Citation: | Yan CC, Che ZL, Yang WY, Wang XD, Liao LS. Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity. Opto-Electron Adv 6, 230007 (2023). doi: 10.29026/oea.2023.230007 |
[1] | Jiang Y, Liu YY, Liu X, Lin H, Gao K et al. Organic solid-state lasers: a materials view and future development. Chem Soc Rev 49, 5885–5944 (2020). doi: 10.1039/D0CS00037J |
[2] | Kuehne AJC, Gather MC. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem Rev 116, 12823–12864 (2016). doi: 10.1021/acs.chemrev.6b00172 |
[3] | Yan CC, Wang XD, Liao LS. Thermally activated delayed fluorescent gain materials: harvesting triplet excitons for lasing. Adv Sci 9, 2200525 (2022). doi: 10.1002/advs.202200525 |
[4] | Wei GQ, Wang XD, Liao LS. Recent advances in 1D organic solid-state lasers. Adv Funct Mater 29, 1902981 (2019). doi: 10.1002/adfm.201902981 |
[5] | Wu JJ, Wang XD, Liao LS. Advances in energy-level systems of organic lasers. Laser Photonics Rev 16, 2200366 (2022). doi: 10.1002/lpor.202200366 |
[6] | Wang Y, Yu JY, Mao YF, Chen J, Wang S et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401–405 (2020). doi: 10.1038/s41586-020-2306-9 |
[7] | Ma RM, Oulton RF. Applications of nanolasers. Nat Nanotechnol 14, 12–22 (2019). doi: 10.1038/s41565-018-0320-y |
[8] | Hong GS, Antaris AL, Dai HJ. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1, 0010 (2017). doi: 10.1038/s41551-016-0010 |
[9] | Hill MT, Gather MC. Advances in small lasers. Nat Photonics 8, 908–918 (2014). doi: 10.1038/nphoton.2014.239 |
[10] | Yan RX, Gargas D, Yang PD. Nanowire photonics. Nat Photonics 3, 569–576 (2009). doi: 10.1038/nphoton.2009.184 |
[11] | Wei YC, Wang SF, Hu Y, Liao LS, Chen DG et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat Photonics 14, 570–577 (2020). |
[12] | Caspar JV, Kober EM, Sullivan BP, Meyer TJ. Application of the energy gap law to the decay of charge-transfer excited states. J Am Chem Soc 104, 630–632 (1982). doi: 10.1021/ja00366a051 |
[13] | Wu JJ, Wang XD, Liao LS. Near-infrared solid-state lasers based on small organic molecules. ACS Photonics 6, 2590–2599 (2019). doi: 10.1021/acsphotonics.9b01187 |
[14] | Gierschner J, Varghese S, Park SY. Organic single crystal lasers: a materials view. Adv Opt Mater 4, 348–364 (2016). doi: 10.1002/adom.201500531 |
[15] | Wei C, Gao MM, Hu FQ, Yao JN, Zhao YS. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv Opt Mater 4, 1009–1014 (2016). doi: 10.1002/adom.201600048 |
[16] | Dong HY, Wei YH, Zhang W, Wei C, Zhang CH et al. Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J Am Chem Soc 138, 1118–1121 (2016). doi: 10.1021/jacs.5b11525 |
[17] | Wei YH, Dong HY, Wei C, Zhang W, Yan YL et al. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal–organic frameworks. Adv Mater 28, 7424–7429 (2016). doi: 10.1002/adma.201601844 |
[18] | Wang K, Gao ZH, Zhang W, Yan YL, Song HW et al. Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Sci Adv 5, eaaw2953 (2019). doi: 10.1126/sciadv.aaw2953 |
[19] | Okada D, Azzini S, Nishioka H, Ichimura A, Tsuji H et al. π-Electronic co-crystal microcavities with selective vibronic-mode light amplification: toward förster resonance energy transfer lasing. Nano Lett 18, 4396–4402 (2018). doi: 10.1021/acs.nanolett.8b01442 |
[20] | Lin HT, Ma YX, Chen S, Wang XD. Hierarchical integration of organic core/shell microwires for advanced photonics. Angew Chem Int Ed 62, e202214214 (2023). doi: 10.1002/anie.202214214 |
[21] | Lv Q, Wang XD, Yu Y, Zhuo MP, Zheng M et al. Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys. Nat Commun 13, 3099 (2022). doi: 10.1038/s41467-022-30870-y |
[22] | Ma YX, Chen S, Lin HT, Zhuo SP, Wang XD. Organic low-dimensional crystals undergoing twinning deformation. Sci Bull 67, 1632–1635 (2022). doi: 10.1016/j.scib.2022.07.028 |
[23] | Su Y, Yao ZF, Wu B, Zhao YD, Han JY et al. Organic polymorph-based alloys for continuous regulation of emission colors. Matter 5, 1520–1531 (2022). doi: 10.1016/j.matt.2022.02.017 |
[24] | Zhang W, Yan YL, Gu JM, Yao JN, Zhao YS. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. Angew Chem Int Ed 54, 7125–7129 (2015). doi: 10.1002/anie.201502684 |
[25] | Cheng X, Wang K, Huang S, Zhang HY, Zhang HY et al. Organic crystals with near-infrared amplified spontaneous emissions based on 2’-hydroxychalcone derivatives: subtle structure modification but great property change. Angew Chem Int Ed 54, 8369–8373 (2015). doi: 10.1002/anie.201503914 |
[26] | Yan CC, Wang XD, Liao LS. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics 7, 1355–1366 (2020). doi: 10.1021/acsphotonics.0c00407 |
[27] | Padalkar VS, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 45, 169–202 (2016). doi: 10.1039/C5CS00543D |
[28] | Kwon JE, Park SY. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23, 3615–3642 (2011). doi: 10.1002/adma.201102046 |
[29] | Chou P, McMorrow D, Aartsma TJ, Kasha M. The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88, 4596–4599 (1984). doi: 10.1021/j150664a032 |
[30] | Wei GQ, Yu Y, Zhuo MP, Wang XD, Liao LS. Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens. J Mater Chem C 8, 11916–11921 (2020). doi: 10.1039/D0TC02881A |
[31] | Yang WY, Lai RC, Wu JJ, Yu YJ, Yan CC et al. Deepening insights into near-infrared excited-state intramolecular proton transfer lasing: the charm of resonance-assisted hydrogen bonds. Adv Funct Mater 32, 2204129 (2022). doi: 10.1002/adfm.202204129 |
[32] | Mai VTN, Shukla A, Mamada M, Maedera S, Shaw PE et al. Low amplified spontaneous emission threshold and efficient electroluminescence from a carbazole derivatized excited-state intramolecular proton transfer dye. ACS Photonics 5, 4447–4455 (2018). doi: 10.1021/acsphotonics.8b00907 |
[33] | Chen KY, Hsieh CC, Cheng YM, Lai CH, Chou PT. Extensive spectral tuning of the proton transfer emission from 550 to 675 nm via a rational derivatization of 10-hydroxybenzo[h]quinoline. Chem Commun 42, 4395–4397 (2006). doi: 10.1039/B610274C |
[34] | Wang XD, Liao Q, Lu XM, Li H, Xu ZZ et al. Shape-engineering of self-assembled organic single microcrystal as optical microresonator for laser applications. Sci Rep 4, 7011 (2014). doi: 10.1038/srep07011 |
[35] | Cheng X, Zhang YF, Han SH, Li F, Zhang HY et al. Multicolor amplified spontaneous emissions based on organic polymorphs that undergo excited-state intramolecular proton transfer. Chem Eur J 22, 4899–4903 (2016). doi: 10.1002/chem.201600355 |
[36] | Che ZL, Yan CC, Wang XD, Liao LS. Organic near-infrared luminescent materials based on excited state intramolecular proton transfer process. Chin J Chem 40, 2468–2481 (2022). doi: 10.1002/cjoc.202200313 |
[37] | Wang XD, Liao Q, Li H, Bai SM, Wu YS et al. Near-infrared lasing from small-molecule organic hemispheres. J Am Chem Soc 137, 9289–9295 (2015). doi: 10.1021/jacs.5b03051 |
[38] | Wang XD, Li ZZ, Zhuo MP, Wu YS, Chen S et al. Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater 27, 1703470 (2017). doi: 10.1002/adfm.201703470 |
[39] | Wang XD, Li ZZ, Li SF, Li H, Chen JW et al. Near-infrared organic single-crystal lasers with polymorphism-dependent excited state intramolecular proton transfer. Adv Opt Mater 5, 1700027 (2017). doi: 10.1002/adom.201700027 |
[40] | Wu JJ, Gao HF, Lai RC, Zhuo MP, Feng JG et al. Near-infrared organic single-crystal nanolaser arrays activated by excited-state intramolecular proton transfer. Matter 2, 1233–1243 (2020). doi: 10.1016/j.matt.2020.01.023 |
[41] | Venkatakrishnarao D, Narayana YSLV, Mohaiddon MA, Mamonov EA, Mitetelo N et al. Two-photon luminescence and second-harmonic generation in organic nonlinear surface comprised of self-assembled frustum shaped organic microlasers. Adv Mater 29, 1605260 (2017). doi: 10.1002/adma.201605260 |
[42] | Wu JJ, Zhuo MP, Lai RC, Zou SN, Yan CC et al. Cascaded excited-state intramolecular proton transfer towards near-infrared organic lasers beyond 850 nm. Angew Chem Int Ed 60, 9114–9119 (2021). doi: 10.1002/anie.202016786 |
[43] | Yan CC, Liu YP, Yang WY, Wu JJ, Wang XD et al. Excited-state intramolecular proton transfer parent core engineering for six-level system lasing toward 900 nm. Angew Chem Int Ed 61, e202210422 (2022). doi: 10.1002/anie.202210422 |
[44] | Yang WY, Yan CC, Wang XD, Liao LS. Recent progress on the excited-state multiple proton transfer process in organic molecules. Sci China Chem 65, 1843–1853 (2022). doi: 10.1007/s11426-022-1375-y |
[45] | Aoki R, Komatsu R, Goushi K, Mamada M, Ko SY et al. Realizing near-infrared laser dyes through a shift in excited-state absorption. Adv Opt Mater 9, 2001947 (2021). doi: 10.1002/adom.202001947 |
[46] | Yan CC, Wu JJ, Yang WY, Chen S, Lv Q et al. Precise synthesis of multilevel branched organic microwires for optical signal processing in the near infrared region. Sci China Mater 65, 1020–1027 (2022). doi: 10.1007/s40843-021-1800-0 |
[47] | Mao WY, Tang J, Dai LQ, He XY, Li J et al. A general strategy to design highly fluorogenic far-red and near-infrared tetrazine bioorthogonal probes. Angew Chem Int Ed 60, 2393–2397 (2021). doi: 10.1002/anie.202011544 |
[48] | Lim SJ, Seo J, Park SY. Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. J Am Chem Soc 128, 14542–14547 (2006). doi: 10.1021/ja0637604 |
[49] | Zhang ZY, Chen YA, Hung WY, Tang WF, Hsu YH et al. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5, 4-d]thiazole ESIPT system. Chem Mater 28, 8815–8824 (2016). doi: 10.1021/acs.chemmater.6b04707 |
[50] | Frizon TEA, Salla CAM, Grillo F, Rodembusch FS, Câmara VS et al. ESIPT-based benzazole-pyromellitic diimide derivatives. A thermal, electrochemical, and photochemical investigation. Spectrochim Acta A Mol Biomol Spectrosc 288, 122050 (2023). doi: 10.1016/j.saa.2022.122050 |
[51] | Peng CY, Shen JY, Chen YT, Wu PJ, Hung WY et al. Optically triggered stepwise double-proton transfer in an intramolecular proton relay: a case study of 1, 8-dihydroxy-2-naphthaldehyde. J Am Chem Soc 137, 14349–14357 (2015). doi: 10.1021/jacs.5b08562 |
[52] | Vérité PM, Guido CA, Jacquemin D. First-principles investigation of the double ESIPT process in a thiophene-based dye. Phys Chem Chem Phys 21, 2307–2317 (2019). doi: 10.1039/C8CP06969G |
[53] | Wróblewski T, Ushakou D. Stepwise excited-state double proton transfer and fluorescence decay analysis. J Fluoresc 33, 103–111 (2023). doi: 10.1007/s10895-022-03042-w |
[54] | Wei GQ, Wang XD, Liao LS. Recent advances in organic whispering-gallery mode lasers. Laser Photonics Rev 14, 2000257 (2020). doi: 10.1002/lpor.202000257 |
[55] | Venkatakrishnarao D, Mamonov EA, Murzina TV, Chandrasekar R. Advanced organic and polymer whispering-gallery-mode microresonators for enhanced nonlinear optical light. Adv Optical Mater 6, 1800343 (2018). doi: 10.1002/adom.201800343 |
[56] | Wang XD, Liao Q, Kong QH, Zhang Y, Xu ZZ et al. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks. Angew Chem Int Ed 53, 5863–5867 (2014). doi: 10.1002/anie.201310659 |
[57] | Matsushima T, Yoshida S, Inada K, Esaki Y, Fukunaga T et al. Degradation mechanism and stability improvement strategy for an organic laser gain material 4, 4'-Bis[(N-carbazole)styryl]biphenyl (BSBCz). Adv Funct Mater 29, 1807148 (2019). doi: 10.1002/adfm.201807148 |
Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity |
(a) Chemical structures of the template and target compounds. (b) The normalized UV‒vis absorption and PL spectra of HPJP and DHN-DJP in DCM solutions.
(a) Diagram of the ESDPT process in DHNs. (b) Calculated relative energies (kcal/mol) on S0 and S1 of DHN-DMP in vacuum.
(a, c, e) The normalized UV‒vis absorption and PL spectra of DMN- and DHN-doped PS films. (b, d, f) The decay plots and fitted curves of DHNs.
(a) Schematic diagram of a single DHN-doped microsphere. (b) PL micrograph of a single DHN-doped microsphere. Inset: scanning electron microscopy image of a single DHN-doped microsphere. (c) Partial magnifications of PL spectra of DHN-doped microspheres with different sizes. (d) The related curve of λ2/Δλ (λ: emission wavelength; Δλ: the space between the individual resonance peaks) at 700 nm versus D (D: diameter of selected microsphere). Inset: the simulated electric energy density in the cross-section of a microsphere with dimeter D = 10 µm. Red corresponds to the highest field density and blue is the lowest field density.
PL spectra of (a) DHN-DMP-, (d) DHN-DPP- and (g) DHN-DJP-doped PS microspheres under different pump densities. (b) Plots of lasing intensity as a function of pump density of a (b) DHN-DMP-, (e) DHN-DPP- and (h) DHN-DJP-doped PS microsphere. Insets: brightfield micrographs of the PS microspheres used in laser measurements. (c) 2D mappings of lasing intensity versus the number of pulses of a (c) DHN-DMP-, (f) DHN-DPP- and (i) DHN-DJP-doped PS microsphere, pumping density: 47.8 µJ/cm2.