Li CH, Du W, Huang YX, Zou JH, Luo LZ et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv 5, 210069 (2022). doi: 10.29026/oea.2022.210069
Citation: Li CH, Du W, Huang YX, Zou JH, Luo LZ et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv 5, 210069 (2022). doi: 10.29026/oea.2022.210069

Original Article Open Access

Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage

More Information
  • The human visual system, dependent on retinal cells, can be regarded as a complex combination of optical system and nervous system. Artificial retinal system could mimic the sensing and processing function of human eyes. Optically stimulated synaptic devices could serve as the building blocks for artificial retinas and subsequent information transmission system to brain. Herein, photonic synaptic transistors based on polycrystalline MoS2, which could simulate human visual perception and brain storage, are presented. Moreover, the photodetection range from visible light to near-infrared light of MoS2 multilayer could extend human eyes’ vision limitation to near-infrared light. Additionally, the photonic synaptic transistor shows an ultrafast speed within 5 μs and ultralow power consumption under optical stimuli about 40 aJ, several orders of magnitude lower than biological synapses (50 ms and 10 fJ). Furthermore, the backgate control could act as emotional modulation of the artificial brain to enhance or suppress memory function, i.e. the intensity of photoresponse. The proposed carrier trapping/detrapping as the main working mechanism is presented for the device. In addition, synaptic functionalities including short synaptic plasticity, long synaptic plasticity and paired-pulse facilitation could be successfully simulated based on the prepared device. Furthermore, the large difference between short synaptic plasticity and long synaptic plasticity reveals the better image pre-processing function of the prepared photonic synapses. The classical Pavlovian conditioning associated with the associative learning is successfully implemented as well. Therefore, the efficient and rich functionalities demonstrate the potential of the MoS2 synaptic device that integrates sensing-memory-preprocessing capabilities for realizing artificial neural networks with different emotions that mimic human retina and brain.
  • 加载中
  • [1] Pan X, Jin TY, Gao J, Han C, Shi YM et al. Stimuli-enabled artificial synapses for neuromorphic perception: progress and perspectives. Small 16, 2001504 (2020). doi: 10.1002/smll.202001504

    CrossRef Google Scholar

    [2] Zhang QM, Yu HY, Barbiero M, Wang BK, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl 8, 42 (2019). doi: 10.1038/s41377-019-0151-0

    CrossRef Google Scholar

    [3] Zhang K, Meng DL, Bai FM, Zhai JY, Wang ZL. Photon-memristive system for logic calculation and nonvolatile photonic storage. Adv Funct Mater 30, 2002945 (2020). doi: 10.1002/adfm.202002945

    CrossRef Google Scholar

    [4] Wu ZH, Lu JK, Shi T, Zhao XL, Zhang XM et al. A habituation sensory nervous system with memristors. Adv Mater 32, 2004398 (2020). doi: 10.1002/adma.202004398

    CrossRef Google Scholar

    [5] Zhang JY, Dai SL, Zhao YW, Zhang JH, Huang J. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst 2, 1900136 (2020). doi: 10.1002/aisy.201900136

    CrossRef Google Scholar

    [6] Zhang C, Wang SY, Zhao XL, Yang YH, Tong YH et al. Sub-femtojoule-energy-consumption conformable synaptic transistors based on organic single-crystalline nanoribbons. Adv Funct Mater 31, 2007894 (2021). doi: 10.1002/adfm.202007894

    CrossRef Google Scholar

    [7] Kumarasinghe K, Kasabov N, Taylor D. Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Sci Rep 11, 2486 (2021). doi: 10.1038/s41598-021-81805-4

    CrossRef Google Scholar

    [8] Wang L, Liao WG, Wong SL, Yu ZG, Li SF et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv Funct Mater 29, 1901106 (2019). doi: 10.1002/adfm.201901106

    CrossRef Google Scholar

    [9] Liu CS, Chen HW, Wang SY, Liu Q, Jiang YG et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol 15, 545–557 (2020). doi: 10.1038/s41565-020-0724-3

    CrossRef Google Scholar

    [10] Zuo HR, Xu ZY, Zhang JL, Jia G. Visual tracking based on transfer learning of deep salience information. Opto-Electron Adv 3, 190018 (2020).

    Google Scholar

    [11] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020).

    Google Scholar

    [12] Cheng YC, Li HJW, Liu B, Jiang LY, Liu M et al. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 16, 2005217 (2020). doi: 10.1002/smll.202005217

    CrossRef Google Scholar

    [13] Tan ZH, Yin XB, Yang R, Mi SB, Jia CL et al. Pavlovian conditioning demonstrated with neuromorphic memristive devices. Sci Rep 7, 713 (2017). doi: 10.1038/s41598-017-00849-7

    CrossRef Google Scholar

    [14] Yin L, Huang W, Xiao RL, Peng WB, Zhu YY et al. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett 20, 3378–3387 (2020). doi: 10.1021/acs.nanolett.0c00298

    CrossRef Google Scholar

    [15] Ahmed T, Tahir M, Low MX, Ren YY, Tawfik SA et al. Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv Mater 33, 2004207 (2021). doi: 10.1002/adma.202004207

    CrossRef Google Scholar

    [16] Gillick BT, Zirpel L. Neuroplasticity: an appreciation from synapse to system. Arch Phys Med Rehabil 93, 1846–1855 (2012). doi: 10.1016/j.apmr.2012.04.026

    CrossRef Google Scholar

    [17] Wang TY, Meng JL, He ZY, Chen L, Zhu H et al. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv Sci 7, 1903480 (2020). doi: 10.1002/advs.201903480

    CrossRef Google Scholar

    [18] Zhai YB, Zhou Y, Yang XQ, Wang F, Ye WB et al. Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy 67, 104262 (2020). doi: 10.1016/j.nanoen.2019.104262

    CrossRef Google Scholar

    [19] Majumdar S, Tan HW, Qin QH, van Dijken S. Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing. Adv Electron Mater 5, 1800795 (2019). doi: 10.1002/aelm.201800795

    CrossRef Google Scholar

    [20] Hebb DO. The Organization of Behavior: A Neuropsychological Theory (Psychology Press, London, 2005).

    Google Scholar

    [21] Bear MF, Connors BW, Paradiso MA. Neuroscience Exploring the Brain (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar

    [22] Xiao ZG, Huang JS. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv Electron Mater 2, 1600100 (2016). doi: 10.1002/aelm.201600100

    CrossRef Google Scholar

    [23] Ma FM, Zhu YB, Xu ZW, Liu Y, Zheng XJ et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv Funct Mater 30, 1908901 (2020). doi: 10.1002/adfm.201908901

    CrossRef Google Scholar

    [24] Han H, Yu HY, Wei HH, Gong JD, Xu WT. Recent progress in three-terminal artificial synapses: from device to system. Small 15, 1900695 (2019). doi: 10.1002/smll.201900695

    CrossRef Google Scholar

    [25] Qian C, Oh S, Choi Y, Kim JH, Sun J et al. Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing. Nano Energy 66, 104095 (2019). doi: 10.1016/j.nanoen.2019.104095

    CrossRef Google Scholar

    [26] Berco D, Ang DS, Zhang HZ. An optoneuronic device with realistic retinal expressions for bioinspired machine vision. Adv Intell Syst 2, 1900115 (2020). doi: 10.1002/aisy.201900115

    CrossRef Google Scholar

    [27] Park HL, Kim H, Lim D, Zhou HY, Kim YH et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv Mater 32, 1906899 (2020). doi: 10.1002/adma.201906899

    CrossRef Google Scholar

    [28] Wei ZM, Li B, Xia CX, Cui Y, He J et al. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2, 1800094 (2018). doi: 10.1002/smtd.201800094

    CrossRef Google Scholar

    [29] Du W, Li CH, Sun JC, Xu H, Yu P et al. Nanolasers based on 2D materials. Laser Photonics Rev 14, 2000271 (2020). doi: 10.1002/lpor.202000271

    CrossRef Google Scholar

    [30] Zhao ZH, Wu D, Guo JW, Wu EP, Jia C et al. Synthesis of large-area 2D WS2 films and fabrication of a heterostructure for self-powered ultraviolet photodetection and imaging applications. J Mater Chem C 7, 12121–12126 (2019). doi: 10.1039/C9TC03866C

    CrossRef Google Scholar

    [31] Zhang XM, Xiao SQ, Shi LH, Nan HY, Wan X et al. Large-size Mo1-xWxS2 and W1-xMoxS2 (x = 0–0.5) monolayers by confined-space chemical vapor deposition. Appl Surf Sci 457, 591–597 (2018). doi: 10.1016/j.apsusc.2018.06.299

    CrossRef Google Scholar

    [32] Akinwande D, Huyghebaert C, Wang CH, Serna MI, Goossens S et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). doi: 10.1038/s41586-019-1573-9

    CrossRef Google Scholar

    [33] Fang MX, Wang F, Han YM, Feng YL, Ren TL et al. Controlled growth of bilayer-MoS2 films and MoS2-based field-effect transistor (FET) performance optimization. Adv Electron Mater 4, 1700524 (2018). doi: 10.1002/aelm.201700524

    CrossRef Google Scholar

    [34] Wu M, Xiao YH, Zeng Y, Zhou YL, Zeng XB et al. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3, 362–396 (2021). doi: 10.1002/inf2.12161

    CrossRef Google Scholar

    [35] Feng XW, Liu XK, Ang KW. 2D photonic memristor beyond graphene: progress and prospects. Nanophotonics 9, 1579–1599 (2020). doi: 10.1515/nanoph-2019-0543

    CrossRef Google Scholar

    [36] Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021). doi: 10.29026/oea.2021.210017

    CrossRef Google Scholar

    [37] Sup Choi M, Lee GH, Yu YJ, Lee DY, Hwan Lee S et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun 4, 1624 (2013). doi: 10.1038/ncomms2652

    CrossRef Google Scholar

    [38] Hu YX, Dai MJ, Feng W, Zhang X, Zhang SC et al. Monolayer hydrophilic MoS2 with strong charge trapping for atomically thin neuromorphic vision systems. Mater Horiz 7, 3316–3324 (2020). doi: 10.1039/D0MH01472A

    CrossRef Google Scholar

    [39] Huang W, Xia XW, Zhu C, Steichen P, Quan WD et al. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett 13, 85 (2021). doi: 10.1007/s40820-021-00618-2

    CrossRef Google Scholar

    [40] Gao CF, Lee MP, Li MJ, Lee KC, Yang FS et al. Mimic drug dosage modulation for neuroplasticity based on charge-trap layered electronics. Adv Funct Mater 31, 2005182 (2021). doi: 10.1002/adfm.202005182

    CrossRef Google Scholar

    [41] Choi C, Leem J, Kim MS, Taqieddin A, Cho C et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat Commun 11, 5934 (2020). doi: 10.1038/s41467-020-19806-6

    CrossRef Google Scholar

    [42] Qin SC, Wang FQ, Liu YJ, Wan Q, Wang XR et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater 4, 035022 (2017). doi: 10.1088/2053-1583/aa805e

    CrossRef Google Scholar

    [43] Kumar M, Abbas S, Kim J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl Mater Interfaces 10, 34370–34376 (2018). doi: 10.1021/acsami.8b10870

    CrossRef Google Scholar

    [44] Chen TQ, Wang X, Hao DD, Dai SL, Ou QQ et al. Photonic synapses with ultra-low energy consumption based on vertical organic field-effect transistors. Adv Opt Mater 9, 2002030 (2021). doi: 10.1002/adom.202002030

    CrossRef Google Scholar

    [45] Xiao M, Wang HD, Liu JF, Yang H, Zhang H. Artificial visual memory device based on a photo-memorizing composite and one-step manufacturing. Mater Horiz 7, 1597–1604 (2020). doi: 10.1039/D0MH00312C

    CrossRef Google Scholar

    [46] Zhu JT, Li W, Huang R, Ma L, Sun HM et al. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J Am Chem Soc 142, 16276–16284 (2020). doi: 10.1021/jacs.0c05691

    CrossRef Google Scholar

    [47] Ganger ZD. Growth of two-dimensional molybdenum disulfide via chemical vapor deposition (Wright State University, Dayton, 2019).

    Google Scholar

    [48] Hong S, Zagni N, Choo S, Liu N, Baek S et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat Commun 12, 3559 (2021). doi: 10.1038/s41467-021-23711-x

    CrossRef Google Scholar

    [49] Lee HS, Min SW, Chang YG, Park MK, Nam T et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12, 3695–3700 (2012). doi: 10.1021/nl301485q

    CrossRef Google Scholar

    [50] Choi W, Cho MY, Konar A, Lee JH, Cha GB et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 24, 5832–5836 (2012). doi: 10.1002/adma.201201909

    CrossRef Google Scholar

    [51] Ren AB, Zou JH, Lai HG, Huang YX, Yuan LM et al. Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater Horiz 7, 1901–1911 (2020). doi: 10.1039/D0MH00537A

    CrossRef Google Scholar

    [52] Yang ZB, Hao JH, Lau SP. Synthesis, properties, and applications of 2D amorphous inorganic materials. J Appl Phys 127, 220901 (2020). doi: 10.1063/1.5144626

    CrossRef Google Scholar

    [53] Bittle EG, Basham JI, Jackson TN, Jurchescu OD, Gundlach DJ. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat Commun 7, 10908 (2016). doi: 10.1038/ncomms10908

    CrossRef Google Scholar

    [54] Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak SI et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat Mater 16, 814–818 (2017). doi: 10.1038/nmat4896

    CrossRef Google Scholar

    [55] Wang Y, Kim JC, Wu RJ, Martinez J, Song XJ et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). doi: 10.1038/s41586-019-1052-3

    CrossRef Google Scholar

    [56] Shen PC, Su C, Lin YX, Chou AS, Cheng CC et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). doi: 10.1038/s41586-021-03472-9

    CrossRef Google Scholar

    [57] Zhou FC, Chen JW, Tao XM, Wang XR, Chai Y. 2D materials based optoelectronic memory: convergence of electronic memory and optical sensor. Research 2019, 9490413 (2019).

    Google Scholar

    [58] Jonsson A, Sjöström TA, Tybrandt K, Berggren M, Simon DT. Chemical delivery array with millisecond neurotransmitter release. Sci Adv 2, e1601340 (2016). doi: 10.1126/sciadv.1601340

    CrossRef Google Scholar

    [59] Hao DD, Zhang JY, Dai SL, Zhang JH, Huang J. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces 12, 39487–39495 (2020). doi: 10.1021/acsami.0c10851

    CrossRef Google Scholar

    [60] Tu LQ, Cao RR, Wang XD, Chen Y, Wu SQ et al. Ultrasensitive negative capacitance phototransistors. Nat Commun 11, 101 (2020). doi: 10.1038/s41467-019-13769-z

    CrossRef Google Scholar

    [61] Wang X, Lu Y, Zhang JY, Zhang SQ, Chen TQ et al. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors. Small 17, 2005491 (2021). doi: 10.1002/smll.202005491

    CrossRef Google Scholar

    [62] Meng Y, Li FZ, Lan CY, Bu XM, Kang XL et al. Artificial visual systems enabled by quasi–two-dimensional electron gases in oxide superlattice nanowires. Sci Adv 6, eabc6389 (2020). doi: 10.1126/sciadv.abc6389

    CrossRef Google Scholar

    [63] Wang Y, Lv ZY, Chen JR, Wang ZP, Zhou Y et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv Mater 30, 1802883 (2018). doi: 10.1002/adma.201802883

    CrossRef Google Scholar

    [64] Ahmed T, Kuriakose S, Mayes ELH, Ramanathan R, Bansal V et al. Optically stimulated artificial synapse based on layered black phosphorus. Small 15, 1900966 (2019). doi: 10.1002/smll.201900966

    CrossRef Google Scholar

    [65] Pradhan B, Das S, Li JX, Chowdhury F, Cherusseri J et al. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci Adv 6, eaay5225 (2020). doi: 10.1126/sciadv.aay5225

    CrossRef Google Scholar

    [66] Jiang J, Hu WN, Xie DD, Yang JL, He J et al. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 11, 1360–1369 (2019). doi: 10.1039/C8NR07133K

    CrossRef Google Scholar

    [67] Wang SY, Chen CS, Yu ZH, He YL, Chen XY et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv Mater 31, 1806227 (2019). doi: 10.1002/adma.201806227

    CrossRef Google Scholar

    [68] Cheng ZG, Ríos C, Pernice WHP, Wright CD, Bhaskaran H. On-chip photonic synapse. Sci Adv 3, e1700160 (2017). doi: 10.1126/sciadv.1700160

    CrossRef Google Scholar

    [69] Zhao YY, Sun WJ, Wang J, He JH, Li H et al. All-inorganic ionic polymer-based memristor for high-performance and flexible artificial synapse. Adv Funct Mater 30, 2004245 (2020). doi: 10.1002/adfm.202004245

    CrossRef Google Scholar

    [70] Wang K, Dai SL, Zhao YW, Wang Y, Liu C et al. Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15, 1900010 (2019). doi: 10.1002/smll.201900010

    CrossRef Google Scholar

    [71] Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett 15, 7307–7313 (2015). doi: 10.1021/acs.nanolett.5b02559

    CrossRef Google Scholar

    [72] Zhao QH, Wang W, Carrascoso-Plana F, Jie WQ, Wang T et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater Horiz 7, 252–262 (2020). doi: 10.1039/C9MH01020C

    CrossRef Google Scholar

    [73] Guo JM, Wen RM, Zhai JY, Wang ZL. Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Sci Bull 64, 128–135 (2019). doi: 10.1016/j.scib.2018.12.009

    CrossRef Google Scholar

    [74] Zhao XN, Xu HY, Wang ZQ, Lin Y, Liu YC. Memristors with organic-inorganic halide perovskites. InfoMat 1, 183–210 (2019).

    Google Scholar

    [75] Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 64, 355–405 (2002). doi: 10.1146/annurev.physiol.64.092501.114547

    CrossRef Google Scholar

    [76] Lee KC, Li MJ, Chang YH, Yang SH, Lin CY et al. Inverse paired-pulse facilitation in neuroplasticity based on interface-boosted charge trapping layered electronics. Nano Energy 77, 105258 (2020). doi: 10.1016/j.nanoen.2020.105258

    CrossRef Google Scholar

    [77] Simmons JG, Taylor GW. Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys Rev B 4, 502–511 (1971). doi: 10.1103/PhysRevB.4.502

    CrossRef Google Scholar

    [78] Jiang J, Ling CY, Xu T, Wang WH, Niu XH et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv Mater 30, 1804332 (2018). doi: 10.1002/adma.201804332

    CrossRef Google Scholar

    [79] Ebbinghaus H. Über das Gedächtnis: Untersuchungen zur Experimentellen Psychologie (Duncker & Humber, Leipzig, 1885).

    Google Scholar

    [80] Laborieux A, Ernoult M, Hirtzlin T, Querlioz D. Synaptic metaplasticity in binarized neural networks. Nat Commun 12, 2549 (2021). doi: 10.1038/s41467-021-22768-y

    CrossRef Google Scholar

    [81] Wang Y, Yin L, Huang W, Li YY, Huang SJ et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst 3, 2000099 (2021). doi: 10.1002/aisy.202000099

    CrossRef Google Scholar

    [82] Loftus GR. Evaluating forgetting curves. J Exp Psychol Learn Mem Cogn 11, 397–406 (1985). doi: 10.1037/0278-7393.11.2.397

    CrossRef Google Scholar

    [83] Zhang ZZ, Wang ZW, Shi T, Bi C, Rao F et al. Memory materials and devices: from concept to application. InfoMat 2, 261–290 (2020). doi: 10.1002/inf2.12077

    CrossRef Google Scholar

    [84] Rolls ET, Stringer SM. A model of the interaction between mood and memory. Netw Comput Neural Syst 12, 89–109 (2001). doi: 10.1080/net.12.2.89.109

    CrossRef Google Scholar

    [85] Bryan T, Mathur S, Sullivan K. The impact of positive mood on learning. Learn Disabil Quart 19, 153–162 (1996). doi: 10.2307/1511058

    CrossRef Google Scholar

    [86] Zou JY, Cai ZY, Lai YJ, Tan JY, Zhang RJ et al. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano 15, 7340–7347 (2021). doi: 10.1021/acsnano.1c00596

    CrossRef Google Scholar

    [87] Wang SY, Liu L, Gan LR, Chen HW, Hou X et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat Commun 12, 53 (2021). doi: 10.1038/s41467-020-20257-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint