Citation: | Tatsuki T. Adding dimensions with Lucy–Richardson–Rosen algorithm to incoherent imaging. Opto-Electron Adv 6, 230047 (2023). doi: 10.29026/oea.2023.230047 |
[1] | Rosen J, Vijayakumar A, Kumar M, Rai MR, Kelner R et al. Recent advances in self-interference incoherent digital holography. Adv Opt Photonics 11, 1–66 (2019). doi: 10.1364/AOP.11.000001 |
[2] | Tahara T, Zhang YP, Rosen J, Anand V, Cao LC et al. Roadmap of incoherent digital holography. Appl Phys B 128, 193 (2022). doi: 10.1007/S00340-022-07911-X |
[3] | Liu JP, Tahara T, Hayasaki Y, Poon TC. Incoherent digital holography: a review. Appl Sci 8, 143 (2018). doi: 10.3390/app8010143 |
[4] | Rosen J, Alford S, Anand V, Art J, Bouchal P et al. Roadmap on recent progress in FINCH technology. J Imaging 7, 197 (2021). doi: 10.3390/jimaging7100197 |
[5] | Dicke RH. Scatter-hole cameras for X-rays and gamma rays. Astrophys J 153, L101 (1968). doi: 10.1086/180230 |
[6] | Ables JG. Fourier transform photography: a new method for X-ray astronomy. Publ Astron Soc Aust 1, 172–173 (1968). doi: 10.1017/S1323358000011292 |
[7] | Vijayakumar A, Kashter Y, Kelner R, Rosen J. Coded aperture correlation holography–a new type of incoherent digital holograms. Opt Express 24, 12430–12441 (2016). doi: 10.1364/OE.24.012430 |
[8] | Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt Express 25, 13883–13896 (2017). doi: 10.1364/OE.25.013883 |
[9] | Rai MR, Vijayakumar A, Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt Express 26, 18143–18154 (2018). doi: 10.1364/OE.26.018143 |
[10] | Richardson WH. Bayesian-based iterative method of image restoration. J Opt Soc Am 62, 55–59 (1972). doi: 10.1364/JOSA.62.000055 |
[11] | Lucy LB. An iterative technique for the rectification of observed distributions. Astron J 79, 745–754 (1974). doi: 10.1086/111605 |
[12] | Anand V, Han ML, Maksimovic J, Ng SH, Katkus T et al. Single-shot mid-infrared incoherent holography using Lucy–Richardson–Rosen algorithm. Opto-Electron Sci 1, 210006 (2022). doi: 10.29026/oes.2022.210006 |
[13] | Praveen A, Arockiaraj FG, Gopinath S, Smith D, Kahro T et al. Deep deconvolution of object information modulated by a refractive lens using Lucy–Richardson–Rosen Algorithm. Photonics 9, 625 (2022). doi: 10.3390/photonics9090625 |
[14] | Balasubramani V, Anand V, Reddy ANK, Rajeswary ASJF, Magistretti PJ et al. Fresnel incoherent correlation holography using Lucy–Richardson–Rosen algorithm. In Proceedings of the Digital Holography and Three-Dimensional Imaging 2020 Th2A-1 (Optica Publishing Group, 2022); http://doi.org/10.1364/DH.2022.Th2A.1. |
Schematic of IRM system at Australian Synchrotron. Please see ref.12 for detailed information.
(a) Lucy–Richardson–Rosen algorithm. O: object; OH: object hologram, also used as the initial guess solution R1; PSF: point spread function; OTF: – optical transfer function; ×: element by element product;