devices for XR (VR/AR/MR) applications. Adv Funct Mater 31, 2106546 (2021). doi: 10.1002/adfm.202106546

    CrossRef Google Scholar

    [4] Guo JJ, Yang CX, Dai QH, Kong LJ. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors 19, 3771 (2019). doi: 10.3390/s19173771

    CrossRef Google Scholar

    [5] Zhang L, Tang Y, Tong LM. Micro-/Nanofiber optics: merging photonics and material science on nanoscale for advanced sensing technology. iScience 23, 100810 (2020). doi: 10.1016/j.isci.2019.100810

    CrossRef Google Scholar

    [6] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020). doi: 10.29026/oea.2020.190022

    CrossRef Google Scholar

    [7] Yu W, Yao N, Pan J, Fang W, Li X et al. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron Adv 5, 210101 (2022). doi: 10.29026/oea.2022.210101

    CrossRef Google Scholar

    [8] Tang Y, Liu HT, Pan J, Zhang Z, Xu Y et al. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. ACS Appl Mater Interfaces 13, 4560–4566 (2021). doi: 10.1021/acsami.0c20392

    CrossRef Google Scholar

    [9] Ma SQ, Wang XY, Li P, Yao N, Xiao JL et al. Optical micro/nano fibers enabled smart textiles for human–machine interface. Adv Fiber Mater 4, 1108–1117 (2022). doi: 10.1007/s42765-022-00163-6

    CrossRef Google Scholar

    [10] Tang Y, Yu LT, Pan J, Yao N, Geng WD et al. Optical nanofiber skins for multifunctional humanoid tactility. Adv Intell Syst 5, 2200203 (2023). doi: 10.1002/aisy.202200203

    CrossRef Google Scholar

    [11] Guo JJ, Niu MX, Yang CX. Highly flexible and stretchable optical strain sensing for human motion detection. Optica 4, 1285–1288 (2017). doi: 10.1364/OPTICA.4.001285

    CrossRef Google Scholar

    [12] Harnett CK, Zhao HC, Shepherd RF. Stretchable optical fibers: threads for strain-sensitive textiles. Adv Mater Technol 2, 1700087 (2017). doi: 10.1002/admt.201700087

    CrossRef Google Scholar

    [13] Leber A, Cholst B, Sandt J, Vogel N, Kolle M. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv Funct Mater 29, 1802629 (2019). doi: 10.1002/adfm.201802629

    CrossRef Google Scholar

    [14] Xu PA, Mishra AK, Bai H, Aubin CA, Zullo L et al. Optical lace for synthetic afferent neural networks. Sci Robot 4, eaaw6304 (2019). doi: 10.1126/scirobotics.aaw6304

    CrossRef Google Scholar

    [15] Chen MX, Wang Z, Li KW, Wang XD, Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater 3, 1–13 (2021). doi: 10.1007/s42765-020-00057-5

    CrossRef Google Scholar

    [16] Zhao HC, O’Brien K, Li S, Shepherd RF. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot 1, eaai7529 (2016). doi: 10.1126/scirobotics.aai7529

    CrossRef Google Scholar

    [17] Bai HD, Li S, Barreiros J, Tu YQ, Pollock CR et al. Stretchable distributed fiber-optic sensors. Science 370, 848–852 (2020). doi: 10.1126/science.aba5504

    CrossRef Google Scholar

    [18] Van Meerbeek IM, De Sa CM, Shepherd RF. Soft optoelectronic sensory foams with proprioception. Sci Robot 3, eaau2489 (2018). doi: 10.1126/scirobotics.aau2489

    CrossRef Google Scholar

    [19] Zhou JY, Shao Q, Tang C, Qian F, Lu TQ et al. Conformable and compact multiaxis tactile sensor for human and robotic grasping via anisotropic waveguides. Adv Mater Technol 7, 2200595 (2022). doi: 10.1002/admt.202200595

    CrossRef Google Scholar

    [20] Leal-Junior A, Avellar L, Biazi V, Soares MS, Frizera A et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development. Opto-Electron Adv 5, 210098 (2022). doi: 10.29026/oea.2022.210098

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(4575) PDF downloads(873) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint