Zhang H, Feng L, Wang FY, Liu MZ, Zhang YY et al. Janus aramid nanofiber aerogel incorporating plasmonic nanoparticles for high-efficiency interfacial solar steam generation. Opto-Electron Adv 6, 220061 (2023). doi: 10.29026/oea.2023.220061
Citation: Zhang H, Feng L, Wang FY, Liu MZ, Zhang YY et al. Janus aramid nanofiber aerogel incorporating plasmonic nanoparticles for high-efficiency interfacial solar steam generation. Opto-Electron Adv 6, 220061 (2023). doi: 10.29026/oea.2023.220061

Article Open Access

Janus aramid nanofiber aerogel incorporating plasmonic nanoparticles for high-efficiency interfacial solar steam generation

More Information
  • These authors contributed equally to this work

  • *Corresponding author: T Xu, Email: xuting@nju.edu.cn
  • Interfacial solar steam generation (ISSG) is a novel and potential solution to global freshwater crisis. Here, based on a facile sol-gel fabrication process, we demonstrate a highly scalable Janus aramid nanofiber aerogel (JANA) as a high-efficiency ISSG device. JANA performs near-perfect broadband optical absorption, rapid photothermal conversion and effective water transportation. Owning to these features, efficient desalination of salty water and purification of municipal sewage are successfully demonstrated using JANA. In addition, benefiting from the mechanical property and chemical stability of constituent aramid nanofibers, JANA not only possesses outstanding flexibility and fire-resistance properties, but its solar steaming efficiency is also free from the influences of elastic deformations and fire treatments. We envision JANA provides a promising platform for mass-production of high-efficiency ISSG devices with supplementary capabilities of convenient transportation and long-term storage, which could further promote the realistic applications of ISSG technology.
  • 加载中
  • [1] Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW et al. Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci USA 111, 3245–3250 (2014). doi: 10.1073/pnas.1222460110

    CrossRef Google Scholar

    [2] Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011). doi: 10.1126/science.1200488

    CrossRef Google Scholar

    [3] Fritzmann C, Löwenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 216, 1–76 (2007). doi: 10.1016/j.desal.2006.12.009

    CrossRef Google Scholar

    [4] El-Dessouky HT, Ettouney HM, Al-Roumi Y. Multi-stage flash desalination: present and future outlook. Chem Eng J 73, 173–190 (1999). doi: 10.1016/S1385-8947(99)00035-2

    CrossRef Google Scholar

    [5] Wang WB, Aleid S, Shi YF, Zhang CL, Li RY et al. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 5, 1873–1887 (2021). doi: 10.1016/j.joule.2021.05.010

    CrossRef Google Scholar

    [6] Li RY, Shi Y, Wu MC, Hong S, Wang P. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle. Nat Sustain 3, 636–643 (2020). doi: 10.1038/s41893-020-0535-4

    CrossRef Google Scholar

    [7] Yao HZ, Zhang PP, Huang YX, Cheng HH, Li C et al. Highly efficient clean water production from contaminated air with a wide humidity range. Adv Mater 32, 1905875 (2020). doi: 10.1002/adma.201905875

    CrossRef Google Scholar

    [8] Tao P, Ni G, Song CY, Shang W, Wu JB et al. Solar-driven interfacial evaporation. Nat Energy 3, 1031–1041 (2018). doi: 10.1038/s41560-018-0260-7

    CrossRef Google Scholar

    [9] Wang ZX, Horseman T, Straub AP, Yip NY, Li DY et al. Pathways and challenges for efficient solar-thermal desalination. Sci Adv 5, eaax0763 (2019). doi: 10.1126/sciadv.aax0763

    CrossRef Google Scholar

    [10] Mi BX. Interfacial solar evaporator for brine treatment: the importance of resilience to high salinity. Natl Sci Rev 8, nwab118 (2021). doi: 10.1093/nsr/nwab118

    CrossRef Google Scholar

    [11] Feng L, Huo PC, Liang YZ, Xu T. Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv Mater 32, 1903787 (2020). doi: 10.1002/adma.201903787

    CrossRef Google Scholar

    [12] Wang ZH, Liu YM, Tao P, Shen QC, Yi N et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 10, 3234–3239 (2014). doi: 10.1002/smll.201401071

    CrossRef Google Scholar

    [13] Zhou L, Tan YL, Ji DX, Zhu B, Zhang P et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2, e1501227 (2016). doi: 10.1126/sciadv.1501227

    CrossRef Google Scholar

    [14] Zhou L, Tan YL, Wang JY, Xu WC, Yuan Y et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics 10, 393–398 (2016). doi: 10.1038/nphoton.2016.75

    CrossRef Google Scholar

    [15] Bae K, Kang GM, Cho SK, Park W, Kim K et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat Commun 6, 10103 (2015). doi: 10.1038/ncomms10103

    CrossRef Google Scholar

    [16] Shi Y, Ilic O, Atwater HA, Greer JR. All-day fresh water harvesting by microstructured hydrogel membranes. Nat Commun 12, 2797 (2021). doi: 10.1038/s41467-021-23174-0

    CrossRef Google Scholar

    [17] Qi DP, Liu Y, Liu YB, Liu ZY, Luo YF et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv Mater 32, 2004401 (2020). doi: 10.1002/adma.202004401

    CrossRef Google Scholar

    [18] Shao Y, Jiang ZP, Zhang YJ, Wang T, Zhao P et al. All-Poly(ionic liquid) Membrane-Derived porous carbon membranes: Scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 12, 11704–11710 (2018). doi: 10.1021/acsnano.8b07526

    CrossRef Google Scholar

    [19] Liu FH, Zhao BY, Wu WP, Yang HY, Ning YS et al. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Adv Funct Mater 28, 1803266 (2018). doi: 10.1002/adfm.201803266

    CrossRef Google Scholar

    [20] Li JL, Wang XY, Lin ZH, Xu N, Li XQ et al. Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4, 928–937 (2020). doi: 10.1016/j.joule.2020.02.014

    CrossRef Google Scholar

    [21] Ren HY, Tang M, Guan BL, Wang KX, Yang JW et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv Mater 29, 1702590 (2017). doi: 10.1002/adma.201702590

    CrossRef Google Scholar

    [22] Zhang PP, Liu F, Liao QH, Yao HZ, Geng HY et al. A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation. Angew Chem Int Ed 57, 16343–16347 (2018). doi: 10.1002/anie.201810345

    CrossRef Google Scholar

    [23] Liang HX, Liao QH, Chen N, Liang Y, Lv GQ et al. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew Chem Int Ed 58, 19041–19046 (2019). doi: 10.1002/anie.201911457

    CrossRef Google Scholar

    [24] Yang H, Sun YH, Peng MW, Cai MJ, Zhao B et al. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity. ACS Nano 16, 2511–2520 (2022). doi: 10.1021/acsnano.1c09124

    CrossRef Google Scholar

    [25] Xu N, Hu XZ, Xu WC, Li XQ, Zhou L et al. Mushrooms as efficient solar steam-generation devices. Adv Mater 29, 1606762 (2017). doi: 10.1002/adma.201606762

    CrossRef Google Scholar

    [26] Li W, Chen ZJ, Yu HP, Li J, Liu SX. Wood-derived carbon materials and light-emitting materials. Adv Mater 33, 2000596 (2021). doi: 10.1002/adma.202000596

    CrossRef Google Scholar

    [27] Guo YH, Lu HY, Zhao F, Zhou XY, Shi W et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv Mater 32, 1907061 (2020). doi: 10.1002/adma.201907061

    CrossRef Google Scholar

    [28] Cao SS, Rathi P, Wu XH, Ghim D, Jun YS et al. Cellulose nanomaterials in interfacial evaporators for desalination: a "natural" choice. Adv Mater 33, 2000922 (2021). doi: 10.1002/adma.202000922

    CrossRef Google Scholar

    [29] Li N, Qiao LF, He JT, Wang SX, Yu LM et al. Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv Funct Mater 31, 2008681 (2021). doi: 10.1002/adfm.202008681

    CrossRef Google Scholar

    [30] Wu XH, Cao SS, Ghim D, Jiang QS, Singamaneni S et al. A thermally engineered polydopamine and bacterial nanocellulose bilayer membrane for photothermal membrane distillation with bactericidal capability. Nano Energy 79, 105353 (2021). doi: 10.1016/j.nanoen.2020.105353

    CrossRef Google Scholar

    [31] Liu Y, Xiong J, Li AL, Wang RW, Wang LM et al. Plasmonic silver nanoparticle-decorated electrospun nanofiber membrane for interfacial solar vapor generation. Text Res J 91, 2624–2634 (2021). doi: 10.1177/00405175211014966

    CrossRef Google Scholar

    [32] Guo YH, Zhou XY, Zhao F, Bae J, Rosenberger B et al. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 13, 7913–7919 (2019). doi: 10.1021/acsnano.9b02301

    CrossRef Google Scholar

    [33] Lu Y, Fan DQ, Wang YD, Xu HL, Lu CH et al. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15, 10366–10376 (2021). doi: 10.1021/acsnano.1c02578

    CrossRef Google Scholar

    [34] Zhou XY, Guo YH, Zhao F, Shi W, Yu GH. Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv Mater 32, 2007012 (2020). doi: 10.1002/adma.202007012

    CrossRef Google Scholar

    [35] Guo YH, Zhao F, Zhou XY, Chen ZC, Yu GH. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett 19, 2530–2536 (2019). doi: 10.1021/acs.nanolett.9b00252

    CrossRef Google Scholar

    [36] Zang LL, Sun LG, Zhang SC, Finnerty C, Kim A et al. Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chem Eng J 422, 129998 (2021). doi: 10.1016/j.cej.2021.129998

    CrossRef Google Scholar

    [37] Dong XY, Cao LT, Si Y, Ding B, Deng HB. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv Mater 32, 1908269 (2020). doi: 10.1002/adma.201908269

    CrossRef Google Scholar

    [38] Yang MQ, Tan CF, Lu WH, Zeng KY, Ho GW. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv Funct Mater 30, 2004460 (2020). doi: 10.1002/adfm.202004460

    CrossRef Google Scholar

    [39] Wu X, Robson ME, Phelps JL, Tan JS, Shao B et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 56, 708–715 (2019). doi: 10.1016/j.nanoen.2018.12.008

    CrossRef Google Scholar

    [40] Zhao X, Peng LM, Tang CY, Pu JH, Zha XJ et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Mater Horiz 7, 855–865 (2020). doi: 10.1039/C9MH01443H

    CrossRef Google Scholar

    [41] Zhao L, Bhatia B, Zhang LN, Strobach E, Leroy A et al. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020). doi: 10.1016/j.joule.2020.10.007

    CrossRef Google Scholar

    [42] Xu Y, Guo ZZ, Wang J, Chen ZH, Yin JC et al. Harvesting solar energy by flowerlike carbon cloth nanocomposites for simultaneous generation of clean water and electricity. ACS Appl Mater Interfaces 13, 27129–27139 (2021). doi: 10.1021/acsami.1c07091

    CrossRef Google Scholar

    [43] Xiong ZC, Zhu YJ, Qin DD, Chen FF, Yang RL. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification. Small 14, 1803387 (2018). doi: 10.1002/smll.201803387

    CrossRef Google Scholar

    [44] Zhou B, Han GJ, Zhang Z, Li ZY, Feng YZ et al. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 184, 562–570 (2021). doi: 10.1016/j.carbon.2021.08.067

    CrossRef Google Scholar

    [45] Zhang H, Feng L, Liang YZ, Xu T. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption. Nanoscale 11, 437–443 (2019). doi: 10.1039/C8NR05276J

    CrossRef Google Scholar

    [46] Cao KQ, Siepermann CP, Yang M, Waas AM, Kotov NA et al. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv Funct Mater 23, 2072–2080 (2013). doi: 10.1002/adfm.201202466

    CrossRef Google Scholar

    [47] Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H et al. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110, 15700–15707 (2006). doi: 10.1021/jp061667w

    CrossRef Google Scholar

    [48] Zhao YY, Ren XL, Zheng ML, Jin F, Liu J et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv 4, 200101 (2021). doi: 10.29026/oea.2021.200101

    CrossRef Google Scholar

    [49] Zhao F, Zhou XY, Shi Y, Qian X, Alexander M et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 13, 489–495 (2018). doi: 10.1038/s41565-018-0097-z

    CrossRef Google Scholar

    [50] Chiavazzo E, Morciano M, Viglino F, Fasano M, Asinari P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat Sustain 1, 763–772 (2018). doi: 10.1038/s41893-018-0186-x

    CrossRef Google Scholar

    [51] Alabastri A, Dongare PD, Neumann O, Metz J, Adebiyi I et al. Resonant energy transfer enhances solar thermal desalination. Energy Environ Sci 13, 968–976 (2020). doi: 10.1039/C9EE03256H

    CrossRef Google Scholar

  • Supplementary information for Janus aramid nanofiber aerogel incorporating plasmonic nanoparticles for high-efficiency interfacial solar steam generation
    Supplementary video
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(5897) PDF downloads(808) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint