Maksimovic J, Hu JW, Ng SH, Katkus T, Seniutinas G et al. Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods. Opto-Electron Adv 5, 210086 (2022). doi: 10.29026/oea.2022.210086
Citation: Maksimovic J, Hu JW, Ng SH, Katkus T, Seniutinas G et al. Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods. Opto-Electron Adv 5, 210086 (2022). doi: 10.29026/oea.2022.210086

Original Article Open Access

Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods

More Information
  • Light trapping photonic crystal (PhC) patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%, for light-to-electrical power conversion with a single junction cell. This is beyond the efficiency limit implied by the Lambertian limit of ray trapping ~ 29%. The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap. We compare two different methods for surface patterning, that can be extended to large area surface patterning: 1) laser direct write and 2) step-&-repeat 5× reduction projection lithography. Large area throughput limitations of these methods are compared with the established electron beam lithography (EBL) route, which is conventionally utilised but much slower than the presented methods. Spectral characterisation of the PhC light trapping is compared for samples fabricated by different methods. Reflectance of Si etched via laser patterned mask was ~ 7% at visible wavelengths and was comparable with Si patterned via EBL made mask. The later pattern showed a stronger absorbance than the Lambertian limit6.
  • 加载中
  • [1] Wilson GM, Al-Jassim M, Metzger WK, Glunz SW, Verlinden P et al. The 2020 photovoltaic technologies roadmap. J Phys D: Appl Phys 53, 493001 (2020). doi: 10.1088/1361-6463/ab9c6a

    CrossRef Google Scholar

    [2] Jäger-Waldau A. PV status report 2019. Publications Office of the European Union, Luxembourg (2019).

    Google Scholar

    [3] Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N et al. Solar cell efficiency tables (version 57). Prog Photovoltaics: Res Appl 29, 3–15 (2021). doi: 10.1002/pip.3371

    CrossRef Google Scholar

    [4] Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32, 510–519 (1961). doi: 10.1063/1.1736034

    CrossRef Google Scholar

    [5] Bhattacharya S, John S. Beyond 30% conversion efficiency in silicon solar cells: a numerical demonstration. Sci Rep 9, 12482 (2019). doi: 10.1038/s41598-019-48981-w

    CrossRef Google Scholar

    [6] Hsieh ML, Kaiser A, Bhattacharya S, John S, Lin SY. Experimental demonstration of broadband solar absorption beyond the lambertian limit in certain thin silicon photonic crystals. Sci Rep 10, 11857 (2020). doi: 10.1038/s41598-020-68704-w

    CrossRef Google Scholar

    [7] Bhattacharya S, Baydoun I, Lin M, John S. Towards 30% power conversion efficiency in thin-silicon photonic-crystal solar cells. Phys Rev Appl 11, 014005 (2019). doi: 10.1103/PhysRevApplied.11.014005

    CrossRef Google Scholar

    [8] Simovski C, Tretyakov S. Nanostructures for enhancement of solar cells. In Simovski C, Tretyakov S. An Introduction to Metamaterials and Nanophotonics (Cambridge: Cambridge University Press, 2020) p. 245–303.

    Google Scholar

    [9] Yamaguchi M, Lee KH, Sato D, Araki K, Kojima N et al. Overview of Si tandem solar cells and approaches to PV-powered vehicle applications. MRS Adv 5, 441–450 (2020). doi: 10.1557/adv.2020.66

    CrossRef Google Scholar

    [10] https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (2021). accessed 1 April 2021.

    Google Scholar

    [11] Hollemann C, Haase F, Schäfer S, Krügener J, Brendel R et al. 26.1%-efficient POLO-IBC cells: quantification of electrical and optical loss mechanisms. Prog Photovoltaics: Res Appl 27, 950–958 (2019). doi: 10.1002/pip.3098

    CrossRef Google Scholar

    [12] Green MA. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovoltaics: Res Appl 17, 183–189 (2009). doi: 10.1002/pip.892

    CrossRef Google Scholar

    [13] Nishijima Y, Komatsu R, Ota S, Seniutinas G, Balčytis A et al. Anti-reflective surfaces: cascading nano/microstructuring. APL Photon 1, 076104 (2016). doi: 10.1063/1.4964851

    CrossRef Google Scholar

    [14] Chai JYH, Wong BT, Juodkazis S. Black-silicon-assisted photovoltaic cells for better conversion efficiencies: a review on recent research and development efforts. Mater Today Energy 18, 100539 (2020). doi: 10.1016/j.mtener.2020.100539

    CrossRef Google Scholar

    [15] Ščajev P, Malinauskas T, Seniutinas G, Arnold MD, Gentle A et al. Light-induced reflectivity transients in black-Si nanoneedles. Solar Energy Mater Solar Cells 144, 221–227 (2016). doi: 10.1016/j.solmat.2015.08.030

    CrossRef Google Scholar

    [16] Peibst R. Still in the game. Nat Energy 6, 333–334 (2021). doi: 10.1038/s41560-021-00822-9

    CrossRef Google Scholar

    [17] Richter A, Müller R, Benick J, Feldmann F, Steinhauser B et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat Energy 6, 429–438 (2021). doi: 10.1038/s41560-021-00805-w

    CrossRef Google Scholar

    [18] Köhler M, Pomaska M, Procel P, Santbergen R, Zamchiy A et al. A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat Energy 6, 529–537 (2021). doi: 10.1038/s41560-021-00806-9

    CrossRef Google Scholar

    [19] Bonse J, Baudach S, Krüger J, Kautek W, Lenzner M. Femtosecond laser ablation of sili con–modification thresholds and morphology. Appl Phys A 74, 19–25 (2002). doi: 10.1007/s003390100893

    CrossRef Google Scholar

    [20] Wolff CH, Whitlock S, Lowe RM, Sidorov AI, Hall BV. Fabricating atom chips with femtosecond laser ablation. J Phys B: At Mol Opt Phys 42, 085301 (2009). doi: 10.1088/0953-4075/42/8/085301

    CrossRef Google Scholar

    [21] Kirchner R, Neumann V, Winkler F, Strobel C, Völkel S et al. Anisotropic etching of pyramidal silica reliefs with metal masks and hydrofluoric acid. Small 16, 2002290 (2020). doi: 10.1002/smll.202002290

    CrossRef Google Scholar

    [22] Nishijima Y, Balčytis A, Naganuma S, Seniutinas G, Juodkazis S. Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion. Sci Rep 9, 8284 (2019). doi: 10.1038/s41598-019-44781-4

    CrossRef Google Scholar

    [23] Chen Q, Liang L, Zheng QL, Zhang YX, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [24] Maksimovic J, Hu JW, Ng SH, Katkus T, Seniutinas G et al. Large area > 1 cm2 light trapping patterns for Si solar cells. In Proceedings of SPIE 11696, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV 57–68 (SPIE, 2021); https://doi.org/10.1117/12.2578303.

    Google Scholar

    [25] Misra D, Heasell EL. Electrical damage to silicon devices due to reactive ion etching. Semicond Sci Technol 5, 229–236 (1990). doi: 10.1088/0268-1242/5/3/008

    CrossRef Google Scholar

    [26] Mu XC, Fonash SJ, Oehrlein GS, Chakravarti SN, Parks C et al. A study of CClF3/H2 reactive ion etching damage and contamination effects in silicon. J Appl Phys 59, 2958–2967 (1986). doi: 10.1063/1.336934

    CrossRef Google Scholar

    [27] Green MA. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92, 1305–1310 (2008). doi: 10.1016/j.solmat.2008.06.009

    CrossRef Google Scholar

    [28] Kuang P, Eyderman S, Hsieh ML, Post A, John S et al. Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture. ACS Nano 10, 6116–6124 (2016). doi: 10.1021/acsnano.6b01875

    CrossRef Google Scholar

    [29] Gailevičius D, Ryu M, Honda R, Lundgaard S, Suzuki T et al. Tilted black-Si: ~0.45 form-birefringence from sub-wavelength needles. Opt Express 28, 16012–16026 (2020). doi: 10.1364/OE.392646

    CrossRef Google Scholar

    [30] Han SE, Chen G. Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett 10, 4692–4696 (2010). doi: 10.1021/nl1029804

    CrossRef Google Scholar

    [31] Fan YJ, Han PD, Liang P, Xing YP, Ye Z et al. Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells. Appl Surf Sci 264, 761–766 (2013). doi: 10.1016/j.apsusc.2012.10.117

    CrossRef Google Scholar

    [32] Mikutis M, Kudrius T, Šlekys G, Paipulas D, Juodkazis S. High 90% efficiency Bragg gratings formed in fused silica by femtosecond gauss-Bessel laser beams. Opt Mater Express 3, 1862–1871 (2013). doi: 10.1364/OME.3.001862

    CrossRef Google Scholar

    [33] Jonušauskas L, Gailevičius D, Rekštytė S, Baldacchini T, Juodkazis S et al. Mesoscale laser 3D printing. Opt Express 27, 15205–15221 (2019). doi: 10.1364/OE.27.015205

    CrossRef Google Scholar

    [34] Han ML, Smith D, Ng SH, Anand V, Katkus T et al. Ultra-short-pulse lasers – materials - applications. Eng Proc 11, 44 (2021).

    Google Scholar

    [35] Mottay EP. Femtosecond lasers for high throughput surface engineering. In Proceedings of SPIE 11768, SPIE Photonics West Industry Events 1176807 (SPIE, 2021);https://doi.org/10.1117/12.2593536.

    Google Scholar

    [36] Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim DK et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016). doi: 10.1038/nature18619

    CrossRef Google Scholar

    [37] Förster DJ, Jäggi B, Michalowski A, Neuenschwander B. Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses. Materials 14, 3331 (2021). doi: 10.3390/ma14123331

    CrossRef Google Scholar

    [38] Bonaccurso E. Laser-treated superhydrophobic surfaces to reduce ice build-up in aeronautical applications. In Proceedings of the SPIE 11768, SPIE Photonics West Industry Events (SPIE, 2021); https://doi.org/10.1117/12.2593541.

    Google Scholar

    [39] Hodgson N, Steinkopff A, Heming S, Allegre H, Haloui H et al. Ultrafast laser machining: process optimization and applications. In Proceedings of the SPIE 11673, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI 1167308 (SPIE, 2021); https://doi.org/10.1117/12.2584178.

    Google Scholar

    [40] http://www.lelandstanfordjunior.com/KOH.html (2020). accessed 1 January 2020.

    Google Scholar

    [41] https://www.brewerscience.com/products/protective-coatings/ (2020). accessed 1 January 2020.

    Google Scholar

    [42] Gokhale AB, Abbaschian GJ. The Cr-Si (chromium-silicon) system. J Phase Equilib 8, 474–484 (1987). doi: 10.1007/BF02893156

    CrossRef Google Scholar

    [43] Vailionis A, Gamaly EG, Mizeikis V, Yang W, Rode AV et al. Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat Commun 2, 445 (2011). doi: 10.1038/ncomms1449

    CrossRef Google Scholar

    [44] Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R et al. Control over the crystalline state of sapphire. Adv Mat 18, 1361–1364 (2006). doi: 10.1002/adma.200501837

    CrossRef Google Scholar

  • Supplementary information for Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint