Abraham E, Zhou JX, Liu ZW. Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field. Opto-Electron Adv 6, 220163 (2023). doi: 10.29026/oea.2023.220163
Citation: Abraham E, Zhou JX, Liu ZW. Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field. Opto-Electron Adv 6, 220163 (2023). doi: 10.29026/oea.2023.220163

Article Open Access

Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field

More Information
  • Structured illumination microscopy (SIM) is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity. The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small. In this work, we propose and experimentally demonstrate a low cost, easy to implement, novel technique called speckle structured illumination endoscopy (SSIE) to enhance the resolution of a wide field endoscope with large depth of field. Here, speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction. Our approach is insensitive to the 3D morphology of the specimen, or the deformation of illuminations used. It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics. We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic (WLE) system. The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field, which might be beneficial to the practice of clinical endoscopy.
  • 加载中
  • [1] Lopez-Ceron M, van den Broek FJC, Mathus-Vliegen EM, Boparai KS, van Eeden S et al. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis. Gastrointest Endosc 77, 542–550 (2013). doi: 10.1016/j.gie.2012.11.033

    CrossRef Google Scholar

    [2] Anagnostopoulos GK, Yao K, Kaye P, Fogden E, Fortun P et al. High-resolution magnification endoscopy can reliably identify normal gastric mucosa, Helicobacter pylori-associated gastritis, and gastric atrophy. Endoscopy 39, 202–207 (2007). doi: 10.1055/s-2006-945056

    CrossRef Google Scholar

    [3] Bruno MJ. Magnification endoscopy, high resolution endoscopy, and chromoscopy; towards a better optical diagnosis. Gut 52, iv7–iv11 (2003). doi: 10.1136/gut.52.1.7

    CrossRef Google Scholar

    [4] Rust MJ, Bates M, Zhuang XW. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793–796 (2006). doi: 10.1038/nmeth929

    CrossRef Google Scholar

    [5] Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91, 4258–4272 (2006). doi: 10.1529/biophysj.106.091116

    CrossRef Google Scholar

    [6] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780–782 (1994). doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [7] Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198, 82–87 (2000). doi: 10.1046/j.1365-2818.2000.00710.x

    CrossRef Google Scholar

    [8] Heintzmann R, Jovin TM, Cremer C. Saturated patterned excitation microscopy: a concept for optical resolution improvement. J Opt Soc Am A 19, 1599–1609 (2002). doi: 10.1364/JOSAA.19.001599

    CrossRef Google Scholar

    [9] Lee YU, Zhao JX, Ma Q, Khorashad LK, Posner C et al. Metamaterial assisted illumination nanoscopy via random super-resolution speckles. Nat Commun 12, 1559 (2021). doi: 10.1038/s41467-021-21835-8

    CrossRef Google Scholar

    [10] Liu ZW. Plasmonics and metamaterials based super-resolution imaging (Conference Presentation). Proc SPIE 10194, 101940M (2017). doi: 10.1117/12.2263385

    CrossRef Google Scholar

    [11] Wei FF, Liu ZW. Plasmonic structured illumination microscopy. Nano Lett 10, 2531–2536 (2010). doi: 10.1021/nl1011068

    CrossRef Google Scholar

    [12] Fernández-Domínguez AI, Liu ZW, Pendry JB. Coherent four-fold super-resolution imaging with composite photonic–plasmonic structured illumination. ACS Photonics 2, 341–348 (2015). doi: 10.1021/ph500342g

    CrossRef Google Scholar

    [13] Goetz M, Watson A, Kiesslich R. Confocal laser endomicroscopy in gastrointestinal diseases. J Biophotonics 4, 498–508 (2011). doi: 10.1002/jbio.201100022

    CrossRef Google Scholar

    [14] Jabbour JM, Saldua MA, Bixler JN, Maitland KC. Confocal endomicroscopy: instrumentation and medical applications. Ann Biomed Eng 40, 378–397 (2012). doi: 10.1007/s10439-011-0426-y

    CrossRef Google Scholar

    [15] Elliott AD. Confocal microscopy: principles and modern practices. Curr Protoc Cytom 92, e68 (2020). doi: 10.1002/cpcy.68

    CrossRef Google Scholar

    [16] Ilie MA, Caruntu C, Lupu M, Lixandru D, Tampa M et al. Current and future applications of confocal laser scanning microscopy imaging in skin oncology. Oncol Lett 17, 4102–4111 (2019). doi: 10.3892/ol.2019.10066

    CrossRef Google Scholar

    [17] Meining A, Saltzman JR, Travis AC. Confocal laser endomicroscopy and endocytoscopy (2020). https://www.uptodate.com/contents/confocal-laser-endomicroscopy-and-endocytoscopy

    Google Scholar

    [18] Chang Tou Pin et al. Probe-based confocal laser endomicroscopy: an evaluation of its role towards real-time, in vivo, in situ intraoperative applications. Imperial College London (2016).

    Google Scholar

    [19] Wijsmuller AR, Ghnassia JP, Varatharajah S, Schaeffer M, Leroy J et al. Prospective trial on probe-based confocal laser endomicroscopy for the identification of the distal limit in rectal adenocarcinoma. Surg Innov 25, 313–322 (2018). doi: 10.1177/1553350618773011

    CrossRef Google Scholar

    [20] Singh H, Schiff GD, Grabe ML, Igho O, Thompson MJ. The global burden of diagnostic errors in primary care. BMJ Qual Saf 26, 484–494 (2016). doi: 10.1136/bmjqs-2016-005401

    CrossRef Google Scholar

    [21] Kurniawan N, Keuchel M. Flexible gastro-intestinal endoscopy clinical challenges and technical achievements. Comput Struct Biotechnol J 15, 168–179 (2017). doi: 10.1016/j.csbj.2017.01.004

    CrossRef Google Scholar

    [22] Moore LE. The advantages and disadvantages of endoscopy. Clin Tech Small Anim Pract 18, 250–253 (2003). doi: 10.1016/S1096-2867(03)00071-9

    CrossRef Google Scholar

    [23] Banerjee R, Reddy DN. Advances in endoscopic imaging: advantages and limitations. J Dig Endosc 3, 7–12 (2012). doi: 10.4103/0976-5042.95023

    CrossRef Google Scholar

    [24] ASGE Technology Committee, Chauhan SS, Dayyeh BKA, Bhat YM, Gottlieb KT et al. Confocal laser endomicroscopy. Gastrointest Endosc 80, 928–938 (2014). doi: 10.1016/j.gie.2014.06.021

    CrossRef Google Scholar

    [25] Mudry E, Belkebir K, Girard J, Savatier J, Le Moal E et al. Structured illumination microscopy using unknown speckle patterns. Nat Photonics 6, 312–315 (2012). doi: 10.1038/nphoton.2012.83

    CrossRef Google Scholar

    [26] Yeh LH, Chowdhury S, Repina NA, Waller L. Speckle-structured illumination for 3D phase and fluorescence computational microscopy. Biomed Opt Express 10, 3635–3653 (2019). doi: 10.1364/BOE.10.003635

    CrossRef Google Scholar

    [27] Yeh LH, Chowdhury S, Waller L. Computational structured illumination for high-content fluorescence and phase microscopy. Biomed Opt Express 10, 1978–1998 (2019). doi: 10.1364/BOE.10.001978

    CrossRef Google Scholar

    [28] Ponsetto JL, Wei FF, Liu ZW. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging. Nanoscale 6, 5807–5812 (2014). doi: 10.1039/C4NR00443D

    CrossRef Google Scholar

    [29] Min JH, Jang J, Keum D, Ryu SW, Choi C et al. Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery. Sci Rep 3, 2075 (2013). doi: 10.1038/srep02075

    CrossRef Google Scholar

    [30] Kim M, Park C, Rodriguez C, Park Y, Cho YH. Superresolution imaging with optical fluctuation using speckle patterns illumination. Sci Rep 5, 16525 (2015). doi: 10.1038/srep16525

    CrossRef Google Scholar

    [31] Ayuk R, Giovannini H, Jost A, Mudry E, Girard J et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm. Opt Lett 38, 4723–4726 (2013). doi: 10.1364/OL.38.004723

    CrossRef Google Scholar

    [32] Hoffman ZR, DiMarzio CA. Structured illumination microscopy using random intensity incoherent reflectance. J Biomed Opt 18, 061216 (2013). doi: 10.1117/1.JBO.18.6.061216

    CrossRef Google Scholar

    [33] Chaigne T, Gateau J, Allain M, Katz O, Gigan S et al. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination. Optica 3, 54–57 (2016). doi: 10.1364/OPTICA.3.000054

    CrossRef Google Scholar

    [34] García J, Zalevsky Z, Fixler D. Synthetic aperture super resolution by speckle pattern projection. Opt Express 13, 6073–6078 (2005). doi: 10.1364/OPEX.13.006073

    CrossRef Google Scholar

    [35] Clancy NT, Li R, Rogers K, Driscoll P, Excel P et al. Development and evaluation of a light-emitting diode endoscopic light source, advanced biomedical and clinical diagnostic systems. Proc SPIE 8214, 82140R (2012). doi: 10.1117/12.909331

    CrossRef Google Scholar

    [36] ASGE Technology Committee, Varadarajulu S, Banerjee S, Barth BA, Desilets DJ et al. GI endoscopes. Gastrointest Endosc 74, 1–6.e6 (2011). doi: 10.1016/j.gie.2011.01.061

    CrossRef Google Scholar

    [37] Waddington DEJ, Hindley N, Koonjoo N, Chiu C, Reynolds T et al. On real-time image reconstruction with neural networks for MRI-guided radiotherapy. arXiv: 2202.05267 (2022). https://doi.org/10.48550/arXiv.2202.05267

    Google Scholar

    [38] Wu DF, Kim K, Li QZ. Computationally efficient deep neural network for computed tomography image reconstruction. Med Phys 46, 4763–4776 (2019). doi: 10.1002/mp.13627

    CrossRef Google Scholar

    [39] Paderno A, Gennarini F, Sordi A, Montenegro C, Lancini D et al. Artificial intelligence in clinical endoscopy: Insights in the field of videomics. Front Surg 9, 933297 (2022). doi: 10.3389/fsurg.2022.933297

    CrossRef Google Scholar

  • Supplementary information for Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(5329) PDF downloads(801) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint