Yu W, Yao N, Pan J, Fang W, Li X et al. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron Adv 5, 210101 (2022). doi: 10.29026/oea.2022.210101
Citation: Yu W, Yao N, Pan J, Fang W, Li X et al. Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electron Adv 5, 210101 (2022). doi: 10.29026/oea.2022.210101

Original Article Open Access

Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers

More Information
  • Flexible strain sensors play an important role in electronic skins, wearable medical devices, and advanced robots. Herein, a highly sensitive and fast response optical strain sensor with two evanescently coupled optical micro/nanofibers (MNFs) embedded in a polydimethylsiloxane (PDMS) film is proposed. The strain sensor exhibits a gauge factor as high as 64.5 for strain ≤ 0.5% and a strain resolution of 0.0012% which corresponds to elongation of 120 nm on a 1 cm long device. As a proof-of-concept, highly sensitive fingertip pulse measurement is realized. The properties of fast temporal frequency response up to 30 kHz and a pressure sensitivity of 102 kPa−1 enable the sensor for sound detection. Such versatile sensor could be of great use in physiological signal monitoring, voice recognition and micro-displacement detection.
  • 加载中
  • [1] Wang XD, Dong L, Zhang HL, Yu RM, Pan CF et al. Recent progress in electronic skin. Adv Sci 2, 1500169 (2015). doi: 10.1002/advs.201500169

    CrossRef Google Scholar

    [2] Yang JC, Mun J, Kwon SY, Park S, Bao ZN et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31, 1904765 (2019). doi: 10.1002/adma.201904765

    CrossRef Google Scholar

    [3] Someya T, Bao ZN, Malliaras G G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016). doi: 10.1038/nature21004

    CrossRef Google Scholar

    [4] Chen Y, Zhang YC, Liang ZW, Cao Y, Han ZY et al. Flexible inorganic bioelectronics. npj Flex Electron 4, 2 (2020). doi: 10.1038/s41528-020-0065-1

    CrossRef Google Scholar

    [5] Takei K, Honda W, Harada S, Arie T, Akita S. Toward flexible and wearable human-interactive health-monitoring devices. Adv Healthc Mater 4, 487–500 (2015). doi: 10.1002/adhm.201400546

    CrossRef Google Scholar

    [6] Liu YH, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017). doi: 10.1021/acsnano.7b04898

    CrossRef Google Scholar

    [7] Tan FZ, Lyu WM, Chen SY, Liu ZY, Yu CY. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv 3, 190034 (2020). doi: 10.29026/oea.2020.190034

    CrossRef Google Scholar

    [8] Whitesides GM. Soft robotics. Angew Chem Int Ed 57, 4258–4273 (2018). doi: 10.1002/anie.201800907

    CrossRef Google Scholar

    [9] Van Meerbeek IM, De Sa CM, Shepherd RF. Soft optoelectronic sensory foams with proprioception. Sci Robot 3, eaau2489 (2018). doi: 10.1126/scirobotics.aau2489

    CrossRef Google Scholar

    [10] Zhang SM, Cai L, Li W, Miao JS, Wang TY et al. Fully printed silver-nanoparticle-based strain gauges with record high sensitivity. Adv Electron Mater 3, 1700067 (2017). doi: 10.1002/aelm.201700067

    CrossRef Google Scholar

    [11] Li LH, Xiang HY, Xiong Y, Zhao H, Bai YY et al. Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine. Adv Sci 5, 1800558 (2018). doi: 10.1002/advs.201800558

    CrossRef Google Scholar

    [12] Wang B, Wu K, Hjort K, Guo CF, Wu ZG. High-performance liquid alloy patterning of epidermal strain sensors for local fine skin movement monitoring. Soft Robot 6, 414–421 (2019). doi: 10.1089/soro.2018.0008

    CrossRef Google Scholar

    [13] Chen DJ, Zhao XL, Wei XR, Zhang JL, Wang D et al. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor. ACS Appl Mater Interfaces 12, 53247–53256 (2020). doi: 10.1021/acsami.0c14935

    CrossRef Google Scholar

    [14] Luo ZW, Li XM, Li QL, Tian XY, Fan TY et al. In situ dynamic manipulation of graphene strain sensor with drastically sensing performance enhancement. Adv Electron Mater 6, 2000269 (2020). doi: 10.1002/aelm.202000269

    CrossRef Google Scholar

    [15] Lin WE, He CB, Huang HY, Zhao WY, Qiu YB et al. Simultaneously achieving ultrahigh sensitivity and wide detection range for stretchable strain sensors with an interface-locking strategy. Adv Mater Technol 5, 2000008 (2020). doi: 10.1002/admt.202000008

    CrossRef Google Scholar

    [16] Wang BZ, Ba DX, Chu Q, Qiu LQ, Zhou DW et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering. Opto-Electron Adv 3, 200013 (2020). doi: 10.29026/oea.2020.200013

    CrossRef Google Scholar

    [17] Wang S, Fang YL, He H, Zhang L, Li CA et al. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv Funct Mater 31, 2007495 (2021). doi: 10.1002/adfm.202007495

    CrossRef Google Scholar

    [18] Liu ZY, Qi DP, Guo PZ, Liu Y, Zhu BW et al. Thickness-gradient films for high gauge factor stretchable strain sensors. Adv Mater 27, 6230–6237 (2015). doi: 10.1002/adma.201503288

    CrossRef Google Scholar

    [19] Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6, 296–301 (2011). doi: 10.1038/nnano.2011.36

    CrossRef Google Scholar

    [20] Ke K, Pötschke P, Wiegand N, Krause B, Voit B. Tuning the network structure in poly(vinylidene fluoride)/carbon nanotube nanocomposites using carbon black: toward improvements of conductivity and piezoresistive sensitivity. ACS Appl Mater Interfaces 8, 14190–14199 (2016). doi: 10.1021/acsami.6b03451

    CrossRef Google Scholar

    [21] Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). doi: 10.1038/nature14002

    CrossRef Google Scholar

    [22] Chen S, Wei Y, Wei SM, Lin Y, Liu L. Ultrasensitive Cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles. ACS Appl Mater Interfaces 8, 25563–25570 (2016). doi: 10.1021/acsami.6b09188

    CrossRef Google Scholar

    [23] Amjadi M, Turan M, Clementson CP, Sitti M. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS Appl Mater Interfaces 8, 5618–5626 (2016). doi: 10.1021/acsami.5b12588

    CrossRef Google Scholar

    [24] Song HL, Zhang JQ, Chen DB, Wang KJ, Niu SC et al. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 9, 1166–1173 (2017). doi: 10.1039/C6NR07333F

    CrossRef Google Scholar

    [25] Ye JL, Yang TT, Zhang YF, Lin L. Single-crack-activated ultrasensitive impedance strain sensor. Adv Mater Interfaces 5, 1800616 (2018). doi: 10.1002/admi.201800616

    CrossRef Google Scholar

    [26] Guo X, Ying YB, Tong LM. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc Chem Res 47, 656–666 (2014). doi: 10.1021/ar400232h

    CrossRef Google Scholar

    [27] Zhang L, Tang Y, Tong LM. Micro-/nanofiber optics: merging photonics and material science on nanoscale for advanced sensing technology. iScience 23, 100810 (2020). doi: 10.1016/j.isci.2019.100810

    CrossRef Google Scholar

    [28] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

    [29] Pan J, Zhang Z, Jiang CP, Zhang L, Tong LM. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale 12, 17538–17544 (2020). doi: 10.1039/D0NR03446K

    CrossRef Google Scholar

    [30] Tang Y, Liu HT, Pan J, Zhang Z, Xu Y et al. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. ACS Appl Mater Interfaces 13, 4560–4566 (2021). doi: 10.1021/acsami.0c20392

    CrossRef Google Scholar

    [31] Huang KJ, Yang SY, Tong LM. Modeling of evanescent coupling between two parallel optical nanowires. Appl Opt 46, 1429–1434 (2007). doi: 10.1364/AO.46.001429

    CrossRef Google Scholar

    [32] Chen Y, Yan SC, Zheng X, Xu F, Lu YQ. A miniature reflective micro-force sensor based on a microfiber coupler. Opt Express 22, 2443–2450 (2014). doi: 10.1364/OE.22.002443

    CrossRef Google Scholar

    [33] Liu TR, Pagliano F, van Veldhoven R, Pogoretskiy V, Jiao YQ et al. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth. Nat Commun 11, 2407 (2020). doi: 10.1038/s41467-020-16269-7

    CrossRef Google Scholar

    [34] Chen Y, Ma Z, Yang Q, Tong LM. Compact optical short-pass filters based on microfibers. Opt Lett 33, 2565–2567 (2008). doi: 10.1364/OL.33.002565

    CrossRef Google Scholar

    [35] Lou Z, Chen S, Wang LL, Jiang K, Shen GZ. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). doi: 10.1016/j.nanoen.2016.02.053

    CrossRef Google Scholar

    [36] Li SM, Xiao XL, Hu JY, Dong MC, Zhang YQ et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl Electron Mater 2, 2282–2300 (2020). doi: 10.1021/acsaelm.0c00292

    CrossRef Google Scholar

    [37] Fan XY, Huang Y, Ding XR, Luo NQ, Li CL et al. Alignment-free liquid-capsule pressure sensor for cardiovascular monitoring. Adv Funct Mater 28, 1805045 (2018). doi: 10.1002/adfm.201805045

    CrossRef Google Scholar

    [38] Lin QP, Huang J, Yang JL, Huang Y, Zhang YF et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv Healthc Mater 9, 2001023 (2020). doi: 10.1002/adhm.202001023

    CrossRef Google Scholar

    [39] Wang CY, Li X, Gao EL, Jian MQ, Xia KL et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28, 6640–6648 (2016). doi: 10.1002/adma.201601572

    CrossRef Google Scholar

    [40] Gong S, Lai DTH, Su B, Si KJ, Ma Z et al. Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv Electron Mater 1, 1400063 (2015). doi: 10.1002/aelm.201400063

    CrossRef Google Scholar

    [41] Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18, 3S–10S (2005).

    Google Scholar

    [42] Choong CL, Shim MB, Lee BS, Jeon S, Ko DS et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26, 3451–3458 (2014). doi: 10.1002/adma.201305182

    CrossRef Google Scholar

    [43] Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 4, 200076 (2022).

    Google Scholar

  • Supplymentray information for Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(5878) PDF downloads(1069) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint