Yu ZQ, Zhang N, Wang JX, Dai ZJ, Gong C et al. 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate. Opto-Electron Adv 5, 210065 (2022). doi: 10.29026/oea.2022.210065
Citation: Yu ZQ, Zhang N, Wang JX, Dai ZJ, Gong C et al. 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate. Opto-Electron Adv 5, 210065 (2022). doi: 10.29026/oea.2022.210065

Original Article Open Access

0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate

More Information
  • In this study, an optical setup for generating terahertz (THz) pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time. β-barium borate (BBO), α-BBO, and a dual-wavelength plate were used to compensate the phase delay of the two-color lasers. Tilting of α-BBO could further realize the precise spatial overlap of the two beams by counteracting the walk-off effect. The maximum output THz pulse energy reached 21 μJ in argon gas when using a commercial Ti:sapphire laser with a pulse energy of 6 mJ at a 1 kHz repetition rate. The corresponding conversion efficiency exceeded 0.35%.
  • 加载中
  • [1] Zhang XC, Shkurinov A, Zhang Y. Extreme terahertz science. Nat Photonics 11, 16–18 (2017). doi: 10.1038/nphoton.2016.249

    CrossRef Google Scholar

    [2] Kampfrath T, Tanaka K, Nelson KA. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 7, 680–690 (2013). doi: 10.1038/nphoton.2013.184

    CrossRef Google Scholar

    [3] Fülöp JA, Ollmann Z, Lombosi C, Skrobol C, Klingebiel S et al. Efficient generation of THz pulses with 0.4 mJ energy. Opt Express 22, 20155–20163 (2014). doi: 10.1364/OE.22.020155

    CrossRef Google Scholar

    [4] Zhang BL, Ma ZZ, Ma JL, Wu XJ, Ouyang C et al. 1.4‐mJ high energy terahertz radiation from lithium niobates. Laser Photonics Rev 15, 2000295 (2021). doi: 10.1002/lpor.202000295

    CrossRef Google Scholar

    [5] Vicario C, Ovchinnikov AV, Ashitkov SI, Agranat MB, Fortov VE et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr: Mg2SiO4 laser. Opt Lett 39, 6632–6635 (2014). doi: 10.1364/OL.39.006632

    CrossRef Google Scholar

    [6] Shalaby M, Hauri CP. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat Commun 6, 5976 (2015). doi: 10.1038/ncomms6976

    CrossRef Google Scholar

    [7] Liao GQ, Li YT, Liu H, Scott GG, Neely D et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc Natl Acad Sci USA 116, 3994–3999 (2019). doi: 10.1073/pnas.1815256116

    CrossRef Google Scholar

    [8] Tian Y, Liu JS, Bai YF, Zhou SY, Sun HY et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nat Photonics 11, 242–246 (2017). doi: 10.1038/nphoton.2017.16

    CrossRef Google Scholar

    [9] Roskos HG, Thomson MD, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photonics Rev 1, 349–368 (2007). doi: 10.1002/lpor.200710025

    CrossRef Google Scholar

    [10] Kim KY, Taylor AJ, Glownia JH, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat Photonics 2, 605–609 (2008). doi: 10.1038/nphoton.2008.153

    CrossRef Google Scholar

    [11] Meng FH, Cheng R, Deng C, Zhong ZY. Intracellular drug release nanosystems. Mater Today 15, 436–442 (2012). doi: 10.1016/S1369-7021(12)70195-5

    CrossRef Google Scholar

    [12] Andreeva VA, Kosareva OG, Panov NA, Shipilo DE, Solyankin PM et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys Rev Lett 116, 063902 (2016). doi: 10.1103/PhysRevLett.116.063902

    CrossRef Google Scholar

    [13] Matsubara E, Nagai M, Ashida M. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Appl Phys Lett 101, 011105 (2012). doi: 10.1063/1.4732524

    CrossRef Google Scholar

    [14] Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugžlys A et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun 11, 292 (2020). doi: 10.1038/s41467-019-14206-x

    CrossRef Google Scholar

    [15] Clerici M, Peccianti M, Schmidt BE, Caspani L, Shalaby M et al. Wavelength scaling of terahertz generation by gas ionization. Phys Rev Lett 110, 253901 (2013). doi: 10.1103/PhysRevLett.110.253901

    CrossRef Google Scholar

    [16] Oh TI, Yoo YJ, You YS, Kim KY. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Appl Phys Lett 105, 041103 (2014). doi: 10.1063/1.4891678

    CrossRef Google Scholar

    [17] Zhang ZL, Chen YP, Cui S, He F, Chen M et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nat Photonics 12, 554–559 (2018). doi: 10.1038/s41566-018-0238-9

    CrossRef Google Scholar

    [18] Zhao JY, Guo LJ, Chu W, Zeng B, Gao H et al. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate. Opt Lett 40, 3838–3841 (2015). doi: 10.1364/OL.40.003838

    CrossRef Google Scholar

    [19] Su Q, Liu WW, Lu D, Qi PF, Kosareva O et al. Influence of the tilting angle of a BBO crystal on the terahertz radiation produced by a dual-color femtosecond laser. IEEE Trans Terahertz Sci Technol 9, 669–674 (2019). doi: 10.1109/TTHZ.2019.2934717

    CrossRef Google Scholar

    [20] Kuk D, Yoo YJ, Rosenthal EW, Jhajj N, Milchberg HM et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air. Appl Phys Lett 108, 121106 (2016). doi: 10.1063/1.4944843

    CrossRef Google Scholar

    [21] Rodriguez G, Dakovski GL. Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence. Opt Express 18, 15130–15143 (2010). doi: 10.1364/OE.18.015130

    CrossRef Google Scholar

    [22] Yoo YJ, Jang D, Kim KY. Highly enhanced terahertz conversion by two-color laser filamentation at low gas pressures. Opt Express 27, 22663–22673 (2019). doi: 10.1364/OE.27.022663

    CrossRef Google Scholar

    [23] Ushakov AA, Chizhov PA, Andreeva VA, Panov NA, Shipilo DE et al. Ring and unimodal angular-frequency distribution of THz emission from two-color femtosecond plasma spark. Opt Express 26, 18202–18213 (2018). doi: 10.1364/OE.26.018202

    CrossRef Google Scholar

    [24] Ushakov A, Chizhov P, Bukin V, Shipilo D, Panov N et al. Multiple filamentation effects on THz radiation pattern from laser plasma in air. Photonics 8, 4 (2021).

    Google Scholar

    [25] Dai JM, Karpowicz N, Zhang XC. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys Rev Lett 103, 023001 (2009). doi: 10.1103/PhysRevLett.103.023001

    CrossRef Google Scholar

    [26] Kosareva O, Esaulkov M, Panov N, Andreeva V, Shipilo D et al. Polarization control of terahertz radiation from two-color femtosecond gas breakdown plasma. Opt Lett 43, 90–93 (2018). doi: 10.1364/OL.43.000090

    CrossRef Google Scholar

    [27] Dai HM, Liu JS. Terahertz emission dependence on the irradiating laser pulse width in generating terahertz waves from two-color laser-induced gas plasma. J Mod Opt 58, 859–864 (2011). doi: 10.1080/09500340.2011.575959

    CrossRef Google Scholar

    [28] Li JS, Li JR. Dielectric properties of silicon in terahertz wave region. Microw Opt Technol Lett 50, 1143–1146 (2008). doi: 10.1002/mop.23313

    CrossRef Google Scholar

    [29] Zhang Z, Panov N, Andreeva V et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air. Appl Phys Lett 113, 241103 (2018). doi: 10.1063/1.5053893

    CrossRef Google Scholar

    [30] Marburger JH. Self-focusing: theory. Prog Quantum Electron 4, 35–110 (1975). doi: 10.1016/0079-6727(75)90003-8

    CrossRef Google Scholar

    [31] You YS, Oh TI, Kim KY. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys Rev Lett 109, 183902 (2012). doi: 10.1103/PhysRevLett.109.183902

    CrossRef Google Scholar

    [32] Liu W, Petit S, Becker A, Aközbek N, Bowden CM et al. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt Commun 202, 189–197 (2002). doi: 10.1016/S0030-4018(01)01698-4

    CrossRef Google Scholar

    [33] Liu WW. Intensity clamping during femtosecond laser filamentation. Chin J Phys 52, 465–489 (2014).

    Google Scholar

    [34] Nibbering ETJ, Grillon G, Franco MA, Prade BS, Mysyrowicz A. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J Opt Soc Am B 14, 650–660 (1997). doi: 10.1364/JOSAB.14.000650

    CrossRef Google Scholar

    [35] Nuter R, Skupin S, Bergé L. Chirp-induced dynamics of femtosecond filaments in air. Opt Lett 30, 917–919 (2005). doi: 10.1364/OL.30.000917

    CrossRef Google Scholar

    [36] Wang PQ. Group velocity of light in uniaxial crystals. Appl Opt 60, 1987–1994 (2021). doi: 10.1364/AO.416686

    CrossRef Google Scholar

    [37] Zhang DX, Kong YF, Zhang JY. Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge. Opt Commun 184, 485–491 (2000). doi: 10.1016/S0030-4018(00)00968-8

    CrossRef Google Scholar

    [38] Zhang J, Lu ZH, Wang LJ. Precision refractive index measurements of air, N2, O2, Ar, and CO2 with a frequency comb. Appl Opt 47, 3143–3151 (2008). doi: 10.1364/AO.47.003143

    CrossRef Google Scholar

    [39] https://cetest02.cn-bj.ufileos.com/100001_1911295109%2FBirefringent%20Crystals_%CE%B1-BBO.pdf.

    Google Scholar

    [40] Zhao S, Wu FQ. The study on dispersive equation and thermal refractive index coefficient of quartz crystal. Acta Photonica Sin 35, 1183–1186 (2006).

    Google Scholar

    [41] Kim KY. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Phys Plasmas 16, 056706 (2009). doi: 10.1063/1.3134422

    CrossRef Google Scholar

    [42] Jang D, Schwartz RM, Woodbury D, Griff-McMahon J, Younis AH et al. Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica 6, 1338–1341 (2019). doi: 10.1364/OPTICA.6.001338

    CrossRef Google Scholar

    [43] Solyankin PM, Nikolaeva IA, Angeluts AA, Shipilo DE, Minaev NV et al. THz generation from laser-induced breakdown in pressurized molecular gases: on the way to terahertz remote sensing of the atmospheres of Mars and Venus. New J Phys 22, 013039 (2020). doi: 10.1088/1367-2630/ab60f3

    CrossRef Google Scholar

  • Supplementary information for 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(4704) PDF downloads(689) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint