Yan CC, Che ZL, Yang WY, Wang XD, Liao LS. Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity. Opto-Electron Adv 6, 230007 (2023). doi: 10.29026/oea.2023.230007
Citation: Yan CC, Che ZL, Yang WY, Wang XD, Liao LS. Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity. Opto-Electron Adv 6, 230007 (2023). doi: 10.29026/oea.2023.230007

Article Open Access

Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity

More Information
  • Organic lasers that emit light in the deep-red and near-infrared (NIR) region are of essential importance in laser communication, night vision, bioimaging, and information-secured displays but are still challenging because of the lack of proper gain materials. Herein, a new molecular design strategy that operates by merging two excited-state intramolecular proton transfer-active molecules into one excited-state double proton transfer (ESDPT)-active molecule was demonstrated. Based on this new strategy, three new materials were designed and synthesized with two groups of intramolecular resonance-assisted hydrogen bonds, in which the ESDPT process was proven to proceed smoothly based on theoretical calculations and experimental results of steady-state and transient spectra. Benefiting from the effective six-level system constructed by the ESDPT process, all newly designed materials showed low threshold laser emissions at approximately 720 nm when doped in PS microspheres, which in turn proved the existence of the second proton transfer process. More importantly, our well-developed NIR organic lasers showed high laser stability, which can maintain high laser intensity after 12000 pulse lasing, which is essential in practical applications. This work provides a simple and effective method for the development of NIR organic gain materials and demonstrates the ESDPT mechanism for NIR lasing.
  • 加载中
  • [1] Jiang Y, Liu YY, Liu X, Lin H, Gao K et al. Organic solid-state lasers: a materials view and future development. Chem Soc Rev 49, 5885–5944 (2020). doi: 10.1039/D0CS00037J

    CrossRef Google Scholar

    [2] Kuehne AJC, Gather MC. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem Rev 116, 12823–12864 (2016). doi: 10.1021/acs.chemrev.6b00172

    CrossRef Google Scholar

    [3] Yan CC, Wang XD, Liao LS. Thermally activated delayed fluorescent gain materials: harvesting triplet excitons for lasing. Adv Sci 9, 2200525 (2022). doi: 10.1002/advs.202200525

    CrossRef Google Scholar

    [4] Wei GQ, Wang XD, Liao LS. Recent advances in 1D organic solid-state lasers. Adv Funct Mater 29, 1902981 (2019). doi: 10.1002/adfm.201902981

    CrossRef Google Scholar

    [5] Wu JJ, Wang XD, Liao LS. Advances in energy-level systems of organic lasers. Laser Photonics Rev 16, 2200366 (2022). doi: 10.1002/lpor.202200366

    CrossRef Google Scholar

    [6] Wang Y, Yu JY, Mao YF, Chen J, Wang S et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401–405 (2020). doi: 10.1038/s41586-020-2306-9

    CrossRef Google Scholar

    [7] Ma RM, Oulton RF. Applications of nanolasers. Nat Nanotechnol 14, 12–22 (2019). doi: 10.1038/s41565-018-0320-y

    CrossRef Google Scholar

    [8] Hong GS, Antaris AL, Dai HJ. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1, 0010 (2017). doi: 10.1038/s41551-016-0010

    CrossRef Google Scholar

    [9] Hill MT, Gather MC. Advances in small lasers. Nat Photonics 8, 908–918 (2014). doi: 10.1038/nphoton.2014.239

    CrossRef Google Scholar

    [10] Yan RX, Gargas D, Yang PD. Nanowire photonics. Nat Photonics 3, 569–576 (2009). doi: 10.1038/nphoton.2009.184

    CrossRef Google Scholar

    [11] Wei YC, Wang SF, Hu Y, Liao LS, Chen DG et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat Photonics 14, 570–577 (2020).

    Google Scholar

    [12] Caspar JV, Kober EM, Sullivan BP, Meyer TJ. Application of the energy gap law to the decay of charge-transfer excited states. J Am Chem Soc 104, 630–632 (1982). doi: 10.1021/ja00366a051

    CrossRef Google Scholar

    [13] Wu JJ, Wang XD, Liao LS. Near-infrared solid-state lasers based on small organic molecules. ACS Photonics 6, 2590–2599 (2019). doi: 10.1021/acsphotonics.9b01187

    CrossRef Google Scholar

    [14] Gierschner J, Varghese S, Park SY. Organic single crystal lasers: a materials view. Adv Opt Mater 4, 348–364 (2016). doi: 10.1002/adom.201500531

    CrossRef Google Scholar

    [15] Wei C, Gao MM, Hu FQ, Yao JN, Zhao YS. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv Opt Mater 4, 1009–1014 (2016). doi: 10.1002/adom.201600048

    CrossRef Google Scholar

    [16] Dong HY, Wei YH, Zhang W, Wei C, Zhang CH et al. Broadband tunable microlasers based on controlled intramolecular charge-transfer process in organic supramolecular microcrystals. J Am Chem Soc 138, 1118–1121 (2016). doi: 10.1021/jacs.5b11525

    CrossRef Google Scholar

    [17] Wei YH, Dong HY, Wei C, Zhang W, Yan YL et al. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal–organic frameworks. Adv Mater 28, 7424–7429 (2016). doi: 10.1002/adma.201601844

    CrossRef Google Scholar

    [18] Wang K, Gao ZH, Zhang W, Yan YL, Song HW et al. Exciton funneling in light-harvesting organic semiconductor microcrystals for wavelength-tunable lasers. Sci Adv 5, eaaw2953 (2019). doi: 10.1126/sciadv.aaw2953

    CrossRef Google Scholar

    [19] Okada D, Azzini S, Nishioka H, Ichimura A, Tsuji H et al. π-Electronic co-crystal microcavities with selective vibronic-mode light amplification: toward förster resonance energy transfer lasing. Nano Lett 18, 4396–4402 (2018). doi: 10.1021/acs.nanolett.8b01442

    CrossRef Google Scholar

    [20] Lin HT, Ma YX, Chen S, Wang XD. Hierarchical integration of organic core/shell microwires for advanced photonics. Angew Chem Int Ed 62, e202214214 (2023). doi: 10.1002/anie.202214214

    CrossRef Google Scholar

    [21] Lv Q, Wang XD, Yu Y, Zhuo MP, Zheng M et al. Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys. Nat Commun 13, 3099 (2022). doi: 10.1038/s41467-022-30870-y

    CrossRef Google Scholar

    [22] Ma YX, Chen S, Lin HT, Zhuo SP, Wang XD. Organic low-dimensional crystals undergoing twinning deformation. Sci Bull 67, 1632–1635 (2022). doi: 10.1016/j.scib.2022.07.028

    CrossRef Google Scholar

    [23] Su Y, Yao ZF, Wu B, Zhao YD, Han JY et al. Organic polymorph-based alloys for continuous regulation of emission colors. Matter 5, 1520–1531 (2022). doi: 10.1016/j.matt.2022.02.017

    CrossRef Google Scholar

    [24] Zhang W, Yan YL, Gu JM, Yao JN, Zhao YS. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. Angew Chem Int Ed 54, 7125–7129 (2015). doi: 10.1002/anie.201502684

    CrossRef Google Scholar

    [25] Cheng X, Wang K, Huang S, Zhang HY, Zhang HY et al. Organic crystals with near-infrared amplified spontaneous emissions based on 2’-hydroxychalcone derivatives: subtle structure modification but great property change. Angew Chem Int Ed 54, 8369–8373 (2015). doi: 10.1002/anie.201503914

    CrossRef Google Scholar

    [26] Yan CC, Wang XD, Liao LS. Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics 7, 1355–1366 (2020). doi: 10.1021/acsphotonics.0c00407

    CrossRef Google Scholar

    [27] Padalkar VS, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 45, 169–202 (2016). doi: 10.1039/C5CS00543D

    CrossRef Google Scholar

    [28] Kwon JE, Park SY. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23, 3615–3642 (2011). doi: 10.1002/adma.201102046

    CrossRef Google Scholar

    [29] Chou P, McMorrow D, Aartsma TJ, Kasha M. The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88, 4596–4599 (1984). doi: 10.1021/j150664a032

    CrossRef Google Scholar

    [30] Wei GQ, Yu Y, Zhuo MP, Wang XD, Liao LS. Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens. J Mater Chem C 8, 11916–11921 (2020). doi: 10.1039/D0TC02881A

    CrossRef Google Scholar

    [31] Yang WY, Lai RC, Wu JJ, Yu YJ, Yan CC et al. Deepening insights into near-infrared excited-state intramolecular proton transfer lasing: the charm of resonance-assisted hydrogen bonds. Adv Funct Mater 32, 2204129 (2022). doi: 10.1002/adfm.202204129

    CrossRef Google Scholar

    [32] Mai VTN, Shukla A, Mamada M, Maedera S, Shaw PE et al. Low amplified spontaneous emission threshold and efficient electroluminescence from a carbazole derivatized excited-state intramolecular proton transfer dye. ACS Photonics 5, 4447–4455 (2018). doi: 10.1021/acsphotonics.8b00907

    CrossRef Google Scholar

    [33] Chen KY, Hsieh CC, Cheng YM, Lai CH, Chou PT. Extensive spectral tuning of the proton transfer emission from 550 to 675 nm via a rational derivatization of 10-hydroxybenzo[h]quinoline. Chem Commun 42, 4395–4397 (2006). doi: 10.1039/B610274C

    CrossRef Google Scholar

    [34] Wang XD, Liao Q, Lu XM, Li H, Xu ZZ et al. Shape-engineering of self-assembled organic single microcrystal as optical microresonator for laser applications. Sci Rep 4, 7011 (2014). doi: 10.1038/srep07011

    CrossRef Google Scholar

    [35] Cheng X, Zhang YF, Han SH, Li F, Zhang HY et al. Multicolor amplified spontaneous emissions based on organic polymorphs that undergo excited-state intramolecular proton transfer. Chem Eur J 22, 4899–4903 (2016). doi: 10.1002/chem.201600355

    CrossRef Google Scholar

    [36] Che ZL, Yan CC, Wang XD, Liao LS. Organic near-infrared luminescent materials based on excited state intramolecular proton transfer process. Chin J Chem 40, 2468–2481 (2022). doi: 10.1002/cjoc.202200313

    CrossRef Google Scholar

    [37] Wang XD, Liao Q, Li H, Bai SM, Wu YS et al. Near-infrared lasing from small-molecule organic hemispheres. J Am Chem Soc 137, 9289–9295 (2015). doi: 10.1021/jacs.5b03051

    CrossRef Google Scholar

    [38] Wang XD, Li ZZ, Zhuo MP, Wu YS, Chen S et al. Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater 27, 1703470 (2017). doi: 10.1002/adfm.201703470

    CrossRef Google Scholar

    [39] Wang XD, Li ZZ, Li SF, Li H, Chen JW et al. Near-infrared organic single-crystal lasers with polymorphism-dependent excited state intramolecular proton transfer. Adv Opt Mater 5, 1700027 (2017). doi: 10.1002/adom.201700027

    CrossRef Google Scholar

    [40] Wu JJ, Gao HF, Lai RC, Zhuo MP, Feng JG et al. Near-infrared organic single-crystal nanolaser arrays activated by excited-state intramolecular proton transfer. Matter 2, 1233–1243 (2020). doi: 10.1016/j.matt.2020.01.023

    CrossRef Google Scholar

    [41] Venkatakrishnarao D, Narayana YSLV, Mohaiddon MA, Mamonov EA, Mitetelo N et al. Two-photon luminescence and second-harmonic generation in organic nonlinear surface comprised of self-assembled frustum shaped organic microlasers. Adv Mater 29, 1605260 (2017). doi: 10.1002/adma.201605260

    CrossRef Google Scholar

    [42] Wu JJ, Zhuo MP, Lai RC, Zou SN, Yan CC et al. Cascaded excited-state intramolecular proton transfer towards near-infrared organic lasers beyond 850 nm. Angew Chem Int Ed 60, 9114–9119 (2021). doi: 10.1002/anie.202016786

    CrossRef Google Scholar

    [43] Yan CC, Liu YP, Yang WY, Wu JJ, Wang XD et al. Excited-state intramolecular proton transfer parent core engineering for six-level system lasing toward 900 nm. Angew Chem Int Ed 61, e202210422 (2022). doi: 10.1002/anie.202210422

    CrossRef Google Scholar

    [44] Yang WY, Yan CC, Wang XD, Liao LS. Recent progress on the excited-state multiple proton transfer process in organic molecules. Sci China Chem 65, 1843–1853 (2022). doi: 10.1007/s11426-022-1375-y

    CrossRef Google Scholar

    [45] Aoki R, Komatsu R, Goushi K, Mamada M, Ko SY et al. Realizing near-infrared laser dyes through a shift in excited-state absorption. Adv Opt Mater 9, 2001947 (2021). doi: 10.1002/adom.202001947

    CrossRef Google Scholar

    [46] Yan CC, Wu JJ, Yang WY, Chen S, Lv Q et al. Precise synthesis of multilevel branched organic microwires for optical signal processing in the near infrared region. Sci China Mater 65, 1020–1027 (2022). doi: 10.1007/s40843-021-1800-0

    CrossRef Google Scholar

    [47] Mao WY, Tang J, Dai LQ, He XY, Li J et al. A general strategy to design highly fluorogenic far-red and near-infrared tetrazine bioorthogonal probes. Angew Chem Int Ed 60, 2393–2397 (2021). doi: 10.1002/anie.202011544

    CrossRef Google Scholar

    [48] Lim SJ, Seo J, Park SY. Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. J Am Chem Soc 128, 14542–14547 (2006). doi: 10.1021/ja0637604

    CrossRef Google Scholar

    [49] Zhang ZY, Chen YA, Hung WY, Tang WF, Hsu YH et al. Control of the reversibility of excited-state intramolecular proton transfer (ESIPT) reaction: host-polarity tuning white organic light emitting diode on a new thiazolo[5, 4-d]thiazole ESIPT system. Chem Mater 28, 8815–8824 (2016). doi: 10.1021/acs.chemmater.6b04707

    CrossRef Google Scholar

    [50] Frizon TEA, Salla CAM, Grillo F, Rodembusch FS, Câmara VS et al. ESIPT-based benzazole-pyromellitic diimide derivatives. A thermal, electrochemical, and photochemical investigation. Spectrochim Acta A Mol Biomol Spectrosc 288, 122050 (2023). doi: 10.1016/j.saa.2022.122050

    CrossRef Google Scholar

    [51] Peng CY, Shen JY, Chen YT, Wu PJ, Hung WY et al. Optically triggered stepwise double-proton transfer in an intramolecular proton relay: a case study of 1, 8-dihydroxy-2-naphthaldehyde. J Am Chem Soc 137, 14349–14357 (2015). doi: 10.1021/jacs.5b08562

    CrossRef Google Scholar

    [52] Vérité PM, Guido CA, Jacquemin D. First-principles investigation of the double ESIPT process in a thiophene-based dye. Phys Chem Chem Phys 21, 2307–2317 (2019). doi: 10.1039/C8CP06969G

    CrossRef Google Scholar

    [53] Wróblewski T, Ushakou D. Stepwise excited-state double proton transfer and fluorescence decay analysis. J Fluoresc 33, 103–111 (2023). doi: 10.1007/s10895-022-03042-w

    CrossRef Google Scholar

    [54] Wei GQ, Wang XD, Liao LS. Recent advances in organic whispering-gallery mode lasers. Laser Photonics Rev 14, 2000257 (2020). doi: 10.1002/lpor.202000257

    CrossRef Google Scholar

    [55] Venkatakrishnarao D, Mamonov EA, Murzina TV, Chandrasekar R. Advanced organic and polymer whispering-gallery-mode microresonators for enhanced nonlinear optical light. Adv Optical Mater 6, 1800343 (2018). doi: 10.1002/adom.201800343

    CrossRef Google Scholar

    [56] Wang XD, Liao Q, Kong QH, Zhang Y, Xu ZZ et al. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks. Angew Chem Int Ed 53, 5863–5867 (2014). doi: 10.1002/anie.201310659

    CrossRef Google Scholar

    [57] Matsushima T, Yoshida S, Inada K, Esaki Y, Fukunaga T et al. Degradation mechanism and stability improvement strategy for an organic laser gain material 4, 4'-Bis[(N-carbazole)styryl]biphenyl (BSBCz). Adv Funct Mater 29, 1807148 (2019). doi: 10.1002/adfm.201807148

    CrossRef Google Scholar

  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(3804) PDF downloads(690) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint